To see the other types of publications on this topic, follow the link: G-bundles.

Dissertations / Theses on the topic 'G-bundles'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 dissertations / theses for your research on the topic 'G-bundles.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Grguric, Izak. "Equivariant bordism and G-bundles." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/7567.

Full text
Abstract:
Let G be the cyclic group of 4 elements and H the subgroup of G of order 2. We study the actions of G on manifolds modulo the equivariant bordism relation by studying the equivariant bordism relation on G-vector bundles; specifically, we focus on G-vector bundles such that G action is free away from the zero section, and the isotropy group of each point in the base is equal to H. We obtain a complete set of characteristic numbers that deter mines when such a G-vector bundle is nulibordant. Using this result, we obtain a geometric splitting of the bordism classes of these bundles into ge ometrically simpler components. Furthermore, we determine a complete set of characteristic numbers for the bordism ring of G-manifolds. Finally, we generalize our results to a larger family of finite groups G.
APA, Harvard, Vancouver, ISO, and other styles
2

Schaposnik, Laura P. "Spectral data for G-Higgs bundles." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:7b483c4c-53e4-4449-88c2-7a75d98ac861.

Full text
Abstract:
We develop a new geometric method of understanding principal G-Higgs bundles through their spectral data, for G a real form of a complex Lie group. In particular, we consider the case of G a split real form, as well as G = SL(2,R), U(p,p), SU(p,p), and Sp(2p,2p). Further, we give some applications of our results, and discuss open questions.
APA, Harvard, Vancouver, ISO, and other styles
3

Zucca, Alessandro. "Dirac Operators on Quantum Principal G-Bundles." Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4108.

Full text
Abstract:
In this thesis I discuss some results on the noncommutative (spin) geometry of quantum principal G-bundles. The first part of the thesis is devoted to the study of spectral triples over toral bundles; extending some recent results by L. Dabrowski and A. Sitarz, we introduce the notion of projectable spectral triple for T^n-bundles. Moreover, we work out twisted Dirac operators. We discuss, in particular, the application of these results to noncommutative tori. In the second part of the thesis, instead, we work out a method for constructing real spectral triples over cleft quantum principal G-bundles and we study the properties of these triples and their behaviour under gauge transformations. Some of the results discussed in this thesis can also be found in the following papers: arXiv:1305.6185 arXiv:1308.4738
APA, Harvard, Vancouver, ISO, and other styles
4

Coiai, Fabrizio. "Boundedness problem for semistable G-bundles in positive characteristic." Doctoral thesis, SISSA, 2004. http://hdl.handle.net/20.500.11767/4248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Muñoz, Castañeda Ángel Luis [Verfasser]. "Principal G-bundles on nodal curves / Ángel Luis Muñoz Castañeda." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1139709437/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Duarte, Gustavo Ignácio. "Integrabilidade de G-Estruturas." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-05072018-111337/.

Full text
Abstract:
Esta dissertação tem como objetivo discutir sob quais condições uma G- estrutura é integrável. Primeiro apresentam-se fibrados principais, vetoriais e outras estruturas a elas associados como torção, espaços verticais, espaços horizontais e conexões. Depois apresentam-se a definição de G-estrutura, de integrabilidade de G-estruturas, com exemplos e as respectivas versões de integrabilidade e equivalência de G-estruturas. Finalmente, são descritas condições mais gerais que garantem a integrabilidade de G-estruturas.
This dissertation aims to discuss what are the conditions for the inte- grability of a G-structure. We begin presenting principal bundles, vectoer bundles, associated bundles and other structures related to them like torsion, vertical spaces, horizontal spaces and connections. After this, we present the definition of G-structure, integrability os G-structures with examples ans respectives versions of integrabilities and the equivalence of G-estructures. Finally, we describe more general conditions that ensure the integrability of G-structures.
APA, Harvard, Vancouver, ISO, and other styles
7

Stein, Luba [Verfasser]. "On the Hilbert uniformization of moduli spaces of flat G-bundles over Riemann surfaces / Luba Stein." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1047145499/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Souza, Taciana Oliveira. "Teoremas de (H,G)-coincidências para variedades e classificação global de singularidades isoladas em dimensões (6,3)." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062013-161959/.

Full text
Abstract:
Este trabalho é constituido por duas partes. Na primeira parte, obtivemos algumas generalizações do clássico Teorema de Borsuk-Ulam em termos de (H,G)-coincidências. Na segunda parte, estendemos a caracterização dos germes de aplicações triviais, em codimensão 3, pelas fibrações de Milnor iniciada por Church e Lamotke em [11]. Usamos essa caracterização na classificação global de singularidades isoladas em dimensões (6, 3)
This work consists of two parts. In the first part, we obtain some generalizations of the classical Borsuk-Ulam Theorem in terms of (H,G)-coincidences. In the second part, we extend the characterization of trivial map germs, in codimension 3, by the Milnor fibrations started by Church and Lamotke in [11]. We use this characterization in the global classification of isolated singularities in dimensions (6, 3)
APA, Harvard, Vancouver, ISO, and other styles
9

Balčiūnas, Aidas. "Baigtinio tipo g- struktūrų vidinės sietys." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2010. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2010~D_20100702_112749-84649.

Full text
Abstract:
Vienas svarbiausių šiuolaikinės diferencialinės geometrijos skyrių yra glodžių G- struktūrų teorija, kuriai pradžią davė klasikinės Rymano erdvės struktūros nagrinėjimas. G- struktūra glodžioje daugdaroje yra gaunama paėmus jos reperių sluoksniuotės redukciją , atitinkantį neišsigimusių matricų grupės pogrupį G. G-struktūros egzistuoja ne bet kurioje daugdaroje. Šiame darbe yra nagrinėjama tik baigtinio tipo G- struktūrų vidinės sietys. Yra įrodoma, kad kiekvieną baigtinio tipo G- struktūrą atitinka baigtinio tipo diferencialinė lygtis ant daugdaros . G- struktūrų geometrija nagrinėjama netradiciniu būdu nagrinėjant jų infinitezimalių simetrijų diferencialines lygtis. Šiuo metodu yra išnagrinėtos G- struktūrų afininės sietys, taip pat ir normalinės sietys. Paskutiniosios G- struktūrų geometrijoje nebuvo iki šiol tyrinėtos.
The most important part of differential geometry in our days is the theory of smooth G- structures, which started with the analyses of clasical construction of Riemannian space. G-structure in smooth manifold is acquired, when we take reduction of its frame bundle corresponding to subgroup G of non-degeneracy matrix group . It‘s important to note, that G- structures do not exist in every manifold. In this paper are considering intrisic connections only of finite type of G- structures. It is proved, that every finite type of G- structure corresponds to finite type of differential equation on the manifold . The Geometry of G- structures is investigated not traditionally while analyzing differential equations of infetisimal simmetrics of G- structures. There are analysed affine connections of G- structures, also and normal connections. The former haven‘t been investigated in geometry of G- structures.
APA, Harvard, Vancouver, ISO, and other styles
10

Grégoire, Chloé. "Espace de modules des G2-fibrés principaux sur une courbe algébrique." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20086.

Full text
Abstract:
L'objet de cette thèse est l'étude de l'espace de modules des G_2-fibrés principaux sur une courbe complexe projective connexe lisse, où G_2 désigne le groupe de Lie exceptionnel de plus petit rang. Le groupe G_2 est tout d'abord présenté comme le groupe des automorphismes de l'algèbre complexe des octaves de Cayley. D'autres définitions sont ensuite proposées. Les différentes réductions et extensions que peut admettre un G_2-fibré principal sont étudiées ainsi que la relation entre la stabilité d'un G_2-fibré principal et celle de son fibré vectoriel associé. L'espace de modules des G_2-fibrés principaux semistables est analysé. Nous obtenons notamment une caractérisation de son lieu lisse, une décomposition explicite de son lieu singulier en trois composantes connexes et une analyse de l'espace de Verlinde de niveau 1 pour le groupe G_2
This thesis studies the moduli space of principal G_2-bundles over a smooth connected projective curve, where G_2 is the exceptional Lie group of smallest rank. The group G_2 is first introduced as the group of automorphisms of the complex algebra of the Cayley numbers. Other equivalent definitions are also proposed. We study the reductions and extensions that a principal G_2_bundle can admit, as well as the link between a principal G_2-bundle and its associated vector bundle in relation to the notion of (semi)stability. The moduli space of semistable principal G_2-bundles is analysed. We notably obtain a characterisation of its smooth locus, with an explicit decomposition of its singular locus into three connected componants. We also give an analysis of the Verlinde space of G_2 at level 1
APA, Harvard, Vancouver, ISO, and other styles
11

Souza, Bruno Caldeira Carlotti de [UNESP]. "Sobre (H,G)-coincidências de aplicações com domínio em espaços com ações de grupos finitos." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/148916.

Full text
Abstract:
Submitted by Bruno Caldeira Carlotti de Souza null (brunoccarlotti@gmail.com) on 2017-03-02T01:45:21Z No. of bitstreams: 1 Dissertação - Bruno C. C. de Souza.pdf: 1030573 bytes, checksum: e3dd1e43953565236359b6d10831067c (MD5)
Approved for entry into archive by LUIZA DE MENEZES ROMANETTO (luizamenezes@reitoria.unesp.br) on 2017-03-07T18:32:31Z (GMT) No. of bitstreams: 1 souza_bcc_me_sjrp.pdf: 1030573 bytes, checksum: e3dd1e43953565236359b6d10831067c (MD5)
Made available in DSpace on 2017-03-07T18:32:31Z (GMT). No. of bitstreams: 1 souza_bcc_me_sjrp.pdf: 1030573 bytes, checksum: e3dd1e43953565236359b6d10831067c (MD5) Previous issue date: 2017-02-23
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
O objetivo principal deste trabalho é apresentar detalhadamente um estudo sobre um critério, que aparece na referência Coincidence for maps of spaces with finite group action de D. L. Gonçalves, J. Jaworowski, P. L. Q. Pergher e A. Volovikov, para a existência de (H,G)-coincidências de aplicações cujo contradomínio é um CW-complexo finito Y de dimensão k e cujo domínio é um espaço X paracompacto, Hausdorff, conexo e localmente conexo por caminhos e munido de uma G-ação livre, de modo que exista um inteiro m tal que os grupos i-dimensionais de homologia de X sejam triviais nas dimensões 0The mais objective of this work is to present in detail a study about a criterion, which appears in the reference Coincidence for maps of spaces with finite group actions by D. L. Gonçalves, J. Jaworowski, P. L. Q. Pergher and A. Volovikov, for existence of (H,G)-coincidences of maps into a finite CW-complex Y with dimension k and whose domain is a paracompact, Hausdorff, connected and locally pathconnected space X with a free action of G, in a way that there exists an integer m such that the ith-homology group of X is trivial for 0
APA, Harvard, Vancouver, ISO, and other styles
12

Mercado, Henry José Gullo. "O anel de cohomologia do espaço de órbitas de Zp -ações livres sobre produtos de esferas." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-09062011-114204/.

Full text
Abstract:
Denotemos por X ~ p \'S POT. m\' x \'S POT. n\' um espaço finitístico com anel de cohomologia módulo p isomorfo ao anel de cohomologia de um produto de esferas \'S POT. m\' x \'S POT. n\', o qual admite ação livre do grupo cíclico G = Zp, com p um primo ímpar. Nosso objetivo neste trabalho é determinar o anel de cohomologia do espaço de órbitas X / G, usando como ferramenta principal a seqüência espectral de Leray-Serre associada à fibração de Borel X \'SETA\' \'imath\' X G \'SETA\' \'pi\' B G, onde BG é o espaço classificante do G-fibrado universal wG = (EG;BG; pG; G;G) e XG = EG x G X é o espaço de Borel. Este resultado foi provado por R. M. Dotzel, T. B. Singh and S. P. Tripathi em [14]
Let denote by X ~ p \'S POT. m\' x \'S POT. n\' finitistic space with mod p cohomology ring isomorphic to the cohomology ring of a product of spheres \'S POT. m\' x \'S POT. n\' , which admits a free action of the cyclic group G = Zp, with p an odd prime. Our goal in this work is to determine the cohomology ring of the orbit space X / G, using as main tool the Leray-Serre spectral sequence associated to the Borel fibration X \'SETA\" \'imath\' \'X G \'SETA\' \'pi\' BG, where BG is the classifying space of the G-universal bundle wG = (EG;BG; pG; G;G) and XG = EG x G X is the Borel space. This result was proved by R. M. Dotzel, T. B. Singh and S. P. Tripathi in [14]
APA, Harvard, Vancouver, ISO, and other styles
13

Ferreira, Susana Raquel Carvalho. "Schottky principal G-bundles over compact Riemann surfaces." Doctoral thesis, 2014. http://hdl.handle.net/10362/13333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Krepski, Derek. "Pre-quantization of the Moduli Space of Flat G-bundles." Thesis, 2009. http://hdl.handle.net/1807/19047.

Full text
Abstract:
This thesis studies the pre-quantization of quasi-Hamiltonian group actions from a cohomological viewpoint. The compatibility of pre-quantization with symplectic reduction and the fusion product are established, and are used to understand the necessary and sufficient conditions for the pre-quantization of M(G,S), the moduli space of at flat G-bundles over a closed surface S. For a simply connected, compact, simple Lie group G, M(G,S) is known to be pre-quantizable at integer levels. For non-simply connected G, however, integrality of the level is not sufficient for pre-quantization, and this thesis determines the obstruction, namely a certain 3-dimensional cohomology class, that places further restrictions on the underlying level. The levels that admit a pre-quantization of the moduli space are determined explicitly for all non-simply connected, compact, simple Lie groups G. Partial results are obtained for the case of a surface S with marked points. Also, it is shown that via the bijective correspondence between quasi-Hamiltonian group actions and Hamiltonian loop group actions, the corresponding notions of prequantization coincide.
APA, Harvard, Vancouver, ISO, and other styles
15

Baird, Thomas John. "The moduli space of flat G-bundles over a nonorientable surface." 2008. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=742554&T=F.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

"Rational surfaces, simple Lie algebras and flat G bundles over elliptic curves." Thesis, 2007. http://library.cuhk.edu.hk/record=b6074354.

Full text
Abstract:
It is well-known that del Pezzo surfaces of degree 9 -- n. are in one-to-one correspondence to flat En bundles over elliptic curves which are anti-canonical curves of such surfaces. In my thesis, we study a broader class of rational surfaces which are called ADE surfaces. We construct Lie algebra bundles of any type on these surfaces, and extend the above correspondence to flat G bundles over elliptic curves, where G is a simple, compact and simply-connected Lie group of any type. Concretely, we establish a natural identification between the following two very different moduli spaces for a Lie group G of any type: the moduli space of rational surfaces with G-configurations and the moduli space of flat G-bundles over a fixed elliptic curve.
Zhang, Jiajin.
"July 2007."
Adviser: Leung Nai Chung Conan.
Source: Dissertation Abstracts International, Volume: 69-01, Section: B, page: 0357.
Thesis (Ph.D.)--Chinese University of Hong Kong, 2007.
Includes bibliographical references (p. 77-79).
Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web.
Abstracts in English and Chinese.
School code: 1307.
APA, Harvard, Vancouver, ISO, and other styles
17

Connery-Grigg, Dustin. "Fibrés symplectiques et la géométrie des difféomorphismes hamiltoniens." Thèse, 2016. http://hdl.handle.net/1866/18774.

Full text
Abstract:
Ce mémoire porte sur quelques éléments de la théorie des fibrés symplectiques et leurs usages en étudiant la géométrie hoferienne sur le groupe de difféomorphismes hamiltoniens. En particulier en assumant un certain confort avec les notions de base de la géométrie différentielle et de la topologie algébrique on développe dans le premier chapitre les rudiments nécessaires de la théorie des G-fibrés et, dans la deuxième, tous les faits nécessaires de la topologie symplectique et les difféomorphismes hamiltoniens pour comprendre la théorie de base des fibrés symplectiques, à voir le morphisme de flux et ses liens aux isotopies hamiltoniennes. Le troisième chapitre présente les fondements des fibrés symplectiques se conclu en construisant la forme de couplage dans un langage invariant et en présentant la caractérisation des fibrés symplectiques, dont le groupe de structure réduit au groupe hamiltonien. Le mémoire se termine en présentant quelques applications des fibrés hamiltoniens à la géométrie de Hofer, en particulier une caractérisation de la partie positive de la norme de Hofer d'un lacet hamiltonien en termes du K-aire du fibré au-dessus de la sphère associé et une démonstration de la non-dégénérescence de la norme de Hofer pour des variétés symplectiques fermées.
This thesis presents a reasonably complete account of the elements theory of symplectic and Hamiltonian fibrations. We assume a familiarity and comfort with the basic notions of differential geometry and algebraic topology but little else. Proceeding from this, the first chapter develops the necessary notions from the theory of fiber bundles and G-fiber bundles, while the second chapter develops all the notions and theorems required to understand the later theory of symplectic fibrations. Most notably the second chapter includes a detailed account of the classical relationship between the flux homomorphism and Hamiltonian isotopies. The third chapter is where we develop the theory of symplectic and locally Hamiltonian fiber bundles, and in particular give an invariant construction of the coupling form on a symplectic fibration admitting an extension class. the third chapter ends with a proof of a structure theorem characterizing those symplectic fibrations for which the structure group reduces to the Hamiltonian group. In the final chapter, we present some applications of the theory of Hamiltonian fibrations by the way of characterizing the positive part of the Hofer norm of a Hamiltonian loop as the K-area of its associated Hamiltonian bundle over the sphere, and we finish by giving a proof of the non-degeneracy of the Hofer norm for closed symplectic manifolds.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!