Academic literature on the topic 'Fusarium Rot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fusarium Rot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fusarium Rot"
Al-Ani, R. A., M. A. Adhab, M. H. Mahdi, and H. M. Abood. "Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina." Plant Protection Science 48, No. 4 (November 6, 2012): 149–55. http://dx.doi.org/10.17221/16/2012-pps.
Full textKukushkina, Kristina, Sofia Ovsyankina, and Sergei Khizhnyak. "Sensitivity of pathogens of helminthosporiosis and fusarium rot of grain crops in the Kansk-Krasnoyarsk forest-steppe to seed protectants of various chemical composition." АгроЭкоИнфо 2, no. 50 (April 19, 2022): 32. http://dx.doi.org/10.51419/202122232.
Full textLi, Lina, Qing Qu, Zhiyan Cao, Zhengyu Guo, Hui Jia, Ning Liu, Yanhui Wang, and Jingao Dong. "The Relationship Analysis on Corn Stalk Rot and Ear Rot According to Fusarium Species and Fumonisin Contamination in Kernels." Toxins 11, no. 6 (June 5, 2019): 320. http://dx.doi.org/10.3390/toxins11060320.
Full textHagerty, Christina H., Tessa Irvine, Hannah M. Rivedal, Chuntao Yin, and Duncan R. Kroese. "Diagnostic Guide: Fusarium Crown Rot of Winter Wheat." Plant Health Progress 22, no. 2 (January 1, 2021): 176–81. http://dx.doi.org/10.1094/php-10-20-0091-dg.
Full textSaad, Ahmed, Bethany Macdonald, Anke Martin, Noel L. Knight, and Cassandra Percy. "Winter Cereal Reactions to Common Root Rot and Crown Rot Pathogens in the Field." Agronomy 12, no. 10 (October 19, 2022): 2571. http://dx.doi.org/10.3390/agronomy12102571.
Full textRahman, MA, ZR Moni, MA Hussen, and TH Ansari. "Prevalence Of Fungal Diseases In Medicinal Plants In Northern Region Of Bangladesh." SAARC Journal of Agriculture 17, no. 2 (February 3, 2020): 197–212. http://dx.doi.org/10.3329/sja.v17i2.45306.
Full textKačergius, A., and D. Radaitienė. "Greenhouse test for the resistance to root and stem rot of Hypericum perforatum L. accessions." Plant Protection Science 38, SI 2 - 6th Conf EFPP 2002 (December 31, 2017): 533–35. http://dx.doi.org/10.17221/10547-pps.
Full textGrünwald, N. J., V. A. Coffman, and J. M. Kraft. "Sources of Partial Resistance to Fusarium Root Rot in the Pisum Core Collection." Plant Disease 87, no. 10 (October 2003): 1197–200. http://dx.doi.org/10.1094/pdis.2003.87.10.1197.
Full textScruggs, A. C., and L. M. Quesada-Ocampo. "Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato." Phytopathology® 106, no. 8 (August 2016): 909–19. http://dx.doi.org/10.1094/phyto-01-16-0009-r.
Full textSever, Zdravka, Dario Ivić, Tomislav Kos, and Tihomir Miličević. "Identification of Fusarium Species Isolated From Stored Apple Fruit in Croatia / Identifikacija Vrsta Roda Fusarium Izoliranih S Plodova Jabuke Nakon Skladištenja." Archives of Industrial Hygiene and Toxicology 63, no. 4 (December 1, 2012): 463–70. http://dx.doi.org/10.2478/10004-1254-63-2012-2227.
Full textDissertations / Theses on the topic "Fusarium Rot"
Moya, Ernesto Antonio. "Distribution and interaction of Fusarium crown rot and common root rot pathogens of wheat in Montana and development of an integrated management program for Fusarium crown rot." Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/moya/MoyaE0810.pdf.
Full textChittem, Kishore. "Genomics and Management of Fusarium Root Rot of Field Peas." Diss., North Dakota State University, 2012. https://hdl.handle.net/10365/26475.
Full textOdom, Jennifer Lorraine. "Evaluation of Field Pea Varieties for Resistance to Fusarium Root Rot Pathogens." Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28500.
