Dissertations / Theses on the topic 'GABA'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'GABA.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kragler, Andrea. "GABA-Transporter." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-9774.
Full textPicard, Raymonde. "Charakterisierung funktioneller Domänen für GABA und Furosemid auf GABAA-Rezeptoren." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=971995141.
Full textOng, Jennifer. "GABA and GABA-receptors in the enteric nervous system /." Title page, contents and summary only, 1985. http://web4.library.adelaide.edu.au/theses/09PH/09pho582.pdf.
Full textDavies, Martin. "The GABA transporter and the regulation of the GABA¦A receptor." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1993. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23915.pdf.
Full textAanesen, Arthur. "Gaba and human spermatozoa : characterization and regulation of gaba transport proteins /." Stockholm, 1998. http://diss.kib.ki.se/search/diss.se.cfm?19980925aane.
Full textMendu, Suresh Kumar. "Role of GABA and GABAA Channels in T lymphocytes and Stem cells." Doctoral thesis, Uppsala universitet, Institutionen för neurovetenskap, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-172541.
Full textGardner-Fortier, Catherine. "Développement d'un fromage fonctionnel renfermant un composé bioactif, l'acide gama-aminobutyrique (GABA)." Thesis, Université Laval, 2011. http://www.theses.ulaval.ca/2011/28143/28143.pdf.
Full textCHAMBON, JEAN-PIERRE. "Caracterisation de derives pyridazinyl-gaba comme ligands antagonistes du recepteur gaba-a." Université Louis Pasteur (Strasbourg) (1971-2008), 1987. http://www.theses.fr/1987STR13002.
Full textChambon, Jean-Pierre. "Caractérisation de dérivés pyridazinyl-gaba comme ligands antagonistiques du récepteur gaba-A." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37603758b.
Full textNamwindwa, Ernest Sinvula. "GABA and glutamate mimetics." Thesis, University of Bath, 1987. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376436.
Full textBabateen, Omar M. "GABA signaling regulation by GLP-1 receptor agonists and GABA-A receptors modulator." Doctoral thesis, Uppsala universitet, Fysiologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-282431.
Full textFerguson, Shane C. D. J. "GABA and retino-tectal development." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0019/MQ55206.pdf.
Full textTabor, Alethea Bernice. "Synthesis of GABA-T inhibitors." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305797.
Full textHosie, Alastair Marshall. "GABA receptors of Drosophila melanogaster." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.324973.
Full textAli, Saima. "Regulation of the cell surface expression and the function of GABA¦BR1a by GABA¦BR2." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0027/MQ50433.pdf.
Full textChen, Jianping. "The Effects of Chronic Ethanol Intake on the Allosteric Interaction Between GABA and Benzodiazepine at the GABAA Receptor." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc501231/.
Full textRahman, Mozibur. "Effects of neuroactive steroids on the recombinant GABAA receptor in Xenopus oocyte." Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1112.
Full textEbrik-Al, Akoum Sahar. "Nouveaux ligands du récepteur gaba b, nouvelles pyrrolidin-2-ones : études chimique et pharmacologique." Lille 2, 1995. http://www.theses.fr/1995LIL2P261.
Full textANSAR, M'HAMMED. "Agonistes et antagonistes de l'acide gamma-aminobutyrique au niveau du recepteur gaba-b : etudes chimique et pharmacologique." Lille 2, 1995. http://www.theses.fr/1995LIL2P251.
Full textMortensen, Martin. "GABAa receptor pharmacology : electrophysiological studies of agonist activity on reconstituted human GABAa receptors /." [Cph.] : Department of Pharmacology, The Royal Danish School of Pharmacy, 2002. http://www.dfh.dk/phd/defences/martinmortensen.htm.
Full textBOUCHET, MARIE-JEANNE. "Marquage irreversible du recepteur gaba#a." Université Louis Pasteur (Strasbourg) (1971-2008), 1996. http://www.theses.fr/1996STR13281.
Full textLanglois, Anaïs. "Rôle du BDNF dans le développement des synapses GABAergiques de l'hippocampe de rat." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4089/document.
Full textThe immature brain is the place of developmental processes that allow the switch from a primitive structure to a mature and functional network. Spontaneous synaptic activity generated in the developing nervous system plays a fundamental role in these processes. One of the principal ways this activity is translated into phenotypical changes at the neuronal level is the secretion of neurotrophins. Neurotrophins are secreted by neurons and control each step of neuronal development. In the developing hippocampus, the major neurotrophin is BDNF (brain derived neurotrophic factor). This protein is synthetized under an immature form, proBDNF, which role is still poorly known. During my thesis, I showed that BDNF exerts a bidirectional control on the efficacy of developing GABAergic synapses, which polarity is set by the type of activity endured by neurons and the form of BDNF that is presented to them. I described a developmental sequence which could be a part of the developmental processes allowing the maturation of the GABAergic network in the developing rat hippocampus
Kramer, Vasko [Verfasser]. "Synthese 18 F-markierter Liganden zur Visualisierung der GABA-Bindungsstelle des GABA A-Rezeptors mittels PET / Vasko Kramer." Mainz : Universitätsbibliothek Mainz, 2012. http://d-nb.info/1025406451/34.
Full textMarandi, Nima. "Entwicklungsspezifische Wirkmechanismen der Neurotransmitter GABA und Glyzin." Diss., lmu, 2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-10831.
Full textMcGonigle, Ian Vincent. "Molecular pharmacology of an insect GABA receptor." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/226857.
Full textJax, Sabine. "Cyclische GABA-Derivate und Nicotinanaloga als Maleinimiden /." München : Hieronymus, 1999. http://www.gbv.de/dms/bs/toc/300875053.pdf.
Full textAlyami, A. M. "Pharmacology of benzodiazepines and GABA in intestine." Thesis, University of Bradford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384251.
Full textTaylor, Alison R. "Electrophysiological studies of GABA receptors in insects." Thesis, Open University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278439.
Full textCasalotti, S. O. "Molecular characterization of the GABA [A, ] receptor." Thesis, Imperial College London, 1988. http://hdl.handle.net/10044/1/46989.
Full textBilbe, Graeme. "Molecular studies on the gaba-benzodiazepine receptor." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37639.
Full textSudjadi. "Analysis of cloned genes for GABA catabolism." Thesis, University of Leicester, 1991. http://hdl.handle.net/2381/35163.
Full textSmith, K. R. "Molecular determinates of GABA-A receptor trafficking." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1212232/.
Full textTwelvetrees, A. E. "Molecular mechanisms of GABA-A receptor trafficking." Thesis, University College London (University of London), 2010. http://discovery.ucl.ac.uk/815656/.
Full textMasiulis, Simonas. "Structural studies of human GABA-A receptors." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:159d7e7f-3654-45cd-a261-4283100b906d.
Full textRichter, Grant. "Gaba Drugs For Motor Recovery After Stroke." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25088.
Full textMcDonald, Emily F. "Expression of GABA receptors in human sclera." Thesis, Queensland University of Technology, 2014. https://eprints.qut.edu.au/68604/2/Emily_McDonald_Thesis.pdf.
Full textSITAMZE, JEAN-MARIE. "Synthese d'antagonistes du gaba a proprietes ascaricides." Strasbourg 1, 1993. http://www.theses.fr/1993STR15071.
Full textRiffault, Baptiste. "Plasticité GABAergique et épilepsie : focus sur le proBDNF." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4005/document.
Full textThe brain-derived neurotophic factor (BDNF) is synthesized as a precursor (proBDNF) that can be processed intracellularly to the mature form (mBDNF). mBDNF and proBDNF are assumed to produce opposing physiological responses mediated by the activation of two distinct classes of transmembrane receptors, the TrkB and the p75NTR respectively. The proteolysis of proBDNF is crucial for cognitive functions; its impairment may account for the emergence of brain disorders such as epilepsy. During my thesis, I showed that alteration in BDNF maturation in vitro triggers an up-regulation of p75NTR, inducing a disruption of GABAergic transmission. Moreover, in epilepsy, depolarizing and excitatory GABAergic responses, due to alteration of KCC2, have been reported. Interestingly, I described novel insights into the proBDNF/p75NTR mechanisms and function in vivo in modulating chloride homeostasis during the development of neuronal networks and in the pathogenesis of epilepsy. In physiological conditions, p75NTR activation by proBDNF may be a key regulator in shaping neural circuitry and synaptic plasticity. Moreover, I have shown that proBDNF/p75NTR to mBDNF/TrkB ratio may control the timing of the developmental shift of GABA depolarizing to hyperpolarizing. During epileptogenesis, proBDNF via p75NTR alters the excitatory/inhibitory equilibrium thereby enhancing neuronal activity through the inhibition of KCC2 function. Hence, blockade of p75NTR can prevent some of the epileptogenic mechanisms. Altogether, these data provide the first compelling evidence that proBDNF disrupts the GABA excitatory/inhibitory developmental sequence, which then favors the emergence of epileptic disorders
Engström, Thomas. "GABA-agonister som antipsykotika : En litteraturstudie kring GABA-agonisters potentiella roll som terapeutisk behandling av symptom förekommande vid schizofreni." Thesis, Umeå universitet, Farmakologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-137189.
Full textBuckley, Stella Tracey. "GabaA receptor-mediated neurotransmission in human alcoholic brain /." St. Lucia, Qld, 2003. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe17286.pdf.
Full textVANDEVOORDE, VALERIE. "Antagonistes des recepteurs gaba-a : etude structurale et pharmacologique comparative." Strasbourg 1, 1989. http://www.theses.fr/1989STR15070.
Full textKo, Francoise Dulcinea. "Effect of GABARAP (GABA§A-receptor-associated protein) on the interaction between the dopamine D¦5 and GABA§A receptors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58857.pdf.
Full textGlykys, Joseph Charalambos. "GABA[A] receptor subunits mediating tonic inhibition in the hippocampus and the main source of GABA responsible for their activation." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1464110651&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textRaster, Peter [Verfasser], and Burkhard [Akademischer Betreuer] König. "Synthesis of diarylethenes by cycloaddition & GABA-amides and photoswitchable GABAA-receptor ligands / Peter Raster. Betreuer: Burkhard König." Regensburg : Universitätsbibliothek Regensburg, 2014. http://d-nb.info/1068055804/34.
Full textHöffken, Oliver. "GABA-abhängige Modulation trainingsinduzierter Plastizität im menschlichen Kortex." [S.l.] : [s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=967260124.
Full textMohamed, Diana. "Kan GABA-transporthämmare fungera som läkemedel mot epilepsi?" Thesis, Linnaeus University, School of Natural Sciences, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-5694.
Full textEpilepsi är ingen speciell sjukdom utan ett symtom på en hjärnskada eller störd nervcellsfunktion i hjärnan. Epileptiska anfall beror på abnorm urladdning i hjärnans nervceller. Idag lever omkring 60 000 d.v.s. 0,5-1 % av Sveriges befolkning med epilepsi. Risken att drabbas är störst under det första levnadsåret och efter 65-årsålder då risken att drabbas av stroke är som störst. Behandling av epilepsi används i syfte att hindra uppkomst av anfall och göra det möjligt för den drabbade att leva ett relativt normalt liv. Antiepileptika dämpar aktiviteten i hjärnan och reducerar därmed risken för anfall. Under flera år har man försökt utveckla nya antiepileptika mot andra möjliga targets än de som finns idag, bl.a. GABA-transporthämmare. Det enda förekommande läkemedlet med GABA transporthämmande effekt är tiagabin men detta är inte registrerat som läkemedel i Sverige. Syftet med denna studie var att undersöka om GABA-transporthämmare skulle kunna användas som läkemedel mot epilepsi. Metoden som användes var en litteraturstudie där vetenskapliga artiklar hämtades från PubMed, ELIN, Cochrane och Google Scholar. Arbetet baseras på 4 experimentella originalartiklar och en metaanalys. Artiklarna beskriver antiepileptiska effekter och/eller relaterade egenskaper för olika substanser med hämmande effekter på olika GABA- transportörer. Dessa hämmare, ensamma eller i kombination, visades ge kramplösande effekt i olika djurmodeller av epilepsi. Hämmare av olika GABA-transportörer, till exempel tiagabin och EF1502, gav synergistisk effekt, medan hämmare av samma GABA-transportör, till exempel tiagabin och LU-32-176B, resulterade i additiv effekt. Hämning av olika GABA-transportörer i olika celltyper i och runt synapsklyftan verkar därför kunna ge synergistisk effekt. Ingen synergistisk effekt observerades för toxiska effekter. Det finns anledning att tro att ytterligare läkemedel med effekter på GABA-transportörer kan komma att finnas i framtiden för behandling av epilepsi.
Epilepsy is not a specific disease but a symptom of brain injury or impaired nerve cell function in the brain. Epileptic seizures are symptoms of abnormal activity in the brain neurons. Today, about 60 000 i.e. 0.5-1% of the Swedish population live with epilepsy. The risk of being affected is greatest during the first year of life and after the age of 65 years when the risk for stroke is greatest. The treatment of epilepsy is used in order to prevent the onset of seizures and to allow the patient to live a relatively normal life. Anticonvulsants dampen the activity in the brain and thus reduce the risk of seizures.
During many years, attempts have been made to develop new anticonvulsants against other potential targets than those that exist today, for example GABA-transporter inhibitors. The only presently used medicine with GABA-transporter inhibiting effect is tiagabine, but this is not licensed as a pharmaceutical drug in Sweden.
