Academic literature on the topic 'Fuzzy relational concept analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuzzy relational concept analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fuzzy relational concept analysis"
Boffa, Stefania, Petra Murinová, and Vilém Novák. "A proposal to extend Relational Concept Analysis with fuzzy scaling quantifiers." Knowledge-Based Systems 231 (November 2021): 107452. http://dx.doi.org/10.1016/j.knosys.2021.107452.
Full textDe Maio, C., G. Fenza, M. Gallo, V. Loia, and S. Senatore. "Formal and relational concept analysis for fuzzy-based automatic semantic annotation." Applied Intelligence 40, no. 1 (June 13, 2013): 154–77. http://dx.doi.org/10.1007/s10489-013-0451-7.
Full textNobuhara, Hajime, and Kaoru Hirota. "A Fuzzification of Morphological Wavelets Based on Fuzzy Relational Calculus and its Application to Image Compression/Reconstruction." Journal of Advanced Computational Intelligence and Intelligent Informatics 8, no. 4 (July 20, 2004): 373–78. http://dx.doi.org/10.20965/jaciii.2004.p0373.
Full textALCALDE, CRISTINA, ANA BURUSCO, and RAMÓN FUENTES-GONZÁLEZ. "ANALYSIS OF CERTAIN L-FUZZY RELATIONAL EQUATIONS AND THE STUDY OF ITS SOLUTIONS BY MEANS OF THE L-FUZZY CONCEPT THEORY." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, no. 01 (February 2012): 21–40. http://dx.doi.org/10.1142/s021848851250002x.
Full textMočkoř, Jiří. "Cut Systems with Relational Morphisms for Semiring-Valued Fuzzy Structures." Axioms 12, no. 2 (February 2, 2023): 153. http://dx.doi.org/10.3390/axioms12020153.
Full textJiang, Xian-Ling, and Yi-Lin Zhao. "Grey Relational Method for Evaluating the Macro-Economy Performance with Triangular Fuzzy Information." Journal of Computational and Theoretical Nanoscience 13, no. 10 (October 1, 2016): 7385–89. http://dx.doi.org/10.1166/jctn.2016.5730.
Full textHuang, Sue-Fen. "Cognitive diagnostic assessment based on knowledge structure." MATEC Web of Conferences 169 (2018): 01020. http://dx.doi.org/10.1051/matecconf/201816901020.
Full textWei, Qian. "Product Shape Design Scheme Evaluation Method Based on Spatial Data Mining." Mathematical Problems in Engineering 2022 (July 20, 2022): 1–8. http://dx.doi.org/10.1155/2022/3231357.
Full textRiaz, Muhammad, Muhammad Tahir Hamid, Deeba Afzal, Dragan Pamucar, and Yu-Ming Chu. "Multi-criteria decision making in robotic agri-farming with q-rung orthopair m-polar fuzzy sets." PLOS ONE 16, no. 2 (February 25, 2021): e0246485. http://dx.doi.org/10.1371/journal.pone.0246485.
Full textRybanov, Alexander Aleksandrovich. "A PRACTICAL METHOD FOR IMPLEMENTING FUZZY QUERIES FOR RELATIONAL DATABASES." Mathematics and Informatics LXV, no. 4 (August 30, 2022): 379–92. http://dx.doi.org/10.53656/math2022-4-5-pra.
Full textDissertations / Theses on the topic "Fuzzy relational concept analysis"
Novi, Daniele. "Knowledge management and Discovery for advanced Enterprise Knowledge Engineering." Doctoral thesis, Universita degli studi di Salerno, 2014. http://hdl.handle.net/10556/1466.
Full textThe research work addresses mainly issues related to the adoption of models, methodologies and knowledge management tools that implement a pervasive use of the latest technologies in the area of Semantic Web for the improvement of business processes and Enterprise 2.0 applications. The first phase of the research has focused on the study and analysis of the state of the art and the problems of Knowledge Discovery database, paying more attention to the data mining systems. The most innovative approaches which were investigated for the "Enterprise Knowledge Engineering" are listed below. In detail, the problems analyzed are those relating to architectural aspects and the integration of Legacy Systems (or not). The contribution of research that is intended to give, consists in the identification and definition of a uniform and general model, a "Knowledge Enterprise Model", the original model with respect to the canonical approaches of enterprise architecture (for example with respect to the Object Management - OMG - standard). The introduction of the tools and principles of Enterprise 2.0 in the company have been investigated and, simultaneously, Semantic Enterprise based appropriate solutions have been defined to the problem of fragmentation of information and improvement of the process of knowledge discovery and functional knowledge sharing. All studies and analysis are finalized and validated by defining a methodology and related software tools to support, for the improvement of processes related to the life cycles of best practices across the enterprise. Collaborative tools, knowledge modeling, algorithms, knowledge discovery and extraction are applied synergistically to support these processes. [edited by author]
XII n.s.
Nica, Cristina. "Exploring sequential data with relational concept analysis." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD032/document.
Full textMany sequential pattern mining methods have been proposed to discover useful patterns that describe the analysed sequential data. Several of these works have focused on efficiently enumerating all closed partially-ordered patterns (cpo-patterns), that makes their evaluation a laboured task for experts since their number can be large. To address this issue, we propose a new approach, that is to directly extract multilevel cpo-patterns implicitly organised into a hierarchy. To this end, we devise an original method within the Relational Concept Analysis (RCA) framework, referred to as RCA-SEQ, that exploits the structure and properties of the lattices from the RCA output. RCA-SEQ spans five steps: the preprocessing of the raw data; the RCA-based exploration of the preprocessed data; the automatic extraction of a hierarchy of multilevel cpo-patterns by navigating the lattices from the RCA output; the selection of relevant multilevel cpo-patterns; the pattern evaluation done by experts
De, Maio Carmen. "Fuzzy concept analysis for semantic knowledge extraction." Doctoral thesis, Universita degli studi di Salerno, 2012. http://hdl.handle.net/10556/1307.
Full textAvailability of controlled vocabularies, ontologies, and so on is enabling feature to provide some added values in terms of knowledge management. Nevertheless, the design, maintenance and construction of domain ontologies are a human intensive and time consuming task. The Knowledge Extraction consists of automatic techniques aimed to identify and to define relevant concepts and relations of the domain of interest by analyzing structured (relational databases, XML) and unstructured (text, documents, images) sources. Specifically, methodology for knowledge extraction defined in this research work is aimed at enabling automatic ontology/taxonomy construction from existing resources in order to obtain useful information. For instance, the experimental results take into account data produced with Web 2.0 tools (e.g., RSS-Feed, Enterprise Wiki, Corporate Blog, etc.), text documents, and so on. Final results of Knowledge Extraction methodology are taxonomies or ontologies represented in a machine oriented manner by means of semantic web technologies, such as: RDFS, OWL and SKOS. The resulting knowledge models have been applied to different goals. On the one hand, the methodology has been applied in order to extract ontologies and taxonomies and to semantically annotate text. On the other hand, the resulting ontologies and taxonomies are exploited in order to enhance information retrieval performance and to categorize incoming data and to provide an easy way to find interesting resources (such as faceted browsing). Specifically, following objectives have been addressed in this research work: Ontology/Taxonomy Extraction: that concerns to automatic extraction of hierarchical conceptualizations (i.e., taxonomies) and relations expressed by means typical description logic constructs (i.e., ontologies). Information Retrieval: definition of a technique to perform concept-based the retrieval of information according to the user queries. Faceted Browsing: in order to automatically provide faceted browsing capabilities according to the categorization of the extracted contents. Semantic Annotation: definition of a text analysis process, aimed to automatically annotate subjects and predicates identified. The experimental results have been obtained in some application domains: e-learning, enterprise human resource management, clinical decision support system. Future challenges go in the following directions: investigate approaches to support ontology alignment and merging applied to knowledge management.
X n.s.
Kanade, Parag M. "Fuzzy ants as a clustering concept." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000397.
Full textRudolph, Sebastian. "Relational Exploration: Combining Description Logics and Formal Concept Analysis for Knowledge Specification." Doctoral thesis, Technische Universität Dresden, 2006. https://tud.qucosa.de/id/qucosa%3A25002.
Full textKonecny, Jan. "Isotone fuzzy Galois connections and their applications in formal concept analysis." Diss., Online access via UMI:, 2009.
Find full textIncludes bibliographical references.
Rudolph, Sebastian [Verfasser]. "Relational exploration : combining description logics and formal concept analysis for knowledge specification / von Sebastian Rudolph." Karlsruhe : Univ.-Verl. Karlsruhe, 2007. http://d-nb.info/983756430/34.
Full textRudolph, Sebastian. "Relational Exploration." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2007. http://nbn-resolving.de/urn:nbn:de:swb:14-1172682174599-12286.
Full textGlodeanu, Cynthia Vera. "Conceptual Factors and Fuzzy Data." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-103775.
Full textKomplexitätsreduktion ist eines der wichtigsten Verfahren in der Datenanalyse. Mit ständig wachsenden Datensätzen gilt dies heute mehr denn je. In vielen Gebieten stößt man zudem auf vage und ungewisse Daten. Wann immer man ein Instrument zur Datenanalyse hat, stellen sich daher die folgenden zwei Fragen auf eine natürliche Weise: Wie kann man im Rahmen der Analyse die Variablenanzahl verkleinern, und wie kann man Fuzzy-Daten bearbeiten? In dieser Arbeit versuchen wir die eben genannten Fragen für die Formale Begriffsanalyse zu beantworten. Genauer gesagt, erarbeiten wir verschiedene Methoden zur Komplexitätsreduktion qualitativer Daten und entwickeln diverse Verfahren für die Bearbeitung von Fuzzy-Datensätzen. Basierend auf diesen beiden Themen gliedert sich die Arbeit in zwei Teile. Im ersten Teil liegt der Schwerpunkt auf der Komplexitätsreduktion, während sich der zweite Teil der Verarbeitung von Fuzzy-Daten widmet. Die verschiedenen Kapitel sind dabei durch die beiden Themen verbunden. So werden insbesondere auch Methoden für die Komplexitätsreduktion von Fuzzy-Datensätzen entwickelt
Kandasamy, Meenakshi. "Approaches to Creating Fuzzy Concept Lattices and an Application to Bioinformatics Annotations." Miami University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=miami1293821656.
Full textBooks on the topic "Fuzzy relational concept analysis"
J, Skolnick Neil, and Warshaw Susan C, eds. Relational perspectives in psychoanalysis. Hillsdale, NJ: Analytic Press, 1992.
Find full textCiappei, Cristiano, and Massimiliano Pellegrini, eds. Facility management for global care. Florence: Firenze University Press, 2010. http://dx.doi.org/10.36253/978-88-6453-088-8.
Full textSkolnick, Neil J., and Susan C. Warshaw. Relational Perspectives in Psychoanalysis. Taylor & Francis Group, 2015.
Find full textSkolnick, Neil J., and Susan C. Warshaw. Relational Perspectives in Psychoanalysis. Taylor & Francis Group, 2015.
Find full textSkolnick, Neil J., and Susan C. Warshaw. Relational Perspectives in Psychoanalysis. Taylor & Francis Group, 2015.
Find full textSkolnick, Neil J., and Susan C. Warshaw. Relational Perspectives in Psychoanalysis. Taylor & Francis Group, 2015.
Find full textGross, Justin H., and Joshua M. Jansa. Relational Concepts, Measurement, and Data Collection. Edited by Jennifer Nicoll Victor, Alexander H. Montgomery, and Mark Lubell. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190228217.013.7.
Full textSchneider, Volker. Hugh Heclo, “Issue Networks and the Executive Establishment”. Edited by Martin Lodge, Edward C. Page, and Steven J. Balla. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199646135.013.28.
Full textMorphy, Howard. Art as Action, Art as Evidence. Edited by Dan Hicks and Mary C. Beaudry. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199218714.013.0011.
Full textRushton, Cynda Hylton. Conceptualizing Moral Resilience. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190619268.003.0007.
Full textBook chapters on the topic "Fuzzy relational concept analysis"
Šostak, Alexander, and Ingrīda Uļjane. "Fuzzy Relations: The Fundament for Fuzzy Rough Approximation, Fuzzy Concept Analysis and Fuzzy Mathematical Morphology." In Computational Intelligence and Mathematics for Tackling Complex Problems 4, 25–35. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07707-4_4.
Full textBělohlávek, Radim. "Object-Attribute Fuzzy Relations and Fuzzy Concept Lattices." In Fuzzy Relational Systems, 215–72. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0633-1_5.
Full textBazin, Alexandre, Jessie Carbonnel, Marianne Huchard, Giacomo Kahn, Priscilla Keip, and Amirouche Ouzerdine. "On-demand Relational Concept Analysis." In Formal Concept Analysis, 155–72. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21462-3_11.
Full textKötters, Jens. "Object Configuration Browsing in Relational Databases." In Formal Concept Analysis, 151–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20514-9_13.
Full textCabrera, Inma P., Pablo Cordero, Emilio Muñoz-Velasco, and Manuel Ojeda-Aciego. "A Relational Extension of Galois Connections." In Formal Concept Analysis, 290–303. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21462-3_19.
Full textMacko, Juraj. "User-Friendly Fuzzy FCA." In Formal Concept Analysis, 156–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38317-5_10.
Full textBělohlávek, Radim, Vladimír Sklenář, and Jiří Zacpal. "Crisply Generated Fuzzy Concepts." In Formal Concept Analysis, 269–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-32262-7_19.
Full textDolques, Xavier, Florence Le Ber, Marianne Huchard, and Clémentine Nebut. "Relational Concept Analysis for Relational Data Exploration." In Advances in Knowledge Discovery and Management, 57–77. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23751-0_4.
Full textRouane-Hacene, Mohamed, Marianne Huchard, Amedeo Napoli, and Petko Valtchev. "Soundness and Completeness of Relational Concept Analysis." In Formal Concept Analysis, 228–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38317-5_15.
Full textBrito, Abner, Laécio Barros, Estevão Laureano, Fábio Bertato, and Marcelo Coniglio. "Fuzzy Formal Concept Analysis." In Communications in Computer and Information Science, 192–205. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95312-0_17.
Full textConference papers on the topic "Fuzzy relational concept analysis"
Golinska-Pilarek, Joanna, and Ewa Orlowska. "Relational Reasoning in Formal Concept Analysis." In 2007 IEEE International Fuzzy Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/fuzzy.2007.4295512.
Full textde Lemos, Francisco Luiz, Karl-Heinz Helmuth, and Terry Sullivan. "Transparent Tools for Uncertainty Analysis in High Level Waste Disposal Facilities Safety." In The 11th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2007. http://dx.doi.org/10.1115/icem2007-7277.
Full textChen, Shyi-Ming, and Yonathan Randyanto. "Concept representation in intuitionistic fuzzy social relational networks." In 2014 IEEE International Conference on Systems, Man and Cybernetics - SMC. IEEE, 2014. http://dx.doi.org/10.1109/smc.2014.6974006.
Full textFeng Jiang, Youxin Meng, and Yun Liu. "Formal concept analysis in relational contexts." In 2008 IEEE International Conference on Granular Computing (GrC-2008). IEEE, 2008. http://dx.doi.org/10.1109/grc.2008.4664730.
Full textMateiu, Patricia, Adrian Groza, and Cristina Nica. "Learning Ontologies with Relational Concept Analysis." In 2022 IEEE 20th Jubilee World Symposium on Applied Machine Intelligence and Informatics (SAMI). IEEE, 2022. http://dx.doi.org/10.1109/sami54271.2022.9780837.
Full textBegam, M. Farida. "Domain Ontology Construction using Formal Concept and Relational Concept Analysis." In 2021 2nd Global Conference for Advancement in Technology (GCAT). IEEE, 2021. http://dx.doi.org/10.1109/gcat52182.2021.9587855.
Full textHacene, Mohamed Rouane, Amedeo Napoli, Petko Valtchev, Yannick Toussaint, and Rokia Bendaoud. "Ontology Learning from Text Using Relational Concept Analysis." In 2008 International MCETECH Conference on e-Technologies. IEEE, 2008. http://dx.doi.org/10.1109/mcetech.2008.29.
Full textTiwari, Ashutosh, Q. M. Danish Lohani, and Pranab K. Muhuri. "Intuitionistic Fuzzy Grey Relational Analysis Sorting Technique." In 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2022. http://dx.doi.org/10.1109/fuzz-ieee55066.2022.9882547.
Full textChen, Zhijie, Weizhen Chen, Qile Chen, and Mian-Yun Chen. "Trend Relational Analysis and Grey-Fuzzy Clustering Method." In Proceedings of the 2006 SIAM International Conference on Data Mining. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2006. http://dx.doi.org/10.1137/1.9781611972764.21.
Full textGao, Zhi-Yong, Yong-Quan Liang, and Shu-Han Qiao. "Relational Database Ontology Discovery Method Based on Formal Concept Analysis." In 3rd Annual International Conference on Mechanics and Mechanical Engineering (MME 2016). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/mme-16.2017.101.
Full textReports on the topic "Fuzzy relational concept analysis"
Baader, Franz, and Felix Distel. A finite basis for the set of EL-implications holding in a finite model. Technische Universität Dresden, 2007. http://dx.doi.org/10.25368/2022.160.
Full text