Academic literature on the topic 'Gaeumannomyces graminis var'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Gaeumannomyces graminis var.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Gaeumannomyces graminis var"
Friebe, A., V. Vilich, L. Hennig, M. Kluge, and D. Sicker. "Detoxification of Benzoxazolinone Allelochemicals from Wheat byGaeumannomyces graminis var. tritici, G. graminis var. graminis, G. graminis var.avenae, and Fusarium culmorum." Applied and Environmental Microbiology 64, no. 7 (July 1, 1998): 2386–91. http://dx.doi.org/10.1128/aem.64.7.2386-2391.1998.
Full textMathre, D. E. "Take-all Disease on Wheat, Barley, and Oats." Plant Health Progress 1, no. 1 (January 2000): 9. http://dx.doi.org/10.1094/php-2000-0623-01-dg.
Full textFouly, H. M., and H. T. Wilkinson. "Detection of Gaeumannomyces graminis Varieties Using Polymerase Chain Reaction with Variety-Specific Primers." Plant Disease 84, no. 9 (September 2000): 947–51. http://dx.doi.org/10.1094/pdis.2000.84.9.947.
Full textMohammadi, Seddighe, and Leila Ghanbari. "In vitro Antagonistic Mechanisms of Trichoderma spp. and Talaromyces flavus to Control Gaeumannomyces graminis var. tritici the Causal Agent of Wheat Take-all Disease." Turkish Journal of Agriculture - Food Science and Technology 3, no. 8 (July 29, 2015): 629. http://dx.doi.org/10.24925/turjaf.v3i8.629-634.271.
Full textTomaso-Peterson, M., L. E. Trevathan, M. S. Gonzalez, and P. F. Colbaugh. "Gaeumannomyces graminis var. graminis Isolated from Emerald Zoysiagrass in Texas." Plant Disease 84, no. 10 (October 2000): 1151. http://dx.doi.org/10.1094/pdis.2000.84.10.1151c.
Full textFrederick, B. A., T. C. Caesar-Tonthat, M. H. Wheeler, K. B. Sheehan, W. A. Edens, and J. M. Henson. "Isolation and characterisation of Gaeumannomyces graminis var. graminis melanin mutants." Mycological Research 103, no. 1 (January 1999): 99–110. http://dx.doi.org/10.1017/s0953756298006959.
Full textSimon, A., and K. Sivasithamparam. "Interactions among Gaeumannomyces graminis var. tritici, Trichoderma koningii, and soil bacteria." Canadian Journal of Microbiology 34, no. 7 (July 1, 1988): 871–76. http://dx.doi.org/10.1139/m88-150.
Full textCastellanos-Morales, V., R. Cárdenas-Navarro, J. M. García-Garrido, A. Illana, J. A. Ocampo, S. Steinkellner, and H. Vierheilig. " Bioprotection against Gaeumannomyces graminis in barley a comparison between arbuscular mycorrhizal fungi." Plant, Soil and Environment 58, No. 6 (June 18, 2012): 256–61. http://dx.doi.org/10.17221/622/2011-pse.
Full textThomas, S. L., P. Bonello, P. E. Lipps, and M. J. Boehm. "Avenacin Production in Creeping Bentgrass (Agrostis stolonifera) and Its Influence on the Host Range of Gaeumannomyces graminis." Plant Disease 90, no. 1 (January 2006): 33–38. http://dx.doi.org/10.1094/pd-90-0033.
Full textKwak, Youn-Sig, Peter A. H. M. Bakker, Debora C. M. Glandorf, Jennifer T. Rice, Timothy C. Paulitz, and David M. Weller. "Diversity, Virulence, and 2,4-Diacetylphloroglucinol Sensitivity of Gaeumannomyces graminis var. tritici Isolates from Washington State." Phytopathology® 99, no. 5 (May 2009): 472–79. http://dx.doi.org/10.1094/phyto-99-5-0472.
Full textDissertations / Theses on the topic "Gaeumannomyces graminis var"
Dyer, Sonya. "The role of colonisation of soil and wheat roots by Trichoderma koningii in biological control of Gaeumannomyces graminis var. tritici." Title page, table of contents and abstract only, 1998. http://web4.library.adelaide.edu.au/theses/09PH/09phd9966.pdf.
Full textWake, Katherine Ann. "Host specificity and saponin resistance in oat-attacking isolates of Gaeumannomyces graminis var. tritici." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301960.
Full textFreeman, Jacqueline. "Molecular variation and population dynamics of the wheat take-all fungus (Gaeumannomyces graminis var. tritici)." Thesis, University of Hertfordshire, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410142.
Full textStanway, C. A. "Double-stranded RNA viruses and pathogenicity of the wheat take-all fungus, Gaeumannomyces graminis var. tritici." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37865.
Full textGenowati, Indira. "Take-all in Wheat: PCR Identification of the Pathogen and the Interactions Amongst Potential Biological Control Agents." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/35050.
Full textMaster of Science
Ross, Ian Lindsay. "Mechanisms of biocontrol of Gaeumannomyces graminis var. tritici by Pseudomonas corrugata strain 2140 : genetic and biochemical aspects." Title page, table of contents and summary only, 1996. http://web4.library.adelaide.edu.au/theses/09PH/09phr824.pdf.
Full textSchreiner, Karin. "Identifizierung mikrobieller Antagonisten gegen den bodenbürtigen phytopathogenen Pilz Gaeumannomyces graminis var. tritici und Nachweis antagonistisch wirkender Metaboliten." kostenfrei, 2008. http://mediatum2.ub.tum.de/doc/645671/645671.pdf.
Full textNkemka, Pamela Nkengafac. "The effects of cereal-clover bicropping on the epidemiology of take-all (Gaeumannomyces graminis var. tritici) in wheat." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298856.
Full textGoodier, Robert Iain. "The role of cell density dependent signalling in interactions between Pseudomonas corrugata and the fungus Gaeumannomyces graminis var. tritici." Thesis, University of Aberdeen, 1999. http://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU117871.
Full textPeixoto, Cecília do Nascimento. "Estudos epidemiológicos do mal-do-pé (Gaeumannomyces graminis (Sacc.) von Arx & Olivier var. graminis) em arroz (Oryza sativa L.) de terras altas, no estado de Goiás." Universidade Federal de Goiás, 2006. http://repositorio.bc.ufg.br/tede/handle/tede/4196.
Full textApproved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-02-26T13:55:31Z (GMT) No. of bitstreams: 2 Tese - Cecília do Nascimento Peixoto - 2006.pdf: 6636718 bytes, checksum: b112892e216b4dc189c4e9cb3dd28f4c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-02-26T13:55:31Z (GMT). No. of bitstreams: 2 Tese - Cecília do Nascimento Peixoto - 2006.pdf: 6636718 bytes, checksum: b112892e216b4dc189c4e9cb3dd28f4c (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2006-03-22
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The morphological and cultural characteristics of G. graminis var. graminis isolates from rice and grasses were studied. The fungus forms two types of mycelia, dark macrohyphae that join laterally to form runner hyphae or rhizomorphs and hyaline or infectious microhyphae, as well as fan shaped hyphae characteristic of the pathogen. Pigmented and lobed hyphopodia on lower leaf sheaths were formed both under natural conditions and artificial inoculations of plants. The perithecia containing asci and ascospores were found on leaf sheaths lesions on field samples. The perithecia were produced on leaf sheaths of inoculated plants as well as on detached sterilized leaf sheaths and on culture medium, potato-dextrose-agar (PDA). Hyphae and hyphopodia were formed from germination tubes of ascospores, and the hyphae under moist stress conditions produced chlamydospores which were initially hyaline and later attained dark color. The culture of Ggg, was characterized by fluffy aerial mycelium, white in the initial stages of growth and later with age, the colony color changed from dirty-white or mouse gray to almost black. The marked diagnostic colony characteristic of whorled appearance was the curling back of marginal hyphae. The amount and time of formation of perithecia varied among the isolates tested. The virulence test conduced with 20 isolates of rice and grasses, showed differences in aggressiveness both on rice seedlings and adult plants. In general, isolates from rice were more aggressive on rice than isolates from grasses. The test with four levels of inoculum (0, 5, 1.0, 2.0, 4.0 g per plant of autoclaved sorghum grains) and two plant ages showed that 60-day old were more susceptible than 35-day old plants. The spontaneous infection of healthy plants was observed in the greenhouse indicating the role of ascospores in the dissemination of black sheath rot in rice. Furthermore, the pathogenicity of ascospores of Ggg on rice plants was confirmed by inoculations tests. Six fields of upland rice were surveyed in the advanced stages of maturation for the incidence of black sheath rot. The disease incidence on tillers, under natural conditions of infection, ranged from 68 to 100%. The pathogenicity of 20 isolates retrieved from rice and grasses were studied. All isolates were pathogenic to rice and grasses such as baranyard grass (Echinochloa crusgalli), fountain grass (Pennisetum setosum) signal grass (Brachiaria sp), crab grass (Digitaria horizontalis), plantain signal grass (Brachiaria plantaginea), indian goose grass (Eleusine indica) and southern sandbur (Cenchrus echinatus). Winter cereals such as wheat, oat, rye, barley and triticale as well as sorghum, corn, and millet exhibited different degrees of susceptibility to the isolate Ggg-a 01. Significant differences were observed in relation to characteristic symptoms on the culm, lesion height, number of tillers or dead plants, presence of characteristic mycelium, fan shaped hyphae, production of hyphopodia and perithecia. The formation of perithecia was not observed on leaf sheaths of inoculated plants of millet, sorghum, southern sandbur and maize. All inoculated wheat plants were killed indicating more susceptibility than other cereals. The resistance of 58 upland rice genotypes were tested in the greenhouse, utilizing rice isolate Ggg-a 01. Of the genotypes assessed, the lesion height of SCIA16 and SCIA08 was significantly shorter compared to the highly susceptible genotype CNAS10351. The progress and dissemination of black sheath rot in rice was studied during two years under field conditions in savanna sensu lato ‘cerrado’. The central line of each plot was inoculated with isolate of Ggg to establish the infection foci. The soil was infested with four levels of inoculum (5.0, 10.0, 20.0 and 40.0 g of autoclaved sorghum grains containing mycelium / 40 cm) and main tiller of plants (4, 8, 16 and 32, tillers per plot/ 40 cm) were inoculated with 2.0 cm-long detached leaf sheaths containing perithecia by insertion between the culm and leaf sheath of the tiller. There was no significant effect of inoculum level on the disease severity obtained by soil infestation with mycelium as well as the plants infected with perithecia. However, the total area under disease progress curve was significantly smaller for plant infection with perithecia than for soil infestation by mycelium, during 2002/2003. The evaluation of disease incidence for the analysis of gradients was based on infected tillers in 1.6 square meter area, five lines on either side of the inoculated 40 cm-long central line. The analysis according models of Gregory (1968) and Kiyosawa & Shiyomi (1972) showed the existence of gradients in the first year, both for levels of inoculum of soil infection by mycelium and plant infection with perithecia. In the second year (2004/2005), there was no well defined gradient for all the treatments. The disease progress was not affected by inoculum levels on soil or plant infections. Monomolecular model was found more adequate in tests conduced under greenhouse conditions while the models of Gompertz and monomolecular, better described the disease progress under field conditions.