Full textTvedt, Chryseis Theresa. "Efficacy of Seed Treatments and In-Furrow Fungicides for Management of Dry Bean Root Rot Caused by Rhizoctonia Solani and Fusarium Solani, and Field Pea Root Rot Caused by Fusarium Avenaceum and Fusarium Solani." Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28366.
Full textAdeyanju, Adedayo. "Genetic study of resistance to charcoal rot and Fusarium stalk rot diseases of sorghum." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17559.
Full textDepartment of Agronomy
Tesfaye Tesso
Fusarium stalk rot and charcoal rot caused by Fusarium thapsinum and Macrophomina phaseolina respectively are devastating global diseases in sorghum that lead to severe quality and yield loss each year. In this study, three sets of interrelated experiments were conducted that will potentially lead to the development of resistance based control option to these diseases. The first experiment was aimed at identifying sources of resistance to infection by M. phaseolina and F. thapsinum in a diverse panel of 300 sorghum genotypes. The genotypes were evaluated in three environments following artificial inoculation. Out of a total of 300 genotypes evaluated, 95 genotypes were found to have resistance to M. phaseolina and 77 to F. thapsinum of which 53 genotypes were resistant to both pathogens. In the second experiment, a set of 79,132 single nucleotide polymorphisms (SNPs) markers were used in an association study to identify genomic regions underlying stalk rot resistance using a multi-locus mixed model association mapping approach. We identified 14 loci associated with stalk rot and a set of candidate genes that appear to be involved in connected functions controlling plant defense response to stalk rot resistance. The associated SNPs accounted for 19-30% of phenotypic variation observed within and across environments. An analysis of associated allele frequencies within the major sorghum subpopulations revealed enrichment for resistant alleles in the durra and caudatum subpopulations compared with other subpopulations. The findings suggest a complicated molecular mechanism of resistance to stalk rots. The objective of the third experiment was to determine the functional relationship between stay-green trait, leaf dhurrin and soluble sugar levels and resistance to stalk rot diseases. Fourteen genotypic groups derived from a Tx642 × Tx7000 RIL population carrying combinations of stay-green quantitative trait loci were evaluated under three environments in four replications. The stg QTL had variable effects on stalk rot disease. Genotypes carrying stg1, stg3, stg1,3 and stg1,2,3,4 expressed good levels of resistance to M. phaseolina but the combination of stg1 and stg3 was required to express the same level of resistance to F. thapsinum. Other stg QTL blocks such as stg2 and stg4 did not have any impact on stalk rot resistance caused by both pathogens. There were no significant correlations between leaf dhurrin, soluble sugar concentration, and resistance to any of the pathogens.
Parsons, Michael Wayne. "Biotic and abiotic factors associated with Fusarium ear rot of maize caused by Fusarium verticillioides." [Ames, Iowa : Iowa State University], 2008.
Find full textVermeulen, Meagan. "A host-pathogen study of Fusarium Verticillioides in resistant and susceptible maize inbred lines." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96915.
Full textENGLISH ABSTRACT: Maize (Zea mays L.) is an important crop worldwide and forms the staple diet of many African countries including South Africa. Fusarium ear rot (FER) of maize is caused by a fungus, Fusarium verticillioides, which also produces the fumonisin mycotoxin group. The consumption of fumonisin contaminated maize grain has been associated with serious human and animal health complications. Several South African maize inbred lines exhibiting resistance to FER and fumonisin contamination have been identified. These locally adapted inbred lines could be used to generate mapping populations to identify QTLs associated with resistance to FER and fumonisin contamination. The corresponding markers could be utilised in breeding programmes through marker-assisted selection to ensure the development of commercial cultivars with resistance to FER and fumonisin contamination. In this study, resistant and susceptible maize inbred lines were utilised to commence the development of recombinant inbred line (RIL) populations for the mapping and validation of QTLs associated with FER and fumonisin resistance. One F2 population was phenotypically and genotypically analysed to produce a linkage map for the preliminary identification of QTLs associated with resistance to F. verticillioides infection and fumonisin deposition. A potential QTL for resistance to FER was detected and should be validated across several locations and years in the subsequent RIL population. Additionally, potential resistance barriers of maize to infection by F. verticillioides were investigated by histological studies. The importance of a closed stylar canal in determining resistance to FER was established for nine South African maize inbred lines by means of scanning electron microscopy (SEM). No significant association was observed between a closed stylar canal and the resistance/susceptible status of maize inbred lines before pollination, while the canals appeared closed in all inbred lines following pollination. The results suggest that the stylar canal architecture is not an essential factor determining resistance to F. verticillioides ingress in the maize inbred lines selected for this study. Furthermore, the possibility of resistance to FER and fumonisin contamination being initiated during the seedlings phase of a resistant and susceptible maize inbred line was investigated by means of confocal laser scanning microscopy (CLSM). Fusarium verticillioides growth originating from soil-borne or seed-borne contamination was monitored in various above and below soil plant tissues but no significant difference in the colonisation could be determined between resistant and susceptible maize seedlings. No fumonisin was produced regardless of the inoculation method or resistance status of the plant. These results suggests that the resistant and susceptible maize seedlings used in this study may not be resistant to systemic fungal ingress but may resist the deposition of fumonisins. The resistance associated with the resistant inbred line is not mediated during the seedling phase but potentially through structural and biochemical defence mechanisms during later plant developmental stages.
AFRIKAANSE OPSOMMING: Mielies (Zea mays L.) is ‘n belangrike graangewas wat wêreldwyd geproduseer word en dien as stapelvoedsel in talle Afrika-lande, insluitend Suid-Afrika. Fusarium kopvrot (FKV) in mielies word veroorsaak deur die swam, Fusarium verticillioides, wat ook die fumonisien mikotoksien groepe produseer. Die inname van fumonisien-geïnfekteerde mielies gaan gepaard met ernstige gesondheidsprobleme in mense en diere. Verskeie Suid-Afrikaanse ingeteelde mielielyne, wat weerstandbiedend is teen FKV en fumonisien kontaminasie, is voorheen identifiseer. Hierdie plaaslik-aangepaste teellyne kan gebruik word om kartering populasies te genereer om kwantitatiewe eienskap loci (KEL) te identifiseer wat verband hou met weerstandbiedenheid teen FKV en fumonisien kontaminasie. Die ooreenstemmende merkers kan gebruik word in teelprogramme deur gebruik te maak van merker-geassisteerde seleksie om kommersieële kultivars, wat weerstandbiedend is teenoor FKV en fumonisien kontaminasie, te ontwikkel. In hierdie studie is weerstandbiedende en vatbare mielie inteellyne gebruik om rekombinante inteellyn (RIL) populasies te begin ontwikkel vir die kartering en validasie van KEL’e geassosieer met FKV en fumonisien weerstandbiedenheid. Een F2 populasie was fenotipies en genotipies geanaliseer om ‘n koppeling-kaart te verwek vir die voorlopige identifikasie van KEL’e geassosieer met weerstandigheid tot F. verticillioides infeksie en fumonisein afsetting. ‘n Potensiële KEL vir weerstandbiedenheid is geïdentifiseer, wat verdere bevestiging in die daaropvolgende RIL populasie in verskeie geografiese areas en oor addisionele seisoene, benodig. Potensiële fisiese versperrings teen F. verticillioides tydens mieliesaad infeksie is ook ondersoek met behulp van histologiese studies. Die belangrikheid van ‘n geslote styl-kanaal vir weerstandbiedendheid teenoor FKV is bevestig in nege Suid-Afrikaanse inteellyne deur middel van skandeer elektron mikroskopie (SEM). Geen beduidende verwandskap tussen ‘n geslote styl-kanaal en die weerstandbiedenheid/vatbaarheid van die inteellyne voor bestuiwing is gevind nie, terwyl die kanaal in alle inteellyne gesluit was na bestuiwing. Die resultate dui daarop dat die styl-kanaal argitektuur nie ‘n noodsaaklike faktor is in die bepaling van weestand tot F. verticillioides besmetting in die suiwer mielielyne wat geselekteer was in hierdie studie nie. Verder is die moontlikheid dat weestand tot FKV en fumonisien kontaminasie geïnisieer kan word gedurende die saailing-fase ondersoek in beide ‘n weerstandbiedende en vatbare mielie inteellyn met behulp van konfokale laser skandering mikroskopie (CLSM). Die groei van F. verticillioides afkomstig vanuit die grond of saad is gemonitor in verskeie bo- en ondergrondse plantweefsels, maar geen beduidende verskille in kolonisasie kon opgespoor word tussen weerstandbiedende en vatbare mielie saailinge nie. Geen fumonisien produksie is waargeneem nie, ongeag die innokulasie metode of weerstand-status van die plant. Hierdie resultate dui daarop dat die weerstandbiedende en vatbare mielie saailinge wat in hierdie studie gebruik is moontlik nie weerstandbiedend is teen sistemiese swaminfeksie nie, maar wel weerstand kan bied tot afsetting van fumonisiene. Die weerstand geassosieër met die weerstandbiedende inteellyn word nie bemiddel gedurende die saailingfase nie maar waarskynlik deur strukturele en biochemiese verdedigingsmeganismes tydens latere plant ontwikkelings-stadia.
National Research Foundation (NRF)
Hunter, Ian George. "Epidemiological studies of Fusarium culmorum on winter barley." Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254225.
Full textWyenandt, Christian Andrew. "Fusarium fruit rot (fusarium spp.) of pumpkin (cucurbita pepo) and its control with cover crop mulches." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1080223228.
Full textLees, Alison Kathryn. "Diagnosis and control of foot rot pathogens of wheat." Thesis, Open University, 1995. http://oro.open.ac.uk/57549/.
Full textBooks on the topic "Fusarium Rot"
Choiseul, James W. The characterisation, pathogenicity and control of Fusarium spp. that cause dry rot of potato. Dublin: University College Dublin, 1996.
Find full textHorst, Mielke. Untersuchungen über Fusarium culmorum (W.G.Sm.) Sacc. als Fuss- und Ährenkrankheitserreger beim Weizen. Berlin: Kommissionsverlag P. Parey, 1988.
Find full textDunn, Geraldine Kim. The effects of chemical inhibitors on the resistance of tomato to Fusarium crown and root rot: An anatomical study. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textJames, Robert L. Evaluation of root diseases of containerized conifer seedlings at the Champion Timberlands Nursery, Plains, Montana. Missoula, Mont: U.S. Dept. of Agriculture, Forest Service, Northern Region, 1988.
Find full textJames, Robert L. Effects of preplant soil treatments on Fusarium and Trichoderma populations and fungal root colonization of 2-0 nondiseased western white pine seedlings - USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2002.
Find full textJames, Robert L. Effects of spring applications of dazomet on root diseases and performance of Douglas-fir and western white pine transplants, USDA Forest Service Nursery, Coeur d'Alene, Idaho. Missoula, MT: U.S. Dept. of Agriculture, Forest Service, Northern Region, 2002.
Find full textKapadiya, Iteshkumar, Laljibhai Akbari, and Jayadip Talaviya. Management of root rot [Fusarium solani Sacc.] of okra. LAP Lambert Academic Publishing, 2015.
Find full textBrammall, Ronald Anthony. Host-pathogen interactions in Fusarium crown and root rot disease in tomato. 1987.
Find full textDunn, Geraldine Kim. The effects of chemical inhibitors on the resistance of tomato to Fusarium crown and root rot: an anatomical study. 1991.
Find full textYadav, Kalpana, ed. Studies on Fusarium oxysporum f.sp. radicis cucumerinum Causing Root and Stem rot of Cucumber and in vitro Assay for management. AkiNik Publications, 2022. http://dx.doi.org/10.22271/ed.book.1864.
Full textBook chapters on the topic "Fusarium Rot"
Pettitt, Tim, Xiangming Xu, and David Parry. "Association of Fusarium species in the wheat stem rot complex." In Epidemiology of Mycotoxin Producing Fungi, 769–74. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-1452-5_11.
Full textMagotra, Shanu, Deepika Trakroo, Sneha Ganjoo, and Jyoti Vakhlu. "Bacillus-Mediated-Induced Systemic Resistance (ISR) Against Fusarium Corm Rot." In Microbial-mediated Induced Systemic Resistance in Plants, 15–22. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0388-2_2.
Full textChatterton, Syama, and Zamir K. Punja. "Interactions Between Clonostachys rosea f. catenulata, Fusarium oxysporum and Cucumber Roots Leading to Biological Control of Fusarium Root and Stem Rot." In Recent Developments in Management of Plant Diseases, 93–106. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8804-9_8.
Full textLogrieco, A., G. Mulè, A. Moretti, and A. Bottalico. "Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe." In Mycotoxins in Plant Disease, 597–609. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0001-7_1.
Full textKumar, Sandeep, Abhinav Aeron, Piyush Pandey, and Dinesh Kumar Maheshwari. "Ecofriendly Management of Charcoal Rot and Fusarium Wilt Diseases in Sesame (Sesamum indicum L.)." In Bacteria in Agrobiology: Crop Ecosystems, 387–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-18357-7_14.
Full textKartashov, Maxim, Tatyana Pasechnik, Natalia Statsyuk, Larisa Shcherbakova, and Vitaly Dzhavakhiya. "Assessment of the Sensitivity of Some Fusarium Root Rot Agents to 6-Demethyl Mevinolin, a Putative Biosensitizer." In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition), 1085–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-51210-1_170.
Full textPascale, Michelangelo, Angelo Visconti, and Jerzy Chelkowski. "Ear rot susceptibility and mycotoxin contamination of maize hybrids inoculated with Fusarium species under field conditions." In Mycotoxins in Plant Disease, 645–51. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0001-7_6.
Full textMatsubara, Yoh-ichi, Jia Liu, and Tomohiro Okada. "Effect of NaCl on Tolerance to Fusarium Crown Rot and Symbiosis-Specific Changes in Free Amino Acids in Mycorrhizal Asparagus." In Soil Biology, 511–20. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23075-7_25.
Full textSteinberg, Christian, Charline Lecomte, Claude Alabouvette, and Véronique Edel-Hermann. "Root Interactions with Nonpathogenic Fusarium oxysporum." In Belowground Defence Strategies in Plants, 281–99. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42319-7_12.
Full textHe, Xinyao, Navin C. Gahtyari, Chandan Roy, Abdelfattah A. Dababat, Gurcharn Singh Brar, and Pawan Kumar Singh. "Globally Important Non-rust Diseases of Wheat." In Wheat Improvement, 143–58. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90673-3_9.
Full textConference papers on the topic "Fusarium Rot"
Lugovtsova, S. Yu, N. A. Neshumaeva, V. Yu Stupko, and N. V. ZobovaN.V. "Root rot toxines as a factor in the selection of resistant forms of oats in vitro." In 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.153.
Full textHanson, Linda E. "Fusarium seed stalk blight and rot in sugar beet." In American Society of Sugarbeet Technologist. ASSBT, 2009. http://dx.doi.org/10.5274/assbt.2009.42.
Full textDiaz Arias, Mercedes, Gregory L. Tylka, Alison Robertson, Leonor Leandro, and Gary Munkvold. "Fusarium root rot of soybean—occurrence, impact, and relationship with soybean cyst nematode." In Proceedings of the 28th Annual Integrated Crop Management Conference. Iowa State University, Digital Press, 2010. http://dx.doi.org/10.31274/icm-180809-266.
Full textShvartsev, A. A., and I. P. Smirnova. "Study of the distribution of phytoplasmosis and fusariosis in certain areas of the Moscow region." In Agrobiotechnology-2021. Publishing house RGAU-MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1855-3-2021-95.
Full textShchekleina L. M., Shchekleina L. M. "Cultivars soft wheat varietiesresistant to fusariose root rots." In Agrobiotechnology-2021. Publishing house of RGAU - MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1855-3-2021-61.
Full textLupascu, Galina, and Svetlana Gavzer. "Considerații cu privire la interacțiunile grâu – patogeni fungi în contextul schimbărilor climatice." In International Scientific Symposium "Plant Protection – Achievements and Prospects". Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2020. http://dx.doi.org/10.53040/9789975347204.06.
Full textMinati, Mohammed Hussein. "First record of nine Fusarium spp. causing root rot on wheat (Triticum aestivum L.) in Iraq." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0027398.
Full textJing, Wang, Li Shi-bo, Zhang Cheng-sheng, Feng Chao, and Kong Fan-yu. "Occurrence and pathogen isolation of tobacco fusarium root rot in main tobacco production regions of Shandong province." In 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA). IEEE, 2011. http://dx.doi.org/10.1109/iciea.2011.5976040.
Full textBalashova, Irina, Liubov Sokolova, and Sergey Sirota. "The heritability of tolerance to Alternaria dauci and Fusarium oxysporum in F1-hybrids of carrot." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.75.
Full textСтратулат, Татьяна, Татьяна Щербакова, Штефан Кручан, and Андрей Лунгу. "Пораженность листвы древесных насаждений города Кишинева комплексом гнилей летом 2021 года." In VIIth International Scientific Conference “Genetics, Physiology and Plant Breeding”. Institute of Genetics, Physiology and Plant Protection, Republic of Moldova, 2021. http://dx.doi.org/10.53040/gppb7.2021.92.
Full textReports on the topic "Fusarium Rot"
Diaz Arias, Maria Mercedes, Leonor F. S. Leandro, and Gary P. Munkvold. Effects of Soybean Cyst Nematode Infestation and Resistance on Fusarium Root Rot on Soybeans. Ames: Iowa State University, Digital Repository, 2011. http://dx.doi.org/10.31274/farmprogressreports-180814-258.
Full textKistler, Harold Corby, and Talma Katan. Identification of DNA Unique to the Tomato Fusarium Wilt and Crown Rot Pathogens. United States Department of Agriculture, September 1995. http://dx.doi.org/10.32747/1995.7571359.bard.
Full textCytryn, E., Sean F. Brady, and O. Frenkel. Cutting edge culture independent pipeline for detection of novel anti-fungal plant protection compounds in suppressive soils. Israel: United States-Israel Binational Agricultural Research and Development Fund, 2022. http://dx.doi.org/10.32747/2022.8134142.bard.
Full textHoitink, Harry A. J., Yitzhak Hadar, Laurence V. Madden, and Yona Chen. Sustained Suppression of Pythium Diseases: Interactions between Compost Maturity and Nutritional Requirements of Biocontrol Agents. United States Department of Agriculture, June 1993. http://dx.doi.org/10.32747/1993.7568755.bard.
Full textHoitink, Harry A. J., Yitzhak Hadar, Laurence V. Madden, and Yona Chen. Sustained Suppression of Pythium Diseases: Interactions between Compost Maturity and Nutritional Requirements of Biocontrol Agents. United States Department of Agriculture, June 1993. http://dx.doi.org/10.32747/1993.7568746.bard.
Full textKatan, Jaacov, and Michael E. Stanghellini. Clinical (Major) and Subclinical (Minor) Root-Infecting Pathogens in Plant Growth Substrates, and Integrated Strategies for their Control. United States Department of Agriculture, October 1993. http://dx.doi.org/10.32747/1993.7568089.bard.
Full textBetancourt Vásquez, Mónica, Luis Gabriel Bautista Montealegre, Gustavo Adolfo Rodríguez Yzquierdo, Tatiana Camila Miranda Salas, Jefersson Andrés Rodríguez Blandón, William Andrés Cardona, Jorge Enrique Cardona Cardona, Sandra Viviana Alzate Henao, and Yuly Marcela Machuca Henao. Manejo integrado de enfermedades: prevención de FOC R4T y bioseguridad. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2021. http://dx.doi.org/10.21930/agrosavia.infografia.2021.8.
Full textBetancourt, Monica, Miguel Dita, Eugenia Saini, and Lina Salazar. Agenda para la prevención y el manejo de brotes de la raza 4 tropical de Fusarium (R4T) en el cultivo de musáceas en América Latina y el Caribe (ALC). Edited by Darrel Perez. Inter-American Development Bank, May 2020. http://dx.doi.org/10.18235/0002346.
Full textMichel Jr., Frederick C., Harry A. J. Hoitink, Yitzhak Hadar, and Dror Minz. Microbial Communities Active in Soil-Induced Systemic Plant Disease Resistance. United States Department of Agriculture, January 2005. http://dx.doi.org/10.32747/2005.7586476.bard.
Full text