The aim of this study was to investigate whether GABA-transport inhibitors could be used as medication for epilepsy. The method that was used was a literature study in which scientific articles were chosen from PubMed, ELIN, Cochrane and Google Scholar. The work is based on 4 original research articles and one meta-analysis. The articles describe antiepileptic effects and/or related properties of various substances with inhibitory actions on different GABA-transporters. These inhibitors, alone or in combination, were shown to have anticonvulsant effects in several different animal models of epilepsy. Inhibitors of different GABA transporters, such as tiagabine and EF1502, resulted in synergistic effects, while inhibitors of the same GABA transporter, such as tiagabine and LU-32-176 B, resulted in additive effects. Inhibition of various GABA transporters in different cell types in and around synapses therefore seems to provide synergistic effects. No synergistic effect was observed for toxic effects. There is reason to believe that additional drugs with effects on GABA transporters may be used in the future for the treatment of epilepsy.
Olstad, Elisabeth. "Glutamate and GABA: Major Players in Neuronal Metabolism." Doctoral thesis, Norwegian University of Science and Technology, Department of Neuroscience, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1511.
Full textDisturbance of neuronal metabolism has implications for a number of neurological and psychiatric conditions, and enhanced knowledge of this is important in developing new methods for treating such disorders. The present research was undertaken to aid understanding of diseases related to disturbance in glutamate and γ-amino butyric acid (GABA) metabolism.
Two different types of neuronal cell cultures were used in these studies; one containing GABAergic neurons of cerebral neocortical origin and one containing cerebellar neurons. The latter consists primarily of glutamatergic granule neurons in addition to ~6 % GABAergic neurons and a small number of astrocytes. Metabolism was studied by 13C magnetic resonance spectroscopy (MRS) and mass spectrometry (MS) after adding 13C-labeled precursors
([1-13C]glucose, [U-13C]glutamate or [U-13C]glutamine) to the medium of these cultures. High performance liquid chromatography (HPLC) was used to quantify different amino acids in cell extracts and medium. The amount of protein in the cultures was determined to assess cell damage.
In the cerebellar neuronal cultures, GABA was present in surprisingly large amounts compared to neocortical GABAergic cultures. 13C MRS experiments showed that GABA was actively synthesized throughout the culture period by the subpopulation of glutamate decarboxylase (GAD) positive (GABAergic) neurons and subsequently distributed to the other cells in the culture, i.e. to the granule neurons. The function of GABA in these glutamatergic neurons still remains uncertain; however, roles as neurotrophic and neuroprotective agent as well as substrate for energy production have been suggested.
As shown previously, both glutamate and glutamine were shown to be excellent precursors for intermediary metabolism in cerebellar neurons. However, it was concluded that glutamate was preferred over glutamine, suggesting that these neurons rely more on reuptake of released glutamate than of supply of glutamine from astrocytes for glutamate homeostasis. This is not surprising when considering the cerebellar structure, with few astrocytes compared to neurons and a relatively large distance between astrocyte and synapse.
Exposure of cerebellar cultures to 50 μM kainic acid (KA), a potent glutamate agonist, which is known to eliminate vesicular release of GABA in these cultures, only marginally affected glutamate and GABA metabolism, whereas increasing the KA concentration to 0.5 mM led to a reduction of both GABA and glutamate metabolism compared to unexposed cultures. It was previously believed that treatment with 50 μM KA eliminated the GABAergic neurons in cerebellar cultures, and KA has therefore been added in order to obtain essentially pure glutamatergic granule cell cultures. Although KA treatment abolishes vesicular GABA release, the GABA synthesizing cells are not eliminated by this treatment and still produce GABA in substantial amounts.
Results from the present studies can only be understood in terms of inter- and intracellular compartmentation of metabolism. The main focus of metabolic compartmentation studies has been on the two compartments made up by neurons and astrocytes. One pathway previously believed to take place in the astrocytic but not in the neuronal compartment, is the pyruvate recycling pathway for complete tricarboxylic acid (TCA) cycle oxidation of glutamate. Despite this, in one of the present studies, such recycling was clearly present in both astrocytic and neuronal cultures from cerebellum.
Paper 2 reprinted with kind permission of Elsevier, sciencedirect.com
Jackson, Michael F. "Frequency-dependent actions of GABA enhancing anticonvulsant drugs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0022/NQ50191.pdf.
Full textCao, Juxiang Locy Robert D. "Functional genomics of GABA metabolism in yeast thermotolerance." Auburn, Ala, 2008. http://repo.lib.auburn.edu/2007%20Fall%20Dissertations/Cao_Juxiang_41.pdf.
Full textAydar, Ebru. "Pharmacology of GABA and glutamate receptors in insects." Thesis, Oxford Brookes University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363779.
Full text