Foram estudadas características morfológicas e culturais de isolados de Gaeumannomyces graminis var. graminis provenientes de arroz e capins. O fungo se estabelece formando dois tipos de hifas: macrohifas, escuras, superficiais que se juntam lateralmente e formam cordões ou rizomorfas e microhifas, hialinas ou infecciosas, que penetram no hospedeiro. Forma também hifas em leque sobre as bainhas, a partir de macrohifas, que caracterizam o patógeno. Houve a formação de hifopódios lobados e pigmentados em bainhas, tanto em condições naturais como em inoculações. Observou-se peritécios contendo ascas e ascósporos, característicos do fungo, nas bainhas sobre as lesões em amostras coletadas no campo. Através de inoculação artificial, foram produzidos peritécios em bainhas de plantas, em bainhas destacadas e esterilizadas e em meio de cultura de batata-dextrose-ágar (BDA). Foram formadas hifas e hifopódios a partir de tubos germinativos dos ascósporos e as hifas crescidas em condições de estresse hídrico produziram clamidósporos, inicialmente hialinos e, posteriormente, de coloração escura. O micélio de Ggg, geralmente de aspecto aéreo fofo, é branco no início do crescimento, com variação de cor com a idade, do branco cinza ao marrom oliváceo e quase preto. Uma característica marcante é a aparência espiralada das macrohifas escuras nas bordas da colônia. Entre os isolados testados houve variação na quantidade de peritécios bem como na época de formação. Os testes de virulência realizados com vinte isolados provenientes de arroz e capins apresentaram diferenças em agressividade, tanto em plântulas quanto em plantas de arroz. Em geral, os isolados provenientes de arroz foram mais agressivos em arroz que os isolados de capins. O teste com quatro níveis de inóculo (0,5, 1,0, 2,0, e 4,0 g de inóculo por planta, multiplicado em grãos de sorgo autoclavados) e duas idades de plantas mostrou que as plantas inoculadas aos 60 dias após o plantio foram mais suscetíveis do que aquelas inoculadas aos 35 dias, requerendo menor nível de inóculo para a infecção. A patogenicidade de ascósporos de Ggg em plantas de arroz foi comprovada, bem como o papel dos ascósporos na disseminação do mal-do-pé do arroz. A incidência de mal-do-pé em lavouras de arroz de terras altas nas condições naturais de infecção variou de 68 a 100% de perfilhos infectados, entre seis lavouras avaliadas em fase avançada de maturação. Foi estudada também a patogenicidade dos vinte isolados de Ggg obtidos, provenientes de arroz e capins. Todos os isolados foram patogênicos a arroz e aos capins: capim arroz (Echinochloa crusgalli), capim avião (Pennisetum setosum), capim braquiária (Bachiaria sp.), capim digitaria (Digitaria horizontalis), capim marmelada (Brachiaria plantaginea), capim pé-degalinha (Eleusine indica) e capim timbete (Cenchrus echinatus). Os cereais de inverno, trigo, aveia, centeio, cevada e triticale, bem como sorgo, milho, e milheto apresentaram diferentes graus de suscetibilidade ao isolado Ggg-a 01. As diferenças foram significativas quanto a sintomas típicos na base do colmo, altura de lesão escura na bainha, número de perfilhos ou plantas mortas, presença de micélio característico, hifas em leque e produção de hifopódios e peritécios. Não foram observados peritécios em milheto, sorgo, timbete e milho e a maior suscetibilidade foi apresentada pelo trigo, com a morte de todas as plantas inoculadas. Foi testada a resistência de 58 genótipos de arroz de terras altas, utilizando o isolado Ggg-a 01 proveniente de arroz, em casa-de-vegetação. Entre os genótipos avaliados, SCIA16 e SCIA08 apresentaram altura de lesão significativamente menor, sendo considerados resistentes em relação ao genótipo CNAS10351, altamente suscetível. O progresso e disseminação do maldo- pé do arroz foram estudados durante dois anos, em condições de campo em solo de cerrado. Utilizou-se delineamento experimental de blocos completos ao acaso e quatro repetições. Cada parcela foi constituída de dezenove linhas de sete e cinco metros, respectivamente no primeiro e segundo ano, com espaçamento de quarenta centímetros. Foi inoculada a linha central de cada parcela com isolado de Ggg para estabelecer os focos de disseminação da doença. O solo foi infestado com micélio em quatro níveis de inóculo (5,0, 10,0, 20,0 e 40,0 gramas de grãos de sorgo autoclavados e colonizados com micélio / 40 cm da linha) e perfilhos foram inoculados (4, 8, 16 e 32 perfilhos / 40 cm da linha) com pedaços de bainhas de arroz de dois centímetros de comprimento, contendo peritécios e micélio, inseridos entre o colmo e a bainha. Não houve efeito de níveis de inóculo na severidade da doença, tanto para micélio no solo quanto para peritécios na planta, nos dois anos de experimento. Entretanto, a área total sob a curva de progresso da doença na safra 2002/2003 foi significativamente menor nas plantas infectadas com peritécios, do que nas plantas infectadas através de infestação do solo com micélio. A avaliação de incidência da doença para análise do gradiente foi baseada nos perfilhos contados em 1,6 metros quadrados, compostos de cinco linhas de quarenta centímetros de cada lado da fonte de inóculo, na linha central. A análise de gradiente, conforme modelos de Gregory (1968) e Kiyosawa & Shiyomi (1972) mostrou existência de gradiente no primeiro ano, tanto para níveis de inóculo quanto para os focos provenientes dos dois tipos de inóculo. No segundo ano (2004/2005), não houve gradiente definido para os tratamentos testados. O progresso da doença não foi afetado pelos níveis, tanto na infecção do solo com micélio, quanto na planta com peritécios. Em teste de ajuste de modelo matemático para estudos epidemiológicos, o modelo monomolecular foi o mais apropriado para estudos de mal-do-pé do arroz nas condições de casa-de-vegetação e os modelos de Gompertz e monomolecular são os que melhor descrevem o progresso da doença, nas condições de campo.
Books on the topic "Gaeumannomyces graminis var"
Howie, William Johnston. Factors affecting colonization of wheat roots and suppression of take-all by pseudomonads antagonistic to Gaeumannomyces graminis var. tritici. 1985.
Find full textBull, Carolee Theresa. Wheat root colonization by disease-suppressive or nonsuppressive bacteria and the effect of population size on severity of take-all caused by Gaeumannomyces graminis var. tritici. 1987.
Find full textHamdan, Hasnah. The fluorescent siderophore of Pseudomonas fluorescens: Role in suppression of Gaeumannomyces graminis var. tritici and genetic analysis of siderophore production. 1988, 1988.
Find full textDuffy, Brion K. A new selective medium for Gaeumannomyces graminis var. tritici, and evaluation of combinations of Pseudomonas spp. and fungal biocontrol agents for take-all suppression. 1992.
Find full textBook chapters on the topic "Gaeumannomyces graminis var"
Herdina, K. Ophel-Keller, D. Roget, and P. Harvey. "Comparison Between a DNA-Based Assay and a Soil Bioassay in Quantifying the Amount of Gaeumannomyces Graminis Var. Tritici in Soil." In Developments in Plant Pathology, 503–5. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-0043-1_111.
Full textSchisler, D. A., M. H. Ryder, and A. D. Rovira. "An improved, in vitro technique for rapidly assaying rhizosphere bacteria for the production of compounds inhibitory to Rhizoctonia solani and Gaeumannomyces graminis var. tritici." In The Rhizosphere and Plant Growth, 302–3. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3336-4_60.
Full textBuck, K. W. "Viruses Of The Wheat Take-All Fungus, Gaeumannomyces Graminis Var. Tritiei." In Fungal Virology, 221–36. CRC Press, 2018. http://dx.doi.org/10.1201/9781351072205-8.
Full textAMELUNG, D. "A Simple Method for Identification of Gaeumannomyces Graminis Var. Tritici Walker." In Biotic Interactions and Soil-Borne Diseases, 412–13. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88728-3.50078-0.
Full textDUTRECQ, A., P. DEBRAS, J. STEVAUX, and M. MARLIER. "Activity of 2,4-Diacetylphloroglucinol Isolated from a Strain of Pseudomonas Fluorescens to Gaeumannomyces Graminis Var. Tritici." In Biotic Interactions and Soil-Borne Diseases, 252–57. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88728-3.50047-0.
Full textSARNIGUET, A., and PH LUCAS. "Possible Role of Manganese in the Relation between Gaeumannomyces Graminis var. Tritici and Fluorescent Pseudomonas in the Development of Take-All (Abstract)." In Biotic Interactions and Soil-Borne Diseases, 284. Elsevier, 1991. http://dx.doi.org/10.1016/b978-0-444-88728-3.50053-6.
Full text