To see the other types of publications on this topic, follow the link: Fusion sélective au laser.

Journal articles on the topic 'Fusion sélective au laser'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fusion sélective au laser.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

NORIMATSU, Takayoshi. "Laser Fusion." Journal of The Institute of Electrical Engineers of Japan 131, no. 1 (2011): 14–17. http://dx.doi.org/10.1541/ieejjournal.131.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

NAKAI, Sadao. "Laser fusion." Review of Laser Engineering 15, no. 6 (1987): 441–46. http://dx.doi.org/10.2184/lsj.15.441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pujo Rossi, F., X. Burelle, C. Dot, P. Wary, and F. May. "416 Trabéculoplastie sélective par laser : effet sur la pression intra-oculaire." Journal Français d'Ophtalmologie 31 (April 2008): 139. http://dx.doi.org/10.1016/s0181-5512(08)71014-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Nakai, Sadao. "Laser Fusion Reactor." Kakuyūgō kenkyū 58, no. 1 (1987): 35–39. http://dx.doi.org/10.1585/jspf1958.58.35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

NAKAI, SADAO. "Laser nuclear fusion." Review of Laser Engineering 21, no. 1 (1993): 187–91. http://dx.doi.org/10.2184/lsj.21.187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soures, John M. "Fusion Laser Engineering." Optical Engineering 43, no. 12 (December 1, 2004): 2839. http://dx.doi.org/10.1117/1.1829715.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nakai, S. "Laser fusion experiment." Laser and Particle Beams 7, no. 3 (August 1989): 467–75. http://dx.doi.org/10.1017/s0263034600007424.

Full text
Abstract:
The recent progress of laser fusion research has been remarkable in obtaining the high density of more than 100 times solid density (Nakai et al. 1988) and high temperature plasma producing thermonuclear neutrons of 1013 per shot (pellet gain of 0·2%) (Yamanaka et al. 1986a) and in the understanding of the implosion physics. The data bases of the laser fusion are rapidly being accumulated and the technologies for the advanced experiments have been developed, both of which enable us to proceed toward the fusion ignition experiment and the achievement of the breakeven conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

Le Corre, A., C. Dot, C. Grasswill, X. Burelle, J. F. Maurin, G. Ract-Madoux, N. Salaun, F. May, and J. P. Renard. "486 Trabéculoplastie sélective par laser : effet sur la pression intraoculaire à 1 an." Journal Français d'Ophtalmologie 32 (April 2009): 1S150. http://dx.doi.org/10.1016/s0181-5512(09)73610-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Naouri, M. "Photothermolyse sélective des acrochordons par laser Alexandrite long pulse: la méthode « pop corn »." Annales de Dermatologie et de Vénéréologie 139, no. 12 (December 2012): B228. http://dx.doi.org/10.1016/j.annder.2012.10.398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naouri, M. "Photothermolyse sélective des acrochordons par laser Alexandrite long pulse : la méthode « pop corn »." Annales de Dermatologie et de Vénéréologie 139, no. 6-7 (June 2012): H73—H74. http://dx.doi.org/10.1016/j.annder.2012.04.118.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lin Zunqi, 林尊琪. "Progress of Laser Fusion." Chinese Journal of Lasers 37, no. 9 (2010): 2202–7. http://dx.doi.org/10.3788/cjl20103709.2202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

NAKAI, Sadao. "Laser fusion 30 years." Review of Laser Engineering 19, no. 1 (1991): 44–46. http://dx.doi.org/10.2184/lsj.19.44.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Craxton, R. Stephen, Robert L. McCrory, and John M. Soures. "Progress in Laser Fusion." Scientific American 255, no. 2 (August 1986): 68–79. http://dx.doi.org/10.1038/scientificamerican0886-68.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Blanchard, James P., and René Raffray. "Laser Fusion Chamber Design." Fusion Science and Technology 52, no. 3 (October 2007): 440–44. http://dx.doi.org/10.13182/fst07-a1527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Taubes, G. "Laser Fusion Catches Fire." Science 262, no. 5139 (December 3, 1993): 1504–6. http://dx.doi.org/10.1126/science.262.5139.1504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Steinert, Christoph. "Laser-Induced “Semicold” Fusion." Fusion Technology 17, no. 1 (January 1990): 206–8. http://dx.doi.org/10.13182/fst90-a29181.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Anderson, G. Christopher. "Laser fusion misses targets." Nature 344, no. 6267 (April 1990): 579. http://dx.doi.org/10.1038/344579a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hora, H., and G. H. Miley. "Boost for Laser Fusion." Europhysics News 17, no. 5 (1986): 70–71. http://dx.doi.org/10.1051/epn/19861705070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

IZAWA, Yasukazu, Kazuo A. TANAKA, Takayasu MOCHIZUKI, Yoneyoshi KITAGAWA, Mitsuo NAKAI, Hiroyuki SHIRAGA, Masanobu YAMANAKA, et al. "Laser Fusion Implosion Experiments." Review of Laser Engineering 14, no. 12 (1986): 1090–132. http://dx.doi.org/10.2184/lsj.14.1090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kramer, K. J., J. F. Latkowski, R. P. Abbott, T. P. Anklam, A. M. Dunne, B. S. El-Dasher, D. L. Flowers, et al. "Fusion technologies for Laser Inertial Fusion Energy (LIFE)." EPJ Web of Conferences 59 (2013): 11001. http://dx.doi.org/10.1051/epjconf/20135911001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

NAKAI, Sadao. "Special issue on laser fusion and precision engineering. Laser fusion and precision engineering." Journal of the Japan Society for Precision Engineering 55, no. 11 (1989): 1917–22. http://dx.doi.org/10.2493/jjspe.55.1917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

NORIMATSU, Takayoshi, and Yukio SAKAGAMI. "Special issue on laser fusion and precision engineering. Micromachining for laser fusion pellet." Journal of the Japan Society for Precision Engineering 55, no. 11 (1989): 1944–47. http://dx.doi.org/10.2493/jjspe.55.1944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

White, John V. "Laser instrumentation: A microtenaculum for laser tissue fusion." Lasers in Surgery and Medicine 8, no. 4 (1988): 433–34. http://dx.doi.org/10.1002/lsm.1900080416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

May, F., A. Lecorre, J. M. Giraud, R. Dariel, J. R. Fenolland, J. F. Maurin, and J. P. Renard. "092 Effet de la trabéculoplastie sélective par laser sur la pression intraoculaire et le traitement." Journal Français d'Ophtalmologie 32 (April 2009): 1S43. http://dx.doi.org/10.1016/s0181-5512(09)73229-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

SHIRAGA, Hiroyuki, and Hiroshi AZECHI. "Progress of Laser Fusion Rersearch." Review of Laser Engineering 41, no. 4 (2013): 217. http://dx.doi.org/10.2184/lsj.41.4_217.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Gong, Jixian, Xueming Zhao, Qirong Xing, Fang Li, Huanyu Li, Yanfeng Li, Lu Chai, Qingyue Wang, and Aleksei Zheltikov. "Femtosecond laser-induced cell fusion." Applied Physics Letters 92, no. 9 (March 3, 2008): 093901. http://dx.doi.org/10.1063/1.2890070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ditmire, Todd. "Laser Fusion on a Tabletop." Optics and Photonics News 13, no. 5 (May 1, 2002): 28. http://dx.doi.org/10.1364/opn.13.5.000028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Cartlidge, Edwin. "Europe plans laser-fusion facility." Physics World 18, no. 9 (September 2005): 7. http://dx.doi.org/10.1088/2058-7058/18/9/7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Cahn, Robert W. "Smooth tritium for laser fusion." Nature 335, no. 6189 (September 1988): 399–400. http://dx.doi.org/10.1038/335399a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Clery, D. "Laser fusion, with a difference." Science 347, no. 6218 (January 8, 2015): 111–12. http://dx.doi.org/10.1126/science.347.6218.111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Decroisette, Michel. "La fusion thermonucléaire par laser." Reflets de la physique, no. 21 (October 2010): 35–38. http://dx.doi.org/10.1051/refdp/20102135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Hand, Eric. "Laser fusion nears crucial milestone." Nature 483, no. 7388 (March 2012): 133–34. http://dx.doi.org/10.1038/483133a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Eliezer, S., A. Ravid, Z. Henis, N. Nissim, and J. M. Martinez Val. "Laser-induced fusion detonation wave." Laser and Particle Beams 34, no. 2 (April 11, 2016): 343–51. http://dx.doi.org/10.1017/s0263034616000203.

Full text
Abstract:
AbstractDevelopment of a detonation wave due to α heating following short pulse laser irradiation in pre-compressed deuterium–tritium (DT) plasma is considered. The laser parameters required for development of a detonation wave are calculated. We find that a laser irradiance and energy of IL = 1.75 × 1023 W/cm2 and 12.8 kJ accordingly during 1.0 ps in a pre-compressed target at 900 g/cm3 creates an α heating fusion detonation wave. In this case, the nuclear fusion ignition conditions for the pre-compressed DT plasma are achieved along the detonation wave orbit.
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Yinmei, Lijie Guan, Liren Lou, Guoqiang Cui, Yuan Yao, Haowei Wang, Chuanshun Cao, Runlong Lu, and Xi Chen. "Laser-induced tobacco protoplast fusion." Science in China Series C: Life Sciences 42, no. 2 (April 1999): 122–27. http://dx.doi.org/10.1007/bf02880046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Giovanielli, D. "Excimer laser development for fusion." Laser and Particle Beams 4, no. 3-4 (August 1986): 569–72. http://dx.doi.org/10.1017/s026303460000224x.

Full text
Abstract:
The future utility of inertial confinement fusion requires a new driver. Successful experiments coupling laser energy to targets, and our understanding of fuel capsule behavior strongly suggest that a Laboratory thermonuclear source is attainable and power production may be considered if a suitable driver with high efficiency, high repetition rate, and most importantly, low capital cost, can be identified. No adequate driver exists today; however, the krypton fluoride laser holds great promise (Rosocha et al. 1986). By the end of this decade, driver development can be brought to the point that a technically justifiable choice can be made for the future direction of ICF.
APA, Harvard, Vancouver, ISO, and other styles
36

Besnard, D. "Fusion with the megajoule laser." Journal of Physics: Conference Series 112, no. 1 (May 1, 2008): 012004. http://dx.doi.org/10.1088/1742-6596/112/1/012004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

YAMANAKA, Chiyoe, Masahiro NAKATSUKA, and Hiroaki NISHIMURA. "Survey of the Laser Fusion." Review of Laser Engineering 14, no. 12 (1986): 1003–17. http://dx.doi.org/10.2184/lsj.14.1003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cartlidge, Edwin. "Laser-fusion milestone ignites debate." Physics World 35, no. 10 (December 1, 2022): 11ii. http://dx.doi.org/10.1088/2058-7058/35/10/16.

Full text
Abstract:
After failing to reproduce last year’s record-breaking fusion-energy shot, scientists at the US National Ignition Facility have gone back to the drawing board. Edwin Cartlidge discusses their next steps.
APA, Harvard, Vancouver, ISO, and other styles
39

Clery, Daniel. "Explosion marks laser fusion breakthrough." Science 378, no. 6625 (December 16, 2022): 1154–55. http://dx.doi.org/10.1126/science.adg2854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Weiss, Peter. "Laser interplay stokes fusion uncertainty." Science News 154, no. 21 (June 30, 2009): 326. http://dx.doi.org/10.1002/scin.5591542109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Cartlidge, Edwin. "Physicists plot laser fusion path." Physics World 36, no. 2 (February 1, 2023): 8–9. http://dx.doi.org/10.1088/2058-7058/36/02/09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Atzeni, Stefano, and Debra Callahan. "Harnessing energy from laser fusion." Physics Today 77, no. 8 (August 1, 2024): 44–50. http://dx.doi.org/10.1063/pt.zghg.fite.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

NAKATSUKA, Masahiro. "Special issue on laser fusion and precision engineering. Optical beam control in fusion laser." Journal of the Japan Society for Precision Engineering 55, no. 11 (1989): 1933–37. http://dx.doi.org/10.2493/jjspe.55.1933.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Steubing, Rosemarie Wiegand, Steve Cheng, William H. Wright, Yasuyuki Numajiri, and Michael W. Berns. "Laser induced cell fusion in combination with optical tweezers: The laser cell fusion trap." Cytometry 12, no. 6 (1991): 505–10. http://dx.doi.org/10.1002/cyto.990120607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Meier, W. R., A. M. Dunne, K. J. Kramer, S. Reyes, and T. M. Anklam. "Fusion technology aspects of laser inertial fusion energy (LIFE)." Fusion Engineering and Design 89, no. 9-10 (October 2014): 2489–92. http://dx.doi.org/10.1016/j.fusengdes.2013.12.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tonouheoua, A. G. O., T. M. Bah, T. T. Agli, I. Cisse, I. Fofana, H. A. B. Traore, M. Diawara, K. Amde-Michael, Laouali, and L. Traore. "Efficacité de la trabeculoplastie sélective au laser dans le traitement du glaucome primitif à angle ouvert : notre expérience au CHU-Donka Guinée-Conakry." Journal de la Recherche Scientifique de l’Université de Lomé 26, no. 1 (April 18, 2024): 193–204. http://dx.doi.org/10.4314/jrsul.v26i1.26.

Full text
Abstract:
Contexte : la trabéculoplastie sélective (SLT) fait partie des autres moyens physiques du traitement du glaucome. Le but de cette étude est d’étudier l’efficacité de la trabéculoplastie sélective au laser en première intention dans le traitement du glaucome primitif à angle ouvert au CADES/O. Méthodes : il s’agissait d’une étude prospective allant du 1er septembre 2017 au 31 Août 2019 soit une durée totale de 24 mois. Résultats : L’âge des patients était de 57±11 ans avec des extrêmes de 36 et 75 ans ; une prédominance masculine (56,25%), Sur 25 (51,02%) yeux on avait un taux de réduction de la PIO (Tr) ≥20% avec une médiane de 35,71% et des extrêmes de 20 à 65,62%. Plus la Pression Intraoculaire Oculaire (PIO) initiale était élevée, plus la PIO à J0 donc après la période de Wash-out était aussi élevée avec une différence significative (1%). Et plus la PIO à J0 était élevée plus le taux de réduction de la PIO était élevé. La moyenne du taux de réduction de la PIO était plus élevée (20,82%) pour les yeux sans aucun traitement anti HTO antérieur à la procédure SLT (yeux naïfs) et moins élevée (16,43%) chez les yeux qui étaient sous traitement Anti HTO sans différence statistiquement significative. Conclusion : La trabéculoplastie sélective en première intention peut occuper une place de choix dans le traitement du glaucome primitif à angle ouvert. Selective trabeculoplasty (SLT) is one of the physical alternatives for the treatment of glaucoma. The aim of this study was to investigate the efficacy of first-line selective laser trabeculoplasty in the treatment of primary open-angle glaucoma in CADES/O. Methods: this was a prospective study running from September 1, 2017 to August 31, 2019, a total duration of 24 months Results: Patient age was 57±11 years with extremes of 36 and 75 years; male predominance (56.25%), On 25 (51.02%) eyes there was an IOP reduction rate (Tr) ≥20% with a median of 35.71% and extremes of 20 to 65.62%. The higher the initial Ocular Intraocular Pressure (IOP), the higher the IOP at D0, i.e. after the washout period, with a significant difference (1%). And the higher the IOP at D0, the higher the rate of IOP reduction. The average rate of IOP reduction was higher (20.82%) in eyes with no anti-HTO treatment prior to the SLT procedure (naive eyes) and lower (16.43%) in eyes under anti-HTO treatment, with no statistically significant difference. Conclusion: Selective first-line trabeculoplasty may occupy a place of choice in the treatment of primary openangle glaucoma.
APA, Harvard, Vancouver, ISO, and other styles
47

Shipulin, L. V., D. V. Ardashev, and V. L. Kulygin. "Laser Metal Fusion, Laser Metal Deposition, and Laser Hardening: A Review." Russian Engineering Research 40, no. 4 (April 2020): 330–32. http://dx.doi.org/10.3103/s1068798x20040206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yamanaka, Masanobu, Kenta Naito, Tadashi Kanabe, Masahiro Nakatsuka, and Sadao Nakai. "Laser diode pumped solid state laser for laser fusion reactor driver." Kakuyūgō kenkyū 62, no. 2 (1989): 79–94. http://dx.doi.org/10.1585/jspf1958.62.79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

MILEY, GEORGE H., H. HORA, F. OSMAN, P. EVANS, and P. TOUPS. "Single event laser fusion using ns-MJ laser pulses." Laser and Particle Beams 23, no. 4 (October 2005): 453–60. http://dx.doi.org/10.1017/s0263034605050639.

Full text
Abstract:
Studies of single-event laser-target interaction for fusion reaction schemes leading to volume ignition are discussed. Conditions were explored where single-event ns-laser pulses give rise to temperatures sufficient for volume ignition. Thus, ignition is possible, particularly if X-ray reabsorption is sufficiently high. Unfortunately, this scheme requires laser pulses with energies above 5 MJ and target densities of compressed DT above 1000 g/cm−3. Both requirements are quite demanding for near term systems. Nevertheless the present state technology and the detailed knowledge about volume ignition at direct drive are a basis. Systems as NIF or LMJ can well confirm these physics-clarified conditions and the technology for large laser systems with sufficient repetition rate and for a drastic reduction of the size and costs is necessary and possible and by physics similar to the known reductions in transistor development.
APA, Harvard, Vancouver, ISO, and other styles
50

Imasaki, K., and D. Li. "Feasibility of new laser fusion by intense laser field." Laser and Particle Beams 27, no. 2 (March 23, 2009): 273–79. http://dx.doi.org/10.1017/s0263034609000354.

Full text
Abstract:
AbstractA feasibility of a new approach of laser fusion in plasma without implosion has been proposed and discussed using an intense laser. The cross-section of nuclear reaction is increased by the enhanced penetrability of nuclei through the Coulomb barrier. In this approach, an intense laser field of more than 10 EW was required to distort the Coulomb barrier to obtain enough penetrability. In the new improved model, a nuclear potential with meson attractive force is considered. Enhancement is observed for penetrability around EW or less power laser due to a nuclear potential. Energy gain even with Deuterium-Deuterium reaction can be obtained on this scheme in Deuterium plasma with energetic nucleon theoretically.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography