To see the other types of publications on this topic, follow the link: GaAs; Superconductors; Quantum heterostructures.

Journal articles on the topic 'GaAs; Superconductors; Quantum heterostructures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'GaAs; Superconductors; Quantum heterostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Klimovskaya, A. I., Yu A. Driga, E. G. Gule, and O. O. Pikaruk. "Femtosecond pulse generation in quantum GaAs/InGaAs/GaAs heterostructures." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 593–94. http://dx.doi.org/10.1016/s1386-9477(02)00878-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pateras, Anastasios, Joonkyu Park, Youngjun Ahn, Jack A. Tilka, Martin V. Holt, Christian Reichl, Werner Wegscheider, et al. "Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures." Nano Letters 18, no. 5 (April 17, 2018): 2780–86. http://dx.doi.org/10.1021/acs.nanolett.7b04603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Terent’ev, Ya V., A. A. Toropov, B. Ya Meltser, A. N. Semenov, V. A. Solov’ev, I. V. Sedova, A. A. Usikova, and S. V. Ivanov. "Spin injection in GaAs/GaSb quantum-well heterostructures." Semiconductors 44, no. 2 (February 2010): 194–97. http://dx.doi.org/10.1134/s1063782610020107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syrbu, N., A. Dorogan, N. Dragutan, T. Vieru, and V. Ursaki. "Exciton luminescence in In0.3Ga0.7As/GaAs quantum well heterostructures." Physica E: Low-dimensional Systems and Nanostructures 44, no. 1 (October 2011): 202–6. http://dx.doi.org/10.1016/j.physe.2011.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bar-Ad, S., and I. Bar-Joseph. "Absorption quantum beats of magnetoexcitons in GaAs heterostructures." Physical Review Letters 66, no. 19 (May 13, 1991): 2491–94. http://dx.doi.org/10.1103/physrevlett.66.2491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pashaev, E. M., S. N. Yakunin, A. A. Zaitsev, V. G. Mokerov, Yu V. Fedorov, Zs J. Horvath, and R. M. Imamov. "InAs quantum dots in multilayer GaAs-based heterostructures." physica status solidi (a) 195, no. 1 (January 2003): 204–8. http://dx.doi.org/10.1002/pssa.200306298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukai, Seiji, Masanobu Watanabe, Hideo Itoh, Hiroyoshi Yajima, Tomomi Yano, and Jong-Chun Woo. "LPE Growth of AlGaAs-GaAs Quantum Well Heterostructures." Japanese Journal of Applied Physics 28, Part 2, No. 10 (October 20, 1989): L1725—L1727. http://dx.doi.org/10.1143/jjap.28.l1725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rashad, M. "Excitonic Emission of AlGaAs/GaAs Quantum Well Heterostructures." International Journal of Scientific and Engineering Research 6, no. 9 (September 25, 2015): 1450–53. http://dx.doi.org/10.14299/ijser.2015.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Furtado, Mario Tosi, and M. S. S. Loural. "Impurity Induced Disorder in InGaAs/GaAs Quantum Well Heterostructures." Defect and Diffusion Forum 127-128 (March 1995): 9–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.127-128.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Semaltianos, N. G. "Photoluminescence studies of GaAs/GaAlAs multiple quantum well heterostructures." Journal of Physics and Chemistry of Solids 63, no. 2 (February 2002): 273–77. http://dx.doi.org/10.1016/s0022-3697(01)00140-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kähler, D., U. Kunze, D. Reuter, and A. D. Wieck. "Quantum wire fabrication from compensating-layer GaAs–AlGaAs heterostructures." Microelectronic Engineering 61-62 (July 2002): 619–23. http://dx.doi.org/10.1016/s0167-9317(02)00474-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dallesasse, J. M., N. El‐Zein, N. Holonyak, K. C. Hsieh, R. D. Burnham, and R. D. Dupuis. "Environmental degradation of AlxGa1−xAs‐GaAs quantum‐well heterostructures." Journal of Applied Physics 68, no. 5 (September 1990): 2235–38. http://dx.doi.org/10.1063/1.346527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Iliash, S. A. "Thermally stimulated conductivity in InGaAs/GaAs quantum wire heterostructures." Semiconductor Physics Quantum Electronics and Optoelectronics 19, no. 1 (April 8, 2016): 75–78. http://dx.doi.org/10.15407/spqeo19.01.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Savelyev, A. P., S. V. Gudina, Yu G. Arapov, V. N. Neverov, S. M. Podgonykh, and M. V. Yakunin. "Insulator-quantum Hall transition in n-InGaAs/GaAs heterostructures." Low Temperature Physics 43, no. 4 (April 2017): 491–94. http://dx.doi.org/10.1063/1.4983333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Abramkin, D. S., M. O. Petrushkov, M. A. Putyato, B. R. Semyagin, E. A. Emelyanov, V. V. Preobrazhenskii, A. K. Gutakovskii, and T. S. Shamirzaev. "GaAs/GaP Quantum-Well Heterostructures Grown on Si Substrates." Semiconductors 53, no. 9 (September 2019): 1143–47. http://dx.doi.org/10.1134/s1063782619090021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Zvonkov, B. N., I. G. Malkina, E. R. Lin’kova, V. Ya Aleshkin, I. A. Karpovich, and D. O. Filatov. "Photoelectric properties of GaAs/InAs heterostructures with quantum dots." Semiconductors 31, no. 9 (September 1997): 941–46. http://dx.doi.org/10.1134/1.1187139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mazur, Yu I., V. G. Dorogan, L. Dias, D. Fan, M. Schmidbauer, M. E. Ware, Z. Ya Zhuchenko, et al. "Luminescent properties of GaAsBi/GaAs double quantum well heterostructures." Journal of Luminescence 188 (August 2017): 209–16. http://dx.doi.org/10.1016/j.jlumin.2017.04.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Demchenko, D. O., A. N. Chantis, and A. G. Petukhov. "SPIN FILTERING IN MAGNETIC HETEROSTRUCTURES." International Journal of Modern Physics B 15, no. 24n25 (October 10, 2001): 3247–52. http://dx.doi.org/10.1142/s0217979201007579.

Full text
Abstract:
Several techniques were proposed to achieve solid state spin filtering such as magnetic tunnel junctions comprised of half-metallic compounds or solid state Stern-Gerlach apparatus. Another alternative consists in using spin-dependent resonant tunneling through magnetically active quantum wells. Recent advances in molecular beam epitaxial growth made it possible to fabricate exotic heterostructures comprised of magnetic films or buried layers (ErAs, GaxMn1-xAs) integrated with conventional semiconductors (GaAs) and to explore quantum transport in these heterostructures. It is particularly interesting to study spin-dependent resonant tunneling in double-barrier resonant tunneling diodes (RTD) with magnetic elements such as GaAs/AlAs/ErAs/AlAs/ErAs/AlAs/GaAs, GaxMn1-xAs/AlAs/GaAs/AlAs/GaAs, and GaAs/AlAs/GaxMn1-xAs/AlAs/GaAs. We present the results of our theoretical studies and computer simulations of transmission coefficients and current-voltage characteristics of resonant tunneling diodes based on these double-barrier structures. Resonant tunneling of holes (GaxMn1-xAs-based RTDs) is considered. Our approach is based on k·p perturbation theory with exchange splitting effects taken into account. We analyze exchange splitting of different resonant channels as a function of magnetization as well as spin polarization of the transmitted current as a function of bias. We found that resonant tunneling I – V characteristics of the double-barrier magnetic hererostructures strongly depend on the doping level in the emitter as well as on the orientation of the magnetization.
APA, Harvard, Vancouver, ISO, and other styles
19

Blokhin, E. E., D. A. Arustamyan, and L. M. Goncharova. "Functional Characteristics of QD-InAs/GaAs Heterostructures with Potential Barriers AlGaAs and GaAs." Solid State Phenomena 284 (October 2018): 182–87. http://dx.doi.org/10.4028/www.scientific.net/ssp.284.182.

Full text
Abstract:
In this paper we present the results of investigation of heterostructures with an array of InAs quantum dots grown on GaAs substrates with GaAs and AlGaAs front barriers for high-speed near-IR photodetectors. The thickness of the barrier layers did not exceed 30 nm. It is shown that the ion-beam deposition method makes it possible to grow quantum dots with lateral dimensions up to 30 nm and 15 nm height. The spectral dependences of the external quantum efficiency and dark current-voltage characteristics are investigated.
APA, Harvard, Vancouver, ISO, and other styles
20

Dmitriev, A. I., O. V. Koplak, and R. B. Morgunov. "GaAs:Mn Layer Magnetization in GaAs-Based Heterostructures Containing InGaAs Quantum Well." Solid State Phenomena 190 (June 2012): 550–53. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.550.

Full text
Abstract:
Magnetic properties of a GaAs-based heterostructures containing InGaAs quantum well and 2 nm thick GaAs layer doped with 5 at. % Mn (GaAs:Mn) on flat and vicinal substrates were studied. Two types of ferromagnetism were found. In the heterostructures grown on the flat substrate parallel to the (001) GaAs plane the magnetization obeys the Bloch T3/2 temperature dependence while for the structures grown on the vicinal surface grown (disoriented by 3°) the magnetization follows percolation dependence.
APA, Harvard, Vancouver, ISO, and other styles
21

Tutuncuoglu, G., M. de la Mata, D. Deiana, H. Potts, F. Matteini, J. Arbiol, and A. Fontcuberta i Morral. "Towards defect-free 1-D GaAs/AlGaAs heterostructures based on GaAs nanomembranes." Nanoscale 7, no. 46 (2015): 19453–60. http://dx.doi.org/10.1039/c5nr04821d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Абрамкин, Д. С., М. О. Петрушков, М. А. Путято, Б. Р. Семягин, Е. А. Емельянов, В. В. Преображенский, А. К. Гутаковский, and Т. С. Шамирзаев. "XXIII Международный симпозиум Нанофизика и наноэлектроника", Нижний Новгород, 11-14 марта 2019 г. Гетероструктуры с GaAs/GaP-квантовыми ямами, выращенные на Si-подложках." Физика и техника полупроводников 53, no. 9 (2019): 1167. http://dx.doi.org/10.21883/ftp.2019.09.48118.01.

Full text
Abstract:
AbstractMolecular-beam epitaxy is used to produce GaP/Si hybrid substrates that allow the growth of highly efficient light-emitting heterostructures with GaAs/GaP quantum wells. Despite the relatively high concentration of nonradiative-recombination centers in GaP/Si layers, GaAs/GaP quantum-well heterostructures grown on GaP/Si hybrid substrates are highly competitive in terms of efficiency and temperature stability of luminescence to similar heterostructures grown on lattice-matched GaP substrates.
APA, Harvard, Vancouver, ISO, and other styles
23

Zou, J., C. T. Chou, D. J. H. Cockayne, A. Sikorski, and M. R. Vaughan. "Misfit dislocations lying along 〈100〉 in [001] GaAs/In0.25Ga0.75As/GaAs quantum well heterostructures." Applied Physics Letters 65, no. 13 (September 26, 1994): 1647–49. http://dx.doi.org/10.1063/1.112938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Pashchenko, Alexander S., Leonid S. Lunin, Eleonora M. Danilina, and Sergei N. Chebotarev. "Variation of the photoluminescence spectrum of InAs/GaAs heterostructures grown by ion-beam deposition." Beilstein Journal of Nanotechnology 9 (November 2, 2018): 2794–801. http://dx.doi.org/10.3762/bjnano.9.261.

Full text
Abstract:
This work reports on an experimental investigation of the influence of vertical stacking of quantum dots, the thickness of GaAs potential barriers, and their isovalent doping with bismuth on the photoluminescence properties of InAs/GaAs heterostructures. The experimental samples were grown by ion-beam deposition. We showed that using three vertically stacked layers of InAs quantum dots separated by thin GaAs barrier layers was accompanied by a red-shift of the photoluminescence peak of InAs/GaAs heterostructures. An increase in the thickness of the GaAs barrier layers was accompanied by a blue shift of the photoluminescence peak. The effect of isovalent Bi doping of the GaAs barrier layers on the structural and optical properties of the InAs/GaAs heterostructures was investigated. It was found that the Bi content up to 4.96 atom % in GaAs decreases the density of InAs quantum dots from 1.53 × 1010 to 0.93 × 1010 cm−2. In addition, the average lateral size of the InAs quantum dots increased from 14 to 20 nm, due to an increase in the surface diffusion of In. It is shown that isovalent doping of GaAs potential barriers by bismuth was accompanied by a red-shift of the photoluminescence peak of InAs quantum dots of 121 meV.
APA, Harvard, Vancouver, ISO, and other styles
25

Давыдова, З. "МОДЕЛИРОВАНИЕ И РАСЧЕТ СПЕКТРА ФОТОЛЮМИНЕСЦЕНЦИИ ГЕТЕРОСТРУКТУРЫ С КВАНТОВОЙ ЯМОЙ НА ПРИМЕРЕ ALGaAS/GaAS." EurasianUnionScientists 6, no. 12(81) (January 18, 2021): 30–35. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.81.1163.

Full text
Abstract:
This research aims to improve the available means for characterizing the emission properties of quantum well heterostructures by modeling and calculating the absorption and photoluminescence spectra using the GaAs/AlGaAs heterostructure as an example. Research is conducted based on multilayer heterostructures and heterostructures with quantum wells to develop detectors and emitting elements in the infrared frequency range, pulsed solid-state generators in the millimeter and submillimeter-wave ranges. The study of radiating properties of heterostructures with a quantum well on A3B5 compounds has become widespread [1-3]. It is possible to control the heterostructure's emission frequency by selecting the optimal composition of the wideband semiconductor layer, the level and type of its doping, the doping region, and the quantum well layer width, which is of applied importance for the development of optoelectronic devices. Technologies for manufacturing such heterostructures are labor-intensive, time-consuming, and expensive processes, which contribute to developing methods for modeling and calculating the characteristic frequencies of radiation and absorption of radiation. Based on such calculations, radiating elements of the submicronic wavelength range can be developed based on heterostructures with a quantum well on the A3B5 type compounds. [4]
APA, Harvard, Vancouver, ISO, and other styles
26

Chuev, Mikhail, Elhan Pashaev, Mikhail Koval'chuk, Vladimir Kvardakov, Ilia Subbotin, and Igor Likhachev. "Structural, magnetic, and transport properties of quantum well GaAs/δ-Mn/GaAs/InxGa1–xAs/GaAs heterostructures." International Journal of Materials Research 100, no. 9 (September 2009): 1222–25. http://dx.doi.org/10.3139/146.110168.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Chin, Albert, Paul Martin, Pin Ho, Jim Ballingall, Tan‐hua Yu, and John Mazurowski. "High quality (111)B GaAs, AlGaAs, AlGaAs/GaAs modulation doped heterostructures and a GaAs/InGaAs/GaAs quantum well." Applied Physics Letters 59, no. 15 (October 7, 1991): 1899–901. http://dx.doi.org/10.1063/1.106182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wu, Ya Fen, and Jiunn Chyi Lee. "Carrier Hopping and Relaxation in InAs/GaAs Quantum Dot Heterostructures." Advanced Materials Research 875-877 (February 2014): 9–13. http://dx.doi.org/10.4028/www.scientific.net/amr.875-877.9.

Full text
Abstract:
We investigate the effect of carrier dynamics on the temperature dependence of photoluminescence spectra from InAs/GaAs quantum dot heterostructures with different dot size uniformity. Intersublevel relaxation lifetimes and carrier transferring mechanisms are simulated using a model based on carriers relaxing and thermal emission of each discrete energy level in the quantum dot system. Calculated relaxation lifetimes are decreasing with temperature and have larger values for sample with lower dot size uniformity. In the quantitative discussion of carrier dynamics, the influence of thermal redistribution on carriers relaxing process of quantum dot system is demonstrated by our model.
APA, Harvard, Vancouver, ISO, and other styles
29

Wang, P., T. Nakagawa, A. Fukuyama, K. Maeda, Y. Iwasa, M. Ozeki, Y. Akashi, and T. Ikari. "A piezoelectric photothermal study of InGaAs/GaAs quantum well heterostructures." Materials Science and Engineering: C 26, no. 5-7 (July 2006): 826–29. http://dx.doi.org/10.1016/j.msec.2005.09.081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Saffarzadeh, Alireza, and Ali A. Shokri. "Quantum theory of tunneling magnetoresistance in GaMnAs/GaAs/GaMnAs heterostructures." Journal of Magnetism and Magnetic Materials 305, no. 1 (October 2006): 141–46. http://dx.doi.org/10.1016/j.jmmm.2005.12.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Wosiński, T., T. Figielski, A. Mąkosa, W. Dobrowolski, O. Pelya, and B. Pécz. "Quantum effects associated with misfit dislocations in GaAs-based heterostructures." Materials Science and Engineering: B 91-92 (April 2002): 367–70. http://dx.doi.org/10.1016/s0921-5107(01)01072-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Eisenstein, J. P., A. C. Gossard, and V. Narayanamurti. "Quantum oscillations in the thermal conductance of GaAs/AlGaAs heterostructures." Physical Review Letters 59, no. 12 (September 21, 1987): 1341–44. http://dx.doi.org/10.1103/physrevlett.59.1341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Saher Helmy, A., J. S. Aitchison, and J. H. Marsh. "The kinetics of intermixing of GaAs/AlGaAs quantum confined heterostructures." Applied Physics Letters 71, no. 20 (November 17, 1997): 2998–3000. http://dx.doi.org/10.1063/1.120242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tikhov, S. V. "Small-signal field effect in GaAs/InAs quantum-dot heterostructures." Semiconductors 46, no. 10 (October 2012): 1274–80. http://dx.doi.org/10.1134/s1063782612100144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Yoo, K. H., J. W. Park, J. B. Choi, H. K. Lee, J. J. Lee, and T. W. Kim. "Width dependence of quantum lifetimes in GaAs/AlxGa1−xAs heterostructures." Physical Review B 53, no. 24 (June 15, 1996): 16551–54. http://dx.doi.org/10.1103/physrevb.53.16551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mazur, Yu I., M. D. Teodoro, L. Dias de Souza, M. E. Ware, D. Fan, S. Q. Yu, G. G. Tarasov, G. E. Marques, and G. J. Salamo. "Low temperature magneto-photoluminescence of GaAsBi /GaAs quantum well heterostructures." Journal of Applied Physics 115, no. 12 (March 28, 2014): 123518. http://dx.doi.org/10.1063/1.4869803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Fontcuberta i Morral, Anna, Danče Spirkoska, Jordi Arbiol, Matthias Heigoldt, Joan Ramon Morante, and Gerhard Abstreiter. "Prismatic Quantum Heterostructures Synthesized on Molecular‐Beam Epitaxy GaAs Nanowires." Small 4, no. 7 (July 2008): 899–903. http://dx.doi.org/10.1002/smll.200701091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Fan, Dongsheng, Perry C. Grant, Shui-Qing Yu, Vitaliy G. Dorogan, Xian Hu, Zhaoquan Zeng, Chen Li, et al. "MBE grown GaAsBi/GaAs double quantum well separate confinement heterostructures." Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 31, no. 3 (May 2013): 03C105. http://dx.doi.org/10.1116/1.4792518.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Rossler, C., M. Bichler, D. Schuh, W. Wegscheider, and S. Ludwig. "Laterally defined freely suspended quantum dots in GaAs/AlGaAs heterostructures." Nanotechnology 19, no. 16 (March 18, 2008): 165201. http://dx.doi.org/10.1088/0957-4484/19/16/165201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Genest, J., J. J. Dubowski, V. Aimez, N. Pauc, D. Drouin, and M. Post. "UV laser controlled quantum well intermixing in InAlGaAs/GaAs heterostructures." Journal of Physics: Conference Series 59 (April 1, 2007): 605–9. http://dx.doi.org/10.1088/1742-6596/59/1/129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Volovik, B. V., A. R. Kovsh, W. Passenberg, H. Kuenzel, N. N. Ledentsov, and V. M. Ustinov. "Long-wavelength emission in InGaAsN/GaAs heterostructures with quantum wells." Technical Physics Letters 26, no. 5 (May 2000): 443–45. http://dx.doi.org/10.1134/1.1262873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dorokhin, M. V., P. B. Demina, Yu A. Danilov, O. V. Vikhrova, Yu M. Kuznetsov, M. V. Ved’, F. Iikawa, and M. A. G. Balanta. "Time-Resolved Photoluminescence in Heterostructures with InGaAs:Cr/GaAs Quantum Wells." Semiconductors 54, no. 10 (October 2020): 1341–46. http://dx.doi.org/10.1134/s1063782620100061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zucker, J. E. "Nonlinear optics below the bandedge in GaAs quantum well heterostructures." Journal of Luminescence 40-41 (February 1988): 31–32. http://dx.doi.org/10.1016/0022-2313(88)90091-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Xu Zhang-Cheng, Jia Guo-Zhi, Sun Liang, Yao Jiang-Hong, Xu Jing-Jun, J. M. Hvam, and Wang Zhan-Guo. "Time-resolved photoluminescence of sub-monolayer InGaAs/GaAs quantum-dot-quantum-well heterostructures." Acta Physica Sinica 54, no. 11 (2005): 5367. http://dx.doi.org/10.7498/aps.54.5367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Filikhin, I., B. Vlahovic, and E. Deyneka. "Modeling of InAs∕GaAs self-assembled heterostructures: Quantum dot to quantum ring transformation." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 24, no. 4 (July 2006): 1249–51. http://dx.doi.org/10.1116/1.2174019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Yan, Xin, Xia Zhang, Junshuai Li, Yao Wu, Jiangong Cui, and Xiaomin Ren. "Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core–multishell quantum well heterostructures." Nanoscale 7, no. 3 (2015): 1110–15. http://dx.doi.org/10.1039/c4nr05486e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Ramesh, S., N. Kobayashi, and Y. Horikoshi. "Study of high-quality ZnSe/GaAs/ZnSe single quantum well and ZnSe/GaAs heterostructures." Journal of Crystal Growth 115, no. 1-4 (December 1991): 333–37. http://dx.doi.org/10.1016/0022-0248(91)90764-v.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Ladugin, Maxim A., Irina V. Yarotskaya, Timur A. Bagaev, Konstantin Yu Telegin, Andrey Yu Andreev, Ivan I. Zasavitskii, Anatoliy A. Padalitsa, and Alexander A. Marmalyuk. "Advanced AlGaAs/GaAs Heterostructures Grown by MOVPE." Crystals 9, no. 6 (June 14, 2019): 305. http://dx.doi.org/10.3390/cryst9060305.

Full text
Abstract:
AlGaAs/GaAs heterostructures are the base of many semiconductor devices. The fabrication of new types of devices demands heterostructures with special features, such as large total thickness (~20 μm), ultrathin layers (~1 nm), high repeatability (up to 1000 periods) and uniformity, for which a conventional approach of growing such heterostructures is insufficient and the development of new growth procedures is needed. This article summarizes our work on the metalorganic vapour-phase epitaxy (MOVPE) growth of AlGaAs/GaAs heterostructures for modern infrared devices. The growth approaches presented allow for the improved output characteristics of different emitting devices such as multi active region lasers, epitaxially integrated via highly doped tunnel junctions (emission wavelength λ ~ 1 μm), quantum cascade lasers (λ ~10 μm) and THz laser (λ ~100 μm), based on short-period superlattice with 500–2000 layers.
APA, Harvard, Vancouver, ISO, and other styles
49

DOROKHIN, M. V., B. N. ZVONKOV, YU A. DANILOV, V. V. PODOLSKII, P. B. DEMINA, O. V. VIKHROVA, E. I. MALYSHEVA, and M. V. SAPOZHNIKOV. "FORMATION OF MAGNETIC GaAs:Mn LAYERS FOR InGaAs/GaAs LIGHT EMITTING QUANTUM-SIZE STRUCTURES." International Journal of Nanoscience 06, no. 03n04 (June 2007): 221–24. http://dx.doi.org/10.1142/s0219581x07004614.

Full text
Abstract:
A possibility of the formation of light emitting devices, containing GaAs : Mn layers, by the MOCVD epitaxy process was demonstrated. It was shown that produced GaAs : Mn layers exhibit ferromagnetic properties at room temperature. Luminescent and electrical properties of the In(Ga)As / GaAs quantum-size heterostructures with incorporated GaAs : Mn layers were studied.
APA, Harvard, Vancouver, ISO, and other styles
50

Men, Nguyen Van, and Dong Thi Kim Phuong. "Plasmon modes in graphene — GaAs heterostructures at finite temperature." International Journal of Modern Physics B 33, no. 16 (June 30, 2019): 1950174. http://dx.doi.org/10.1142/s0217979219501741.

Full text
Abstract:
This paper is to investigate the dispersion relation and decay rate of plasmon modes in a double layer system made of monolayer graphene (MLG) and infinite GaAs quantum well at finite temperature within the generalized random-phase-approximation and taking into account the 2DEG layer-thickness and the inhomogeneity of the background dielectric. Calculations demonstrate that when the quantum well width increases, the acoustic (AC) plasmon frequency decreases dramatically, but the optical (OP) one seems unchanged. In addition, the results also illustrate that the temperature and separated distance affect significantly both AC and OP plasmon modes of the system. Finally, the dielectric of the background acts strongly on the OP plasmon curve while carrier density in two layers and exchange-correlation effects only lead to remarkable changes for the acoustic one.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography