Academic literature on the topic 'GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy"

1

Huang, She Song, Zhi Chuan Niu, and Jian Bai Xia. "Self-Assembled GaAs Quantum Rings by MBE Droplet Epitaxy." Solid State Phenomena 121-123 (March 2007): 541–44. http://dx.doi.org/10.4028/www.scientific.net/ssp.121-123.541.

Full text
Abstract:
Fabrication of semiconductor nanostructures such as quantum dots (QDs), quantum rings (QRs) has been considered as the important step for realization of solid state quantum information devices, including QDs single photon emission source, QRs single electron memory unit, etc. To fabricate GaAs quantum rings, we use Molecular Beam Epitaxy (MBE) droplet technique in this report. In this droplet technique, Gallium (Ga) molecular beams are supplied initially without Arsenic (As) ambience, forming droplet-like nano-clusters of Ga atoms on the substrate, then the Arsenic beams are supplied to crystallize the Ga droplets into GaAs crystals. Because the morphologies and dimensions of the GaAs crystal are governed by the interplay between the surface migration of Ga and As adatoms and their crystallization, the shape of the GaAs crystals can be modified into rings, and the size and density can be controlled by varying the growth temperatures and As/Ga flux beam equivalent pressures(BEPs). It has been shown by Atomic force microscope (AFM) measurements that GaAs single rings, concentric double rings and coupled double rings are grown successfully at typical growth temperatures of 200°C to 300°C under As flux (BEP) of about 1.0×10-6 Torr. The diameter of GaAs rings is about 30-50 nm and thickness several nm.
APA, Harvard, Vancouver, ISO, and other styles
2

Thainoi, Supachok, Suwit Kiravittaya, Thanavorn Poempool, Zon, Noppadon Nuntawong, Suwat Sopitpan, Songphol Kanjanachuchai, Somchai Ratanathammaphan, and Somsak Panyakeow. "Molecular beam epitaxy growth of InSb/GaAs quantum nanostructures." Journal of Crystal Growth 477 (November 2017): 30–33. http://dx.doi.org/10.1016/j.jcrysgro.2017.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

López-López, Máximo, Esteban Cruz-Hernández, Isaac Martínez-Velis, Juan Salvador Rojas-Ramírez, Manolo Ramirez-Lopez, and Álvaro Orlando Pulzara-Mora. "Self Assembly of semiconductor nanostructures." Respuestas 12, no. 2 (May 16, 2016): 47–51. http://dx.doi.org/10.22463/0122820x.570.

Full text
Abstract:
Abstract In this work we present the growth and characterization of GaAs self-assembled quantum wires (SAQWRs), and InAs self-assembled quantum dots (SAQDs) by molecular beam epitaxy on (631)-oriented GaAs substrates. Adatoms on the (631) crystal plane present a strong surface diffusion anisotropy which we use to induce preferential growth along one direction to produce SAQWRs. On the other hand, InAs SAQDs were obtained on GaAs(631) with SAQWRs by the Stransky–Krastanov (S-K) growth method. SAQDs grown directly on (631) substrates presented considerable fluctuations in size. We study the effects of growing a stressor layer before the SAQDs formation to reduce these fluctuations.Keywords : Quantum wires, quantum dots; selfassembly; molecular beam epitaxy.
APA, Harvard, Vancouver, ISO, and other styles
4

Nakai, Takanori, Seiki Iwasaki, and Koichi Yamaguchi. "Control of GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy." Japanese Journal of Applied Physics 43, no. 4B (April 27, 2004): 2122–24. http://dx.doi.org/10.1143/jjap.43.2122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Prongjit, P., N. Pankaow, S. Thainoi, S. Panyakeow, and S. Ratanathammaphan. "Formation of GaP nanostructures on GaAs (100) by droplet molecular beam epitaxy." physica status solidi (c) 9, no. 7 (May 21, 2012): 1540–42. http://dx.doi.org/10.1002/pssc.201100798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Narabadeesuphakorn, Phisut, Jirayu Supasil, Supachok Thainoi, Aniwat Tandaechanurat, Suwit Kiravittaya, Noppadon Nuntawong, Suwat Sopitopan, Songphol Kanjanachuchai, Somchai Ratanathammaphan, and Somsak Panyakeow. "Growth Control of Twin InSb/GaAs Nano-Stripes by Molecular Beam Epitaxy." MRS Advances 2, no. 51 (2017): 2943–49. http://dx.doi.org/10.1557/adv.2017.510.

Full text
Abstract:
ABSTRACTInSb has been considered as a promising material for spintronic applications owing to its pronounced spin effects as a result of large intrinsic electronic g-factor. In addition, embedding InSb quantum nanostructures in a GaAs matrix could create type-II band alignment, where radiation lifetimes are longer than those of the typical type-I systems. Such characteristics are promising for memory devices and infrared photonic applications. The growth of InSb/GaAs quantum nanostructures by strain driven mechanism using molecular beam epitaxy with low growth temperature, slow growth rate, Sb soaking process prior to In deposition, and small amount of In deposition typically creates a mixture of twin and single nano-stripe structures with truncated pyramid shape. In this work, we further investigate the growth mechanism of such twin InSb/GaAs nano-stripes by controlling the growth conditions, consisting of nanostructure growth duration and growth temperature. When the growth temperature is kept to less than 300°C and In deposition is set to only a few monolayers, we found that 25-40% of formed nanostructures are twin InSb/GaAs nano-stripes. However, when the In deposition is stopped immediately after the spotty reflection high-energy electron diffraction patterns are observed, the ratio of twin nano-stripes to single ones is increased to 50-60%. We therefore describe the growth mechanism of twin nano-stripes as the early state of single nano-stripe formation, where the twin nano-stripes are initially formed during the first monolayer of InSb formation as a result of large lattice mismatch of 14.6%. When In deposition is increased to a few monolayers, the gap between twin nano-stripes is filled up and consequently forms the single nano-stripes instead. With this particular twin nano-stripe growth mechanism, the preservation of high ratio of twin nano-stripe formation can be expected by further reducing the growth temperature, i.e. less than 260°C. These twin nano-stripes may find applications in the fields of spintronics and novel interference nano-devices.
APA, Harvard, Vancouver, ISO, and other styles
7

Jewasuwan, W., S. Panyakeow, and S. Ratanathammaphan. "The Formation of InP Ring-Shape Nanostructures on In0.49Ga0.51P Grown by Droplet Epitaxy." Advanced Materials Research 31 (November 2007): 158–60. http://dx.doi.org/10.4028/www.scientific.net/amr.31.158.

Full text
Abstract:
We report on the fabrication of self-assembled InP ring-shape nanostructures on In0.49Ga0.51P by droplet molecular-beam epitaxy. The dependency of InP ring-shape nanostructural properties on substrate temperature and indium deposition rate is investigated by ex situ atomic force microscope (AFM). The nano-craters are formed when indium deposition at 120°C while the ring shape quantum-dot molecules are formed when indium deposition at 150°C or higher. The size, density and pattern of InP ring-shape nanostructures strongly depend on substrate temperature and indium deposition rate during indium deposition.
APA, Harvard, Vancouver, ISO, and other styles
8

Reznik, R. R., K. P. Kotlyar, V. O. Gridchin, I. V. Ilkiv, A. I. Khrebtov, Yu B. Samsonenko, I. P. Soshnikov, et al. "III-V nanostructures with different dimensionality on silicon." Journal of Physics: Conference Series 2103, no. 1 (November 1, 2021): 012121. http://dx.doi.org/10.1088/1742-6596/2103/1/012121.

Full text
Abstract:
Abstract The possibility of AlGaAs nanowires with GaAs quantum dots and InP nanowires with InAsP quantum dots growth by molecular-beam epitaxy on silicon substrates has been demonstrated. Results of GaAs quantum dots optical properties studies have shown that these objects are sources of single photons. In case of InP nanowires with InAsP quantum dots, the results we obtained indicate that nearly 100% of coherent nanowires can be formed with high optical quality of this system on a silicon surface. The presence of a band with maximum emission intensity near 1.3 μm makes it possible to consider the given system promising for further integration of optical elements on silicon platform with fiber-optic systems. Our work, therefore, opens new prospects for integration of direct bandgap semiconductors and singlephoton sources on silicon platform for various applications in the fields of silicon photonics and quantum information technology.
APA, Harvard, Vancouver, ISO, and other styles
9

KAWAZU, T., T. NODA, T. MANO, M. JO, and H. SAKAKI. "EFFECTS OF ANTIMONY FLUX ON MORPHOLOGY AND PHOTOLUMINESCENCE SPECTRA OF GaSb QUANTUM DOTS FORMED ON GaAs BY DROPLET EPITAXY." Journal of Nonlinear Optical Physics & Materials 19, no. 04 (December 2010): 819–26. http://dx.doi.org/10.1142/s0218863510005777.

Full text
Abstract:
We investigated effects of the antimony flux on GaSb quantum dots (QDs) formed by droplet epitaxy. Ga droplets were first formed on GaAs and exposed to Sb4 molecular beam at 200 °C, where the flux PSb of Sb beam was varied from 2.4 to 12.8 × 10-7 Torr. The samples were then annealed for 2 minutes under the Sb flux. An atomic microscope study showed that the diameter of GaSb QDs increases and the density decreases, as the Sb flux PSb is increased. This indicates that the coalescence process of GaSb QDs occurs and is accelerated by the increase of the Sb flux. In a photoluminescence (PL) study, we observed a broad peak of GaSb QDs in all samples, while a strong luminescence of a wetting layer (WL)-like structure was found only in the samples prepared with the high Sb flux. This suggests that the PL of WL is controllable by adjusting the flux PSb of Sb beam.
APA, Harvard, Vancouver, ISO, and other styles
10

Feddersen, Stefan, Viktoryia Zolatanosha, Ahmed Alshaikh, Dirk Reuter, and Christian Heyn. "Modeling of Masked Droplet Deposition for Site-Controlled Ga Droplets." Nanomaterials 13, no. 3 (January 23, 2023): 466. http://dx.doi.org/10.3390/nano13030466.

Full text
Abstract:
Site-controlled Ga droplets on AlGaAs substrates are fabricated using area selective deposition of Ga through apertures in a mask during molecular beam epitaxy (MBE). The Ga droplets can be crystallized into GaAs quantum dots using a crystallization step under As flux. In order to model the complex process, including the masked deposition of the droplets and a reduction of their number during a thermal annealing step, a multiscale kinetic Monte Carlo (mkMC) simulation of self-assembled Ga droplet formation on AlGaAs is expanded for area-selective deposition. The simulation has only two free model parameters: the activation energy for surface diffusion and the activation energy for thermal escape of adatoms from a droplet. Simulated droplet numbers within the opening of the aperture agree quantitatively with the experimental results down to the perfect site-control, with one droplet per aperture. However, the model parameters are different compared to those of the self-assembled droplet growth. We attribute this to the presence of the mask in close proximity to the surface, which modifies the local process temperature and the As background. This approach also explains the dependence of the model parameters on the size of the aperture.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy"

1

SOMASCHINI, CLAUDIO. "Development of advanced GaAs nanostructures by droplet epitaxy." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/18769.

Full text
Abstract:
In the field of nanotechnology, a wide area of research is devoted to the studies about the self-assembly of semiconductor quantum nanostructures. Upon special conditions, semiconductor crystals spontaneously aggregate in nanometre sized clusters, which show unusual electronic and optical properties, thanks to their reduced dimension. Understanding the physical processes governing the formation of these structures has a major relevance in view of their application. I In this picture III-V semiconductor nanostructures have been intensively investigated because of their excellent optical quality, that allowed their use in optoelectronics. Amongst the various methods for the fabrication of nanostructures, the molecular beam epitaxy (MBE) growth is certainly one of the most important. Materials with superior quality can be grown with this technique, which also represents the best environment for the fundamental studies of surface science, due to the relative simplicity of the deposition. Our work has been dedicated to the study of the fabrication of GaAs nanostructures by the Droplet Epitaxy (DE) technique. This MBE method constitutes an alternative path for the formation of III-V nanocrystals with excellent optical properties. Indeed in contrast with the standard layer-plus-islands growth mode, this technique is based on the spontaneous formation of nanometric droplets at the substrate surface. Although this method was firstly proposed by Koguchi twenty years ago, many aspects regarding the DE fabrication remained undisclosed. In order to clarify some of these open questions, we investigated the atomic processes occurring during the formation of GaAs nanostructures by DE, being the GaAs/AlGaAs the most studied system accessible through this technique. In particular the two main steps of the growth method, the nucleation of Ga droplets and the arsenic induced transformation of droplets into GaAs crystals, have been studied, combining the MBE growth with in-situ and ex-situ ii characterization techniques. The gained knowledge permitted the full control over the size and shape of the GaAs nanostructures, which are of the greatest importance for a quantum system. Moreover the fabrication of original quantum nanostructures with complex and designable shapes was possible, by governing the physical processes occurring on the nanoscale, based on a pure bottom-up approach. This Thesis is organized as follows: Chapter 1 contains an introduction on MBE, crystal growth and GaAs material; in Chapter 2 we reviewed the main developments of DE from the original proposal to the latest results; Chapter 3 reports the experimental equipments that have been used in our work; in Chapter 4 we described the results on the formation of Ga droplets on GaAs (001) surfaces; Chapter 5 is devoted to the analysis of the processes occurring during the creation of GaAs nanocrystals and in Chapter 6 we presented the fabrication of the original structures and some of their main optical and electronic properties.
APA, Harvard, Vancouver, ISO, and other styles
2

Trapp, Alexander [Verfasser]. "Molecular beam epitaxy of quantum dots on misoriented GaAs(111)B by droplet epitaxy / Alexander Trapp." Paderborn : Universitätsbibliothek, 2019. http://d-nb.info/1185570764/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tauchnitz, Tina. "Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy." 2019. https://tud.qucosa.de/id/qucosa%3A38708.

Full text
Abstract:
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform.
GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy"

1

Sugaya, T., M. Kaneko, Y. Okada, and M. Kawabe. "Optical Properties of GaAs Quantum-Wire Structures Fabricated by Hydrogen-Assisted Molecular Beam Epitaxy." In Nanostructures and Quantum Effects, 208–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-79232-8_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yamaguchi, Koichi, Shiro Tsukamoto, and Kazunari Matsuda. "GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy." In Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, 271–92. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-08-046325-4.00008-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "GaAs, quantum nanostructures, molecular beam epitaxy, droplet epitaxy"

1

Pankaow, Naraporn, Somsak Panyakeow, and Somchai Ratanathammaphan. "InGaAs/GaAs Ring-Like Nanostructures Grown by Droplet Epitaxy Using Molecular Beam Epitaxy." In 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials. IEEE, 2007. http://dx.doi.org/10.1109/iciprm.2007.381152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nakai, Takanori, Seiki Iwasaki, and Koichi Yamaguchi. "Control of GaSb/GaAs Quantum Nanostructures by Molecular Beam Epitaxy." In 2003 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2003. http://dx.doi.org/10.7567/ssdm.2003.p8-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nötzel, Richard, Manfred Ramsteiner, Lutz Däweritz, and K. H. Ploog. "Formation and electronic properties of sidewall quantum wires on patterned GaAs (311)A substrates." In Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.csub.2.

Full text
Abstract:
The natural formation of nanometer-scale structures on high-index semiconductor surfaces during molecular beam epitaxy (MBE) [1] and metalorganic vapor phase epitaxy (MOVPE) [2] has opened a new pathway for the realization of quantum-wire and dot arrays. Even higher flexibility in the formation of nanostructures on high-index semiconductor surfaces can be realized by growth on patterned substrates. Patterning provides an additional degree of freedom for the control of the size and, most important, allows the precise placing of the nanostructures desired for applications in devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Eryiğit, Resul, and Irving P. Herman. "Optical Response of GaAs(001) Surfaces for Monitoring and Control of Atomic-Layer-Defined Processing." In Chemistry and Physics of Small-Scale Structures. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/cps.1997.csud.1.

Full text
Abstract:
Progress in the miniaturization of electronic devices, the emergence of compound semiconductors in optoelectronics applications, and the development of quantum device structures based on nanostructures can continue only with an improved understanding and control of surfaces and interfacial regions. One important way to achieve such control is by real-time measurements during growth and etching. In addition to the standard surface-analysis techniques that require near ultrahigh vacuum (UHV) conditions (such as XPS, LEED, and EELS), there is a need for noninvasive real-time surface probes with submonolayer sensitivity that will be applicable to either the UHV environment of a molecular beam epitaxy (MBE) chamber or the atmospheric-pressure environment of an organometallic vapor phase epitaxy (OMVPE) reactor. Optical probes can be used during either type of processing.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography