Academic literature on the topic 'GaAs; Superconductors; Quantum heterostructures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GaAs; Superconductors; Quantum heterostructures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GaAs; Superconductors; Quantum heterostructures"

1

Klimovskaya, A. I., Yu A. Driga, E. G. Gule, and O. O. Pikaruk. "Femtosecond pulse generation in quantum GaAs/InGaAs/GaAs heterostructures." Physica E: Low-dimensional Systems and Nanostructures 17 (April 2003): 593–94. http://dx.doi.org/10.1016/s1386-9477(02)00878-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pateras, Anastasios, Joonkyu Park, Youngjun Ahn, Jack A. Tilka, Martin V. Holt, Christian Reichl, Werner Wegscheider, et al. "Mesoscopic Elastic Distortions in GaAs Quantum Dot Heterostructures." Nano Letters 18, no. 5 (April 17, 2018): 2780–86. http://dx.doi.org/10.1021/acs.nanolett.7b04603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Terent’ev, Ya V., A. A. Toropov, B. Ya Meltser, A. N. Semenov, V. A. Solov’ev, I. V. Sedova, A. A. Usikova, and S. V. Ivanov. "Spin injection in GaAs/GaSb quantum-well heterostructures." Semiconductors 44, no. 2 (February 2010): 194–97. http://dx.doi.org/10.1134/s1063782610020107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Syrbu, N., A. Dorogan, N. Dragutan, T. Vieru, and V. Ursaki. "Exciton luminescence in In0.3Ga0.7As/GaAs quantum well heterostructures." Physica E: Low-dimensional Systems and Nanostructures 44, no. 1 (October 2011): 202–6. http://dx.doi.org/10.1016/j.physe.2011.08.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bar-Ad, S., and I. Bar-Joseph. "Absorption quantum beats of magnetoexcitons in GaAs heterostructures." Physical Review Letters 66, no. 19 (May 13, 1991): 2491–94. http://dx.doi.org/10.1103/physrevlett.66.2491.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pashaev, E. M., S. N. Yakunin, A. A. Zaitsev, V. G. Mokerov, Yu V. Fedorov, Zs J. Horvath, and R. M. Imamov. "InAs quantum dots in multilayer GaAs-based heterostructures." physica status solidi (a) 195, no. 1 (January 2003): 204–8. http://dx.doi.org/10.1002/pssa.200306298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukai, Seiji, Masanobu Watanabe, Hideo Itoh, Hiroyoshi Yajima, Tomomi Yano, and Jong-Chun Woo. "LPE Growth of AlGaAs-GaAs Quantum Well Heterostructures." Japanese Journal of Applied Physics 28, Part 2, No. 10 (October 20, 1989): L1725—L1727. http://dx.doi.org/10.1143/jjap.28.l1725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rashad, M. "Excitonic Emission of AlGaAs/GaAs Quantum Well Heterostructures." International Journal of Scientific and Engineering Research 6, no. 9 (September 25, 2015): 1450–53. http://dx.doi.org/10.14299/ijser.2015.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Furtado, Mario Tosi, and M. S. S. Loural. "Impurity Induced Disorder in InGaAs/GaAs Quantum Well Heterostructures." Defect and Diffusion Forum 127-128 (March 1995): 9–38. http://dx.doi.org/10.4028/www.scientific.net/ddf.127-128.9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Semaltianos, N. G. "Photoluminescence studies of GaAs/GaAlAs multiple quantum well heterostructures." Journal of Physics and Chemistry of Solids 63, no. 2 (February 2002): 273–77. http://dx.doi.org/10.1016/s0022-3697(01)00140-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "GaAs; Superconductors; Quantum heterostructures"

1

Freyland, Jan Moritz. "Optical studies of V-groove quantum wires." Thesis, University of Oxford, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Borsosföldi, Zoltan. "Surface gated quantum dots in shallow GaAs-AlGaAs heterostructures." Thesis, University of Glasgow, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shi, Teng. "Confined States in GaAs-based Semiconducting Nanowires." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1460447182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Godfrey, M. D. "Transport properties of GaAs/InGaAs double quantum wells and graded InGaAs heterostructures." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599457.

Full text
Abstract:
In the first structure presented a single two-dimensional electron gas is positioned in a region of graded (0 ≤ x ≤ 0.1) InGaAs composition. Through a series of MBE grown wafers the technique of successfully growing InGaAs as an InAs/GaAs superlattice was demonstrated. Varying the period of the superlattice was used to achieve the graded InGaAs region in the final device design. The exchange-enhanced g-factor was measured via thermal excitation seen to increase with the application of positive back-gate voltages is. One-dimensional conductance is observed in a graded alloy system for the first time, a stepping-stone to the implementation of single electron devices. Through analysis of the low-field resistivity, the appearance of a second subband in the two-dimensional electron gas, attributed to the zero-field spin-splitting from the Rashba interaction, was seen, and a dependence on back-gate voltage observed. Gate-voltage control of the spin-orbit interaction has only previously been observed in much higher indium concentration samples. A second structure investigated consists of two two-dimensional electron gases and forms a new kind of double quantum well device. Two-dimensional electron gases are located in separate GaAs and InGaAs quantum wells, separated by an AlGaAs barrier. Devices presented in this thesis allow two different gating schemes to be investigated. Firstly large-area front- and back-gates allow the isolation of a two dimensional electron gas in either well. This means two-dimensional conduction can be limited to either the GaAs or InGaAs layer. Secondly through use of a split-gate midline device it is possible to select the conduction pathway through the device with quasi-one-dimensional channels. This technique uses surface gates only, and again it gives the ability to select the material composition in which the electron wavefunction is situated. Such a double quantum well system gives the possibility of investigating the effect of the local g-factor and spin-orbit coupling on various low-dimensional spin-related phenomena.
APA, Harvard, Vancouver, ISO, and other styles
5

House, Jody L. (Jody Lee) 1970. "The growth and microstructural characterization of ZnSe/GaAs quantum wells and double heterostructures." Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/46114.

Full text
Abstract:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1998.
Includes bibliographical references (leaves 189-198).
by Jody Lee House.
Sc.D.
APA, Harvard, Vancouver, ISO, and other styles
6

Zarem, Hal Yariv Amnon. "Investigations of quantum wires, carrier diffusion lengths, and carrier lifetimes in GaAs/AlGaAs heterostructures /." Diss., Pasadena, Calif. : California Institute of Technology, 1990. http://resolver.caltech.edu/CaltechETD:etd-11092007-090251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sharma, Nand Lal [Verfasser]. "Molecular beam epitaxy of tailored (In,Ga)As/GaAs quantum dot heterostructures / Nand Lal Sharma." Paderborn : Universitätsbibliothek, 2017. http://d-nb.info/1145017347/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, Jason Michael. "Resonant tunnelling in GaAs / AlAs double barrier heterostructures under elevated hydrostatic pressure and in high magnetic fields." Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.337539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bonnefoi, Alice Renee McGill T. C. "Electronic properties and device applications of GaAs/Al subscript x GA subscript 1-x AS quantum barrier and quantum well heterostructures /." Diss., Pasadena, Calif. : California Institute of Technology, 1987. http://resolver.caltech.edu/CaltechETD:etd-03012008-132010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fuchs, Christian [Verfasser], and Wolfgang [Akademischer Betreuer] Stolz. "Epitaxial growth and characterization of GaAs-based type-II (GaIn)As/Ga(AsSb)/(GaIn)As “W”-quantum well heterostructures and lasers / Christian Fuchs ; Betreuer: Wolfgang Stolz." Marburg : Philipps-Universität Marburg, 2018. http://d-nb.info/1171424728/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "GaAs; Superconductors; Quantum heterostructures"

1

Li, Y. Y., and J. F. Jia. Topological Superconductors and Majorana Fermions. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.6.

Full text
Abstract:
This article discusses recent developments relating to the so-called topological superconductors (TSCs), which have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions (MFs). It first provides a background on topological superconductivity as a novel quantum state of matter before turning to topological insulators (TIs) and superconducting heterostructures, with particular emphasis on the vortices of such materials and the Majorana mode within a vortex. It also considers proposals for realizing TSCs by proximity effects through TI/SC heterostructures as well as experimental efforts to fabricate artificial TSCs using nanowires, superconducting junctions, and ferromagnetic atomic chains on superconductors.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "GaAs; Superconductors; Quantum heterostructures"

1

Bar-Ad, S., and I. Bar-Joseph. "Quantum Beats Spectroscopy of Exciton Spin Dynamics in GaAs Heterostructures." In Ultrafast Phenomena VIII, 443–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-84910-7_142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Woodbridge, K. "MBE Growth of GaAs and III–V Quantum Wells on Si." In Heterostructures on Silicon: One Step Further with Silicon, 1–6. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0913-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Borri, P. "Optical Properties of InGaAs/GaAs Quantum Well Heterostructures: Excitation Energy Dependence." In Spectroscopy and Dynamics of Collective Excitations in Solids, 630. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5835-4_54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Perry, C. H., J. M. Worlock, M. C. Smith, and A. Petrou. "Magneto-Luminescence in Modulation-Doped AlGaAs-GaAs Multiple Quantum Well Heterostructures." In Springer Series in Solid-State Sciences, 202–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83114-0_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mandal, Arjun, and Subhananda Chakrabarti. "Low-Energy Ion Implantation Over Single-Layer InAs/GaAs Quantum Dots." In Impact of Ion Implantation on Quantum Dot Heterostructures and Devices, 13–26. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4334-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mandal, Arjun, and Subhananda Chakrabarti. "Optimizations for Quaternary Alloy (InAlGaAs)-Capped InAs/GaAs Multilayer Quantum Dots." In Impact of Ion Implantation on Quantum Dot Heterostructures and Devices, 27–40. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4334-5_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gill, Simon P. A. "The Energetics of Self-organised InAs/GaAs(100) Quantum Dots." In IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 15–25. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Koch, S., R. J. Haug, K. von Klitzing, and K. Ploog. "Scaling Behaviour of Doped AlGaAs/GaAs Heterostructures in the Quantum Hall Regime." In Springer Series in Solid-State Sciences, 38–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wakabayashi, J. "Activation Energies of the Fractional Quantum Hall Effect in GaAs/ AlGaAs Heterostructures." In Springer Series in Solid-State Sciences, 156–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-83114-0_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Besson, M., H. Drexler, P. Graf, E. Gornik, G. Böhm, W. Ettmüller, and G. Weimann. "Cyclotron Resonance Measurements in GaAs/AlGaAs Heterostructures in the Fractional Quantum Hall Range." In Springer Series in Solid-State Sciences, 571–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_84.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "GaAs; Superconductors; Quantum heterostructures"

1

Monmayrant, Antoine, Olivier Gauthier-Lafaye, Sophie Bonnefont, Shivakiran Bhaktha, Christian Vanneste, Nicolas Bachelard, Patrick Sebbah, and Françoise Lozes-Dupuy. "Random laser in totally disordered 2D GaAs/AlGaAs heterostructures." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qf1h.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tutuncuoglu, G., M. Friedl, M. de la Mata, D. Deianae, J. B. Leran, H. Potts, F. Matteini, J. Arbiol, and A. Fontcuberta i Morral. "Quantum heterostructures based on GaAs nanomembranes for photonic applications." In 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM). IEEE, 2016. http://dx.doi.org/10.1109/phosst.2016.7548759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shashkin, Vladimir, Vyacheslav Daniltsev, Mikhail Drozdov, Yuriy Drozdov, Vyacheslav Zakamov, Andrey Lukyanov, Lyubov Moldavskaya, and Arkadiy Murel'. "Infrared photoconductivity of InGaAs/GaAs heterostructures with quantum dots." In SPIE Proceedings, edited by Anatoly M. Filachev, Vladimir P. Ponomarenko, and Alexander I. Dirochka. SPIE, 2007. http://dx.doi.org/10.1117/12.742377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhillon, S. S., A. G. Davies, R. Harrell, E. H. Linfield, D. A. Ritchie, M. Pepper, and D. D. Arnone. "Terahertz (THz) electro-luminescence from AlGaAs-GaAs quantum cascade heterostructures." In CLEO 2001. Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest. IEEE, 2001. http://dx.doi.org/10.1109/cleo.2001.948073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiunn-Chyi Lee, Yeu-Jent Hu, Ya-Fen Wu, Tzer-En Nee, Jen-Cheng Wang, and Jia-Hui Fang. "Intersublevel relaxation properties of self-assembled InAs/GaAs quantum dot heterostructures." In 2007 7th IEEE Conference on Nanotechnology (IEEE-NANO). IEEE, 2007. http://dx.doi.org/10.1109/nano.2007.4601337.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CAVACO, A., M. C. CARMO, N. A. SOBOLEV, F. GUFFARTH, H. BORN, R. HEITZ, A. HOFFMANN, and D. BIMBERG. "INTRADOT CARRIER RELAXATION IN RADIATION-DAMAGED InGaAs/GaAs QUANTUM DOT HETEROSTRUCTURES." In Physics, Chemistry and Application of Nanostructures - Reviews and Short Notes to Nanomeeting 2003. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812796738_0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Duggan, G., and H. I. Ralph. "Exciton Binding Energy In Type-II GaAs-AlAs Quantum Well Heterostructures." In Semiconductor Conferences, edited by Gottfried H. Doehler and Joel N. Schulman. SPIE, 1987. http://dx.doi.org/10.1117/12.940833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Chia-Yeh, Chengao Wang, Michael P. Hasselbeck, Mansoor Sheik-Bahae, and Kevin J. Malloy. "Determination of nonradiative recombination in high quantum efficiency GaAs/InGaP heterostructures." In OPTO, edited by Richard I. Epstein and Mansoor Sheik-Bahae. SPIE, 2010. http://dx.doi.org/10.1117/12.845054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Aleshkin, Vladimir Y., Aleksandr V. Biryukov, Sergey V. Gaponov, V. M. Daniltsev, V. L. Mironov, A. V. Murel, and Vladimir I. Shashkin. "Investigation of local photocurrent spectra in InAs/GaAs quantum dot and quantum well heterostructures." In Advanced Optical Materials and Devices, edited by Steponas P. Asmontas and Jonas Gradauskas. SPIE, 2001. http://dx.doi.org/10.1117/12.417597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Horst, S., S. Chatterjee, K. Hantke, P. J. Klar, C. Lange, I. Nemeth, M. Schwalm, et al. "Hole confinement in quantum islands in Ga(AsSb)/GaAs/(AlGa)As heterostructures." In SPIE OPTO: Integrated Optoelectronic Devices, edited by Kong-Thon Tsen, Jin-Joo Song, Markus Betz, and Abdulhakem Y. Elezzabi. SPIE, 2009. http://dx.doi.org/10.1117/12.808364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography