Academic literature on the topic 'Galaxy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Galaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Galaxy"

1

Wilson, Gillian, Nick Kaiser, Gerard A. Luppino, and Lennox L. Cowie. "Galaxy Halo Masses from Galaxy‐Galaxy Lensing." Astrophysical Journal 555, no. 2 (July 10, 2001): 572–84. http://dx.doi.org/10.1086/321441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saghiha, H., S. Hilbert, P. Schneider, and P. Simon. "Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution." Astronomy & Astrophysics 547 (October 31, 2012): A77. http://dx.doi.org/10.1051/0004-6361/201219358.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mao, Shude, Jian Wang, and Martin C. Smith. "Moderate galaxy-galaxy lensing." Monthly Notices of the Royal Astronomical Society 422, no. 4 (April 24, 2012): 2808–15. http://dx.doi.org/10.1111/j.1365-2966.2012.20438.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anthony Tyson, J. "Galaxy Mass Distribution from Galaxy-Galaxy Gravitational Lensing." Symposium - International Astronomical Union 117 (1987): 241. http://dx.doi.org/10.1017/s0074180900150259.

Full text
Abstract:
The average gravitational lens distortion of background galaxy images by foreground galaxies is an independent, non-kinematical measurement of galaxy mass distribution M(r)/r (Tyson, et al. 1984). The upper limit we obtained for the equivalent circular velocity, while small compared with some heavy halo models, is consistent with dynamical estimates for samples of galaxies of all types (e.g. Turner's binary data and the Rubin, et al. rotation curves). For example, for a mean cutoff radius of 65 kpc/h, our 3σ upper limit for the equivalent circular velocity (GM/r)1/2 = 190 km/sec. For a mass cutoff at 190 kpc/h our 2σ upper limit is 175 km/sec. If I weight a sample of asymptotical rotation curve velocities by recent field luminosity functions, I get mean circular velocities less than 170 km/sec.
APA, Harvard, Vancouver, ISO, and other styles
5

Simon, P., T. Erben, P. Schneider, C. Heymans, H. Hildebrandt, H. Hoekstra, T. D. Kitching, et al. "CFHTLenS: higher order galaxy–mass correlations probed by galaxy–galaxy–galaxy lensing." Monthly Notices of the Royal Astronomical Society 430, no. 3 (February 7, 2013): 2476–98. http://dx.doi.org/10.1093/mnras/stt069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Simon, P., P. Watts, P. Schneider, H. Hoekstra, M. D. Gladders, H. K. C. Yee, B. C. Hsieh, and H. Lin. "First detection of galaxy-galaxy-galaxy lensing in RCS." Astronomy & Astrophysics 479, no. 3 (January 2, 2008): 655–67. http://dx.doi.org/10.1051/0004-6361:20078197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cohn, J. D. "Galaxy subgroups in galaxy clusters." Monthly Notices of the Royal Astronomical Society 419, no. 2 (October 21, 2011): 1017–27. http://dx.doi.org/10.1111/j.1365-2966.2011.19756.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Linke, Laila, Patrick Simon, Peter Schneider, and Stefan Hilbert. "Measuring galaxy-galaxy-galaxy-lensing with higher precision and accuracy." Astronomy & Astrophysics 634 (January 29, 2020): A13. http://dx.doi.org/10.1051/0004-6361/201936693.

Full text
Abstract:
Context. Galaxy-galaxy-galaxy lensing (G3L) is a powerful tool for constraining the three-point correlation between the galaxy and matter distribution and thereby models of galaxy evolution. Aims. We propose three improvements to current measurements of G3L: (i) a weighting of lens galaxies according to their redshift difference, (ii) adaptive binning of the three-point correlation function, and (iii) accounting for the effect of lens magnification by the cosmic large-scale structure. Improvement (i) is designed to improve the precision of the G3L measurement, whereas improvements (ii) and (iii) remove biases of the estimator. We further show how the G3L signal can be converted from angular into physical scales. Methods. The improvements were tested on simple mock data and simulated data based on the Millennium Run with an implemented semi-analytic galaxy model. Results. Our improvements increase the signal-to-noise ratio by 35% on average at angular scales between 0.′1 and 10′ and physical scales between 0.02 and 2 h−1 Mpc. They also remove the bias of the G3L estimator at angular scales below 1′, which was originally up to 40%. The signal due to lens magnification is approximately 10% of the total signal.
APA, Harvard, Vancouver, ISO, and other styles
9

Renneby, Malin, Bruno M. B. Henriques, Stefan Hilbert, Dylan Nelson, Mark Vogelsberger, Raúl E. Angulo, Volker Springel, and Lars Hernquist. "Joint galaxy–galaxy lensing and clustering constraints on galaxy formation." Monthly Notices of the Royal Astronomical Society 498, no. 4 (September 4, 2020): 5804–33. http://dx.doi.org/10.1093/mnras/staa2675.

Full text
Abstract:
ABSTRACT We compare predictions for galaxy–galaxy lensing profiles and clustering from the Henriques et al. public version of the Munich semi-analytical model (SAM) of galaxy formation and the IllustrisTNG suite, primarily TNG300, with observations from KiDS + GAMA and SDSS-DR7 using four different selection functions for the lenses (stellar mass, stellar mass and group membership, stellar mass and isolation criteria, and stellar mass and colour). We find that this version of the SAM does not agree well with the current data for stellar mass-only lenses with $M_\ast \gt 10^{11}\, \mathrm{ M}_\odot$. By decreasing the merger time for satellite galaxies as well as reducing the radio-mode active galactic nucleus accretion efficiency in the SAM, we obtain better agreement, both for the lensing and the clustering, at the high-mass end. We show that the new model is consistent with the signals for central galaxies presented in Velliscig et al. Turning to the hydrodynamical simulation, TNG300 produces good lensing predictions, both for stellar mass-only (χ2 = 1.81 compared to χ2 = 7.79 for the SAM) and locally brightest galaxy samples (χ2 = 3.80 compared to χ2 = 5.01). With added dust corrections to the colours it matches the SDSS clustering signal well for red low-mass galaxies. We find that both the SAMs and TNG300 predict $\sim 50\, {{\ \rm per\ cent}}$ excessive lensing signals for intermediate-mass red galaxies with 10.2 < log10M*[M⊙] < 11.2 at $r \approx 0.6\, h^{-1}\, \text{Mpc}$, which require further theoretical development.
APA, Harvard, Vancouver, ISO, and other styles
10

Watts, Peter, and Peter Schneider. "Higher Order Cross-Correlation Functions from Galaxy-Galaxy-Galaxy Lensing." Proceedings of the International Astronomical Union 2004, IAUS225 (July 2004): 243–48. http://dx.doi.org/10.1017/s1743921305002048.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Galaxy"

1

Linke, Laila Maria [Verfasser]. "Testing models of galaxy formation and evolution with galaxy-galaxy-galaxy lensing / Laila Maria Linke." Bonn : Universitäts- und Landesbibliothek Bonn, 2021. http://d-nb.info/1235524469/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Harker, Geraint John Alan. "Connecting galaxy formation and galaxy clustering." Thesis, Durham University, 2007. http://etheses.dur.ac.uk/2375/.

Full text
Abstract:
We study the environmental dependence of the formation history of dark matter haloes in a large dark matter simulation, the Millennium Run. Adopting a sensitive test of this dependence —— the marked correlation function —— reveals highly significant evidence that haloes of a given mass form earlier in denser regions. We explore the effect further using a new variant of this statistic, and confirm our results using some simpler tests made possible by the size and resolution of the simulation. We go on to study the effect of this environmental dependence on the galaxy population generated by a recent semi-analytic model run in the Millennium Run. We show that environmentally dependent halo formation imparts a small but cleanly detected change to the correlation function and void probability function of galaxies. We can model this change by applying a modulation based on local density to the halo occupation distribution of galaxies. We also note that having the correct placement scheme for galaxies within haloes is at least as important as correctly accounting for environmental effects. Two more dark matter simulations are run, and their outputs are appropriately relabelled and rescaled to represent different cosmologies. We generate consistent semi- analytic galaxy populations in these simulations, using two versions of each of three variants of our semi-analytic model. We compare the predictions for the galaxy clustering from these models to the projected two-point correlation function of the SDSS, obtaining a constraint on the amplitude of the fluctuations in the mass, σ(_8) = 0.96 士 0.05. We find that environmental effects do not significantly affect this estimate, but discuss other possible effects which might. We remark on how this result compares to other recent determinations of σ(_8).
APA, Harvard, Vancouver, ISO, and other styles
3

Saghiha, Hananeh [Verfasser]. "Comparing galaxy-galaxy(-galaxy) lensing in semi-analytic models and observations to study galaxy evolution / Hananeh Saghiha." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/113070467X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davoli, Guido. "Galaxy-galaxy strong lensing as a probe of the inner structure of galaxy clusters." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/13969/.

Full text
Abstract:
La disponibilità di osservazioni profonde di ammassi di galassie, ottenute con telescopi spaziali, ha permesso la scoperta di diversi casi di lensing forte che coinvolgono una galassia d'ammasso e una sorgente retrostante (eventi di galaxy-galaxy strong lensing, GGSL). Ciononostante, questo tipo di eventi sembra essere molto raro nelle più recenti simulazioni idrodinamiche di ammassi di galassie. Questo apparente contrasto fra teoria e osservazioni è uno dei motivi che ci hanno spinto ad indagare sulla fenomenologia degli eventi di GGSL negli ammassi di galassie. Inoltre, lo studio delle sottostrutture presenti negli ammassi è di fondamentale importanza per vincolare le proprietà della materia oscura. In particolare, nella presente tesi abbiamo cercato di verificare la possibile esistenza di un collegamento fra le proprietà fisiche degli ammassi di galassie e la probabilità di osservare eventi di GGSL. Abbiamo quantificato questa probabilità definendo la sezione d'urto per il GGSL. Nel corso del lavoro sono state impiegate simulazioni numeriche di lensing da ammassi di galassie, le cui proprietà rispettano le predizioni del modello cosmologico Lambda-CDM. Nel corso della tesi abbiamo messo in luce come alcune proprietà degli ammassi, quali la pendenza del loro profilo di densità, la funzione di distribuzione radiale e la funzione di massa delle sottostrutture influenzino la sezione d'urto. Questi risultati sono stati confermati quando abbiamo applicato la nostra procedura all'ammasso MACSJ1149. Inoltre, grazie al nostro metodo, abbiamo potuto saggiare la validità di due modelli di massa, ottenuti da un'analisi di lensing forte degli ammassi MACSJ1149 e MACSJ1206, confrontando il numero di eventi di GGSL predetti dai modelli con quelli effettivamente osservati.
APA, Harvard, Vancouver, ISO, and other styles
5

Brimioulle, Fabrice. "Dark matter halo properties from galaxy-galaxy lensing." Diss., Ludwig-Maximilians-Universität München, 2013. http://nbn-resolving.de/urn:nbn:de:bvb:19-159994.

Full text
Abstract:
Die Forschungsergebnisse der letzten Jahre haben gezeigt, dass das Universum bei weitem nicht nur aus baryonischer Materie besteht. Tatsächlich scheinen 72% aus sogenannter Dunkler Energie zu bestehen, während selbst vom verbleibenden Teil nur etwa ein Fünftel baryonischer Materie zugeordnet werden kann. Der Rest besteht aus Dunkler Materie, deren Beschaffenheit bis heute nicht mit Sicherheit geklärt ist. Ursprünglich in den Rotationskurven von Spiralgalaxien beobachtet, wurde die Notwendigkeit ihrer Existenz inzwischen auch in elliptischen Galaxien und Galaxienhaufen nachgewiesen. Tatsächlich scheint Dunkle Materie eine entscheidende Rolle in der Strukturbildung im Universum gespielt zu haben. In der Frühzeit des Universums, als die Materieverteilung im Weltraum noch äußerst gleichmäßig war und nur sehr geringe Inhomogenitäten aufwies, bildeten sie die Kondensationskeime für den gravitativen Kollaps der Materie. Numerische Simulationen haben gezeigt, dass der heute beobachtbare Entwicklungszustand des Universums erst durch die zusätzliche Masse Dunkler Materie ermöglicht wurde, die den strukturellen Kollaps erheblich beschleunigte und nur dadurch zur heute beobachtbaren Komplexität der Strukturen führen konnte. Da Dunkle Materie nicht elektromagnetisch wechselwirkt, sondern sich nur durch ihre Schwerkraft bemerkbar macht, stellt der Gravitationslinseneffekt eine ausgezeichnete Methode dar, die Existenz und Menge an Dunkler Materie nachzuweisen. Der schwache Gravitationslinseneffekt macht sich zu Nutzen, dass die intrinsischen Orientierungen der Galaxien im Weltraum keine Vorzugsrichtung haben, gleichbedeutend mit ihrer statistischen Gleichverteilung. Die gravitationsbedingte kohärente Verzerrung der Hintergrundobjekte führt zu einer Abweichung von dieser Gleichverteilung, die von den Eigenschaften der Gravitationslinsen abhängt und daher zu deren Analyse genutzt werden kann. Diese Dissertation beschreibt die Galaxy-Galaxy-Lensing-Analyse von insgesamt 89 deg^2 optischer Daten, die im Rahmen des CFHTLS-WIDE-Surveys beobachtet wurden und aus denen im Rahmen dieser Arbeit photometrische Rotverschiebungs- und Elliptizitätskataloge erzeugt wurden. Das Galaxiensample besteht aus insgesamt 5×10^6 Linsen mit Rotverschiebungen von 0.05 < z_phot ≤ 1 und einem zugehörigen Hintergrund von insgesamt 1.7×10^6 Quellen mit erfolgreich gemessenen Elliptizitäten in einem Rotverschiebungsintervall von 0.05 < z_phot ≤ 2. Unter Annahme analytischer Galaxienhaloprofile wurden für die Galaxien die Masse, das Masse-zu-Leuchtkraft-Verhältnis und die entsprechenden Halomodellprofilparameter sowie ihre Skalenrelationen bezüglich der absoluten Leuchtkraft untersucht. Dies geschah sowohl für das gesamte Linsensample als auch für Linsensamples in Abhängigkeit des SED-Typs und der Umgebungsdichte. Die ermittelten Skalenrelationen wurden genutzt, um die durchschnittlichen Werte für die Galaxienhaloparameter und eine mittlere Masse für die Galaxien in Abhängigkeit ihres SED-Typs zu bestimmen. Es ergibt sich eine Gesamtmasse von M_total = 23.2+2.8−2.5×10^11 h^{−1} M_⊙ für eine durchschnittliche Galaxie mit einer Referenzleuchtkraft von L∗ = 1.6×10^10 h^{−2} L_⊙. Die Gesamtmasse roter Galaxien bei gleicher Leuchtkraft überschreitet diejenige des entsprechenden gemischten Samples um ca. 130%, während die mittlere Masse einer blauen Galaxie ca. 65% unterhalb des Durchschnitts liegt. Die Gesamtmasse der Galaxien steigt stark mit der Umgebungsdichte an, betrachtet man die Geschwindigkeitsdispersion ist dies jedoch nicht der Fall. Dies bedeutet, dass die zentrale Galaxienmateriedichte kaum von der Umgebung sondern fast nur von der Leuchtkraft abhängt. Die Belastbarkeit der Ergebnisse wurde von zu diesem Zweck erzeugten Simulationen bestätigt. Es hat sich dabei gezeigt, dass der Effekt mehrfacher gravitativer Ablenkung an verschiedenen Galaxien angemessen berücksichtigt werden muss, um systematische Abweichungen zu vermeiden.
The scientific results over the past years have shown that the Universe is by far not only composed of baryonic matter. In fact the major energy content of 72% of the Universe appears to be represented by so-called dark energy, while even from the remaining components only about one fifth is of baryonic origin, whereas 80% have to be attributed to dark matter. Originally appearing in observations of spiral galaxy rotation curves, the need for dark matter has also been verified investigating elliptical galaxies and galaxy clusters. In fact, it appears that dark matter played a major role during structure formation in the early Universe. Shortly after the Big Bang, when the matter distribution was almost homogeneous, initially very small inhomogeneities in the matter distribution formed the seeds for the gravitational collapse of the matter structures. Numerical n-body simulations, for instance, clearly indicate that the presently observable evolutionary state and complexity of the matter structure in the Universe would not have been possible without dark matter, which significantly accelerated the structure collapse due to its gravitational interaction. As dark matter does not interact electromagnetically and therefore is non-luminous but only interacts gravitationally, the gravitational lens effect provides an excellent opportunity for its detection and estimation of its amount. Weak gravitational lensing is a technique that makes use of the random orientation of the intrinsic galaxy ellipticities and thus their uniform distribution. Gravitational tidal forces introduce a coherent distortion of the background object shapes, leading to a deviation from the uniform distribution which depends on the lens galaxy properties and therefore can be used to study them. This thesis describes the galaxy-galaxy lensing analysis of 89 deg^2 of optical data, observed within the CFHTLS-WIDE survey. In the framework of this thesis the data were used in order to create photometric redshift and galaxy shape catalogs. The complete galaxy sample consists of a total number of 5×10^6 lens galaxies within a redshift range of 0.05 < z_phot ≤ 1 and 1.7×10^6 corresponding source galaxies with redshifts of 0.05 < z_phot ≤ 2 and successfully extracted shapes. Assuming that the galaxy halos can be described by analytic profiles, the scaling relations with absolute luminosity for the galaxy masses, their mass-to-light ratios and the corresponding halo parameters have been extracted. Based on the obtained scaling relations, the average values for the corresponding halo parameters and the mean galaxy masses for a given luminosity were derived as a function of considered halo model, the galaxy SED and the local environment density. We obtain a total mass of M_total = 23.2+2.8−2.5 ×10^11 h{−1} M_⊙ for an average galaxy with chosen reference luminosity of L∗ = 1.6×10^10 h{−2} L_⊙. In contrast, the mean total masses for red galaxies of same luminosity exceed the value of the average galaxy about 130%, while the mass of a blue galaxy is about 65% below the value of an average fiducial galaxy. Investigating the influence of the environmental density on the galaxy properties we observe a significant increase of the total integrated masses with galaxy density, however the velocity dispersions are not affected. This indicates that the central galaxy matter density mostly depends on the galaxy luminosity but not on the environment. Simulations based on the extracted scientific results were built, verifying the robustness of the scientific results. They give a clear hint that multiple deflections on different lens galaxies have to be properly accounted for in order to avoid systematically biased results.
APA, Harvard, Vancouver, ISO, and other styles
6

Goddard, Daniel Stephen. "Mapping galaxy properties with large-scale galaxy surveys." Thesis, University of Portsmouth, 2018. https://researchportal.port.ac.uk/portal/en/theses/mapping-galaxy-properties-with-largescale-galaxy-surveys(43eec926-30d1-44bc-8270-86222d389bff).html.

Full text
Abstract:
Large scale observations of the Universe have highlighted that a galaxy’s mass, morphology, and environment are all key factors in a galaxy’s evolution. To what extent each of these contribute however, is still an openly debated question. In this thesis, I attempt to address the aforementioned question providing original research based on a sample of galaxies gathered from the MaNGA IFU survey. Stellar population properties are derived from the data using a newly developed full spectral fitting code, FIREFLY, and state of the art stellar population models. A number of tests using mock galaxies, globular clusters and data from the SDSS DR7 are conducted with FIREFLY in an attempt to assess the codes ability to accurately recover stellar population properties and star formation histories. FIREFLY recovers galaxy properties reliably down to S/N ≥ 5 and S/N ≥ 10 for mock galaxies with both simple and complex star formation histories, respectively. The ages and metallicities derived for globular clusters and galaxies from the SDSS are in good agreement with determinations from colour-magnitude diagram fitting, stellar spectroscopy and other full spectral fitting codes. FIREFLY is then applied to MaNGA data enabling three scientific analyses to be conducted. First, I construct a value added catalogue based on the spatially resolved stellar population properties of MaNGA galaxies, derived from both FIREFLY and absorption line-strength indices. Secondly, I investigate the dependence of light- and mass-weighted stellar population properties, and their radial gradients, on galaxy mass and morphology. Full star formation and metal enrichment histories are reconstructed, and the impact of different stellar population models and full spectral fitting routines on the derived properties is quantified. Light-weighted age gradients are found to be flat for early-type galaxies, and negative for late-type galaxies (∼− 0.11 dex/Re), suggesting an ‘inside-out’ formation of discs. Mass weighted age gradients of early-types are positive (∼0.09 dex/Re) pointing to an ‘outside-in’ progression of star formation. Negative metallicity gradients are detected for both morphological types, but these are significantly steeper in late-types. Metallicity gradients correlate with galaxy mass, with negative gradients becoming steeper with increasing mass. The correlation is stronger for late-types, with a slope of d(∇[Z/H])/d(logM)∼−0.2±0.05, compared to d(∇[Z/H])/d(logM)∼− 0.05 ± 0.05 for early-types. Lastly, I study the effect of galaxy environment on the derived stellar population gradients using three complementary measures of environment, namely the Nth nearest neighbour method, the tidal strength parameter, Q, and distinguishing between central and satellite galaxies. In all cases, no significant correlation between the gradients and environment is found, both at fixed galaxy mass, and for both morphologies. The scientific analysis presented in this thesis suggests that the cumulative merger history of galaxies plays a relatively small role in shaping their metallicity gradients and that internal processes, such as supernova and AGN feedback, matter most to the determination of stellar population gradients. These results set stringent constraints on future models of galaxy formation and evolution.
APA, Harvard, Vancouver, ISO, and other styles
7

Acreman, D. M. "Galaxy wakes." Thesis, University of Birmingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403583.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rychlík, Adam. "Casino Galaxy." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2017. http://www.nusl.cz/ntk/nusl-265370.

Full text
Abstract:
Diploma thesis deals with a Casino Galaxy´s project documentation. this casino is situated in Brno - Přízřenice. The object is designed as a cubic five-storey building without basement and with a flat roof. Whole construction is composed by Sendwix system.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Pin-Wei. "Star formation rate and the assembly of galaxies in the early universe." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4713/document.

Full text
Abstract:
L'objectif de cette thèse est d'identifier et d'étudier la population à haut décalage spectral. J'ai utilisé des données dans le proches infrarouge venant du sondage UltraVista associé à des données multi-longueur d'onde disponible dans le champ COSMOS ainsi que le sondage ultra profond de VIMOS utilisé comme un échantillon de contrôle pour la sélection des candidats à grand décalage spectrale. Cette analyse m'a amené à sélectionner des galaxies à z>4.5 en utilisant les décalages spectraux photométriques estimés à partir de la distribution spectrale d'énergie complète ainsi que des limites en magnitudes basés sur la profondeur des données dans chaque bande. Cette sélection a amené à la production d'un catalogue unique de 2036 galaxies dans l'intervalle z~5 et de 330 galaxies dans l'intervalle z~6 faisant de ce catalogue le catalogue le plus grand et le plus complet à ce jour. J'ai trouvé que la fonction de luminosité à z~5 est bien reproduite par une fonction de Schechter. A z~6, j'ai observé que le fin lumineuse de la fonction de luminosité semble être plus peuplée qu'une fonction de Schechter le laisse présager, en accord avec les résultats d'autres études Ceci étant une indication que les processus d'assemblage de la masse ont évolué rapidement. Finalement, j'ai intégré la fonction de luminosité pour en déduire la densité de luminosité et dérivé la densité de formation stellaire entre z=4.5 et z=6.5. Mes résultats montrent une densité de formation stellaire importante, en comparaison des derniers résultats avec les données du télescope Hubble, ainsi qu'une précision plus grande liée aux meilleures contraintes sur la fin lumineuse de la fonction de luminosité
The main purpose of this THESIS is to identify and study the population of high redshift galaxies in the redshift range (4.5 < z < 6.5). I use the near infrared data from the UltraVista survey conducted with the Vista telescope in combination with multi-wavelength data available in the COSMOS field and use The VIMOS Ultra Deep spectroscopic redshift survey (VUDS) as a control sample for the selection of high redshift candidates. I made a analysis leads me to select galaxies at z ≥ 4.5 using photometric redshifts computed from the full spectral energy distribution (SED) combined with well tuned magnitude limits based on the depth of the data in each band. At the end of this process I produce a unique catalogue of 2036 galaxies with 4.5 ≤ z ≤ 5.5 and 330 galaxies with 5.5 ≤ z ≤ 6.5, the largest and most complete catalogue of sources at these redshifts existing today. I find that the LF at z ∼ 5 is well fit by a Schechter function. At z ∼ 6 I find that the bright end might be more populated than expected from a Schechter function, in line with results from other authors, an indication that the mass assembly processes have evolved quickly in a short 0.5-1 Gyr timescale. Finally I integrate the luminosity functions to compute the luminosity density and derive the star formation rate density (SFRD) in 4.5 ≤ z ≤ 6.5. My results show a high SFRD comparable to the latest results derived from the HST data, with an improved accuracy linked to the better constraints at the bright end of the LF
APA, Harvard, Vancouver, ISO, and other styles
10

Madgwick, Darren Stewart. "The 2dF galaxy redshift survey : galaxy spectra and cosmology." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/251844.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Galaxy"

1

Galaxy. Vancouver, British Columbia: Anvil Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferris, Julie. Galaxy getaway. New York: Kingfisher, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Struck, Curtis. Galaxy Collisions. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-85371-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gilmore, Gerry, and Bob Carswell, eds. The Galaxy. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3925-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Longair, Malcolm S. Galaxy Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03571-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Galaxy formation. Berlin: Springer, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Steele, Allen M. Galaxy blues. New York: Ace Books, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gralla, Preston. Galaxy tab. Sebastopol, CA: O'Reilly Media, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Howard, Lee. Galaxy getaway. Chesapeake, VA: Budget Books, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Samsung: Galaxy. New Haven: Beinecke Rare Book & Manuscript Library, Yale University, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Galaxy"

1

Prantzos, Nikos. "Galaxy." In Encyclopedia of Astrobiology, 913–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_4009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Prantzos, Nikos. "Galaxy." In Encyclopedia of Astrobiology, 627. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_4009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Prantzos, Nikos. "Galaxy." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_4009-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Prantzos, Nikos. "Galaxy." In Encyclopedia of Astrobiology, 1116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_4009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tyson, J. Anthony. "Galaxy Mass Distribution from Galaxy-Galaxy Gravitational Lensing." In Dark Matter in the Universe, 241. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4772-6_48.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Djorgovski, S. "Galaxy Manifolds and Galaxy Formation." In Morphological and Physical Classification of Galaxies, 337–56. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2522-2_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gardner, J. P. "Galaxy Evolution from Deep Galaxy Counts." In Stellar Populations, 311–19. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0125-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Noguchi, Masafumi. "Bar Formation by Galaxy-Galaxy Interactions." In Astrophysics and Space Science Library, 231–40. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2862-5_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Schneider, Peter. "Galaxy evolution." In Extragalactic Astronomy and Cosmology, 521–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54083-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Kyung Soo, Joungho Han, Man Pyo Chung, and Yeon Joo Jeong. "Galaxy Sign." In Radiology Illustrated, 63–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-37096-0_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Galaxy"

1

Madore, Barry F. "GALEX: Galaxy Evolution Explorer." In THE SPECTRAL ENERGY DISTRIBUTIONS OF GAS-RICH GALAXIES: Confronting Models with Data; International Workshop. AIP, 2005. http://dx.doi.org/10.1063/1.1913948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cai, Erqian. "GalaDC: Galaxy Detection and Classification Tool." In 2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC). IEEE, 2020. http://dx.doi.org/10.1109/icivc50857.2020.9177483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Demir, Yigit, Yan Pan, Seukwoo Song, Nikos Hardavellas, John Kim, and Gokhan Memik. "Galaxy." In the 28th ACM international conference. New York, New York, USA: ACM Press, 2014. http://dx.doi.org/10.1145/2597652.2597664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

H. AZEEZ, Jazeel. "STUDYING SOME PHYSICAL PROPERTIES OF NGC 34 IN THE SUBMILLIMETER AND INFRARED WAVELENGTHS." In VI.International Scientific Congress of Pure,Applied and Technological Sciences. Rimar Academy, 2022. http://dx.doi.org/10.47832/minarcongress6-11.

Full text
Abstract:
Understanding the galaxy's center few hundred parsecs is important for knowing how galaxies form and evolve. Since molecular gas is the source of star formation, it is an essential part of the interstellar medium (ISM). In this work, we display highresolution data from the Atacama Large Millimeter/Sub-millimeter Array (ALMA) of 12CO(J = 6 - 5) emission line toward the center of the galaxy NGC 34 at the distance of 85.2 Mpc (1 arcsec = 412 pc). The center area of this galaxy has drawn in the CO emission line with a resolution of (0.27ʺ × 0.23ʺ) as viewed by ALMA along with Spitzer 24 µm data. The CO and IR luminosities, molecular gas mass and density, and star formation rate (SFR) and density, have been calculated for this galaxy. The value of the molecular gas mass and the star formation rate SFR are found to equal 3.52 × 108 Mө and 1.72 (Mө/yr) respectively. The surface density values of molecular gas mass and SFR indicates that this is a starburst galaxy.
APA, Harvard, Vancouver, ISO, and other styles
5

Baker, Stephen. "Galaxy guardian." In ACM SIGGRAPH 97 Visual Proceedings: The art and interdisciplinary programs of SIGGRAPH '97. New York, New York, USA: ACM Press, 1997. http://dx.doi.org/10.1145/259081.259373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aranguren, Mikel Egaña, Jesualdo Tomás Fernández-Breis, and Erick Antezana. "OPPL-Galaxy." In the 4th International Workshop. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2166896.2166903.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pang, Lei, Song Tan, Hung Khoon Tan, and Chong Wah Ngo. "Galaxy browser." In the 19th ACM international conference. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/2072298.2072467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wilson, Gillian, Nick Kaiser, Gerard A. Luppino, and Lennox L. Cowie. "EARLY-TYPE HALO MASSES FROM GALAXY-GALAXY LENSING." In Proceedings of the Yale Cosmology Workshop. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778017_0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

BREWER, B. J. "GALAXY-GALAXY LENS RECONSTRUCTION: EINSTEIN RINGS AND LENSED QSOS." In Proceedings of the 6th International Heidelberg Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814357_0032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Romeo, Alessio D., Jesper Sommer-Larsen, and Laura Portinari. "Simulating galaxy clusters : the ICM and the galaxy populations." In Baryons in Dark Matter Halos. Trieste, Italy: Sissa Medialab, 2004. http://dx.doi.org/10.22323/1.014.0075.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Galaxy"

1

Wang, Peng, and Tom Abel. Virialization Heating in Galaxy Formation. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/897734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Barkhouse, Wayne A., P. J. Green, A. Vikhlinin, D. W. Kim, D. Perley, R. Cameron, J. Silverman, et al. ChaMP Serendipitous Galaxy Cluster Survey. Office of Scientific and Technical Information (OSTI), April 2006. http://dx.doi.org/10.2172/878722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fry, J. N., and E. Gaztanaga. Redshift distortions of galaxy correlation functions. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/10160622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Fry, J. N., and E. Gaztanaga. Redshift distortions of galaxy correlation functions. Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6519142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wiesner, Matthew P. Investigations of Galaxy Clusters Using Gravitational Lensing. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1155188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Willingham, D., M. Robel, M. Said, B. Jacobsen, S. Hansen, K. Scheiderich, D. Cameron, et al. Galaxy Serpent V - Answers to second inject. Office of Scientific and Technical Information (OSTI), May 2023. http://dx.doi.org/10.2172/1975601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Miller, Christopher J. Complementary Probes of Dark Energy using Galaxy Clusters. Office of Scientific and Technical Information (OSTI), July 2018. http://dx.doi.org/10.2172/1461837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ji, Alexander P., Rachel Beaton, Sukanya Chakrabarti, Gina Duggan, Anna Frebel, Marla Geha, Matthew Hosek, et al. Astro2020 Science White Paper: Local Dwarf Galaxy Archaeology. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1527399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frye, Brenda Louise. A faint galaxy redshift survey behind massive clusters. Office of Scientific and Technical Information (OSTI), May 1999. http://dx.doi.org/10.2172/764393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Downing, Mark, and Robert Wimmer. Project Galaxy - Sustianable Resource Supply and Environmental Implications. Office of Scientific and Technical Information (OSTI), March 2012. http://dx.doi.org/10.2172/1038080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography