Academic literature on the topic 'Furans Conversion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Furans Conversion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Furans Conversion"

1

Rivas, Sandra, María Jesús González-Muñoz, Valentín Santos, and Juan Carlos Parajó. "Production of furans from hemicellulosic saccharides in biphasic reaction systems." Holzforschung 67, no. 8 (2013): 923–29. http://dx.doi.org/10.1515/hf-2013-0017.

Full text
Abstract:
Abstract Furans (furfural and hydroxymethylfurfural) are the results of dehydration of monosaccharides, which can be obtained by acid hydrolysis of wood or other lignocellulosic materials. In this work, Pinus pinaster wood was subjected to aqueous autohydrolysis processing to obtain dissolved hemicellulose-derived polymeric or oligomeric saccharides made up of mannosyl, glucosyl, galactosyl, xylosyl, and arabinosyl structural units. The aqueous liquors were then heated in the presence of sulfuric acid and methyl isobutyl ketone to obtain furans. The effects of selected operational variables, such as the ratio of organic to aqueous phase, temperature, and reaction time, were assessed by empirical modeling in terms of the conversion into furans and levulinic acid. The maximum furfural conversion (71.4%) was predicted to occur operating at 165°C and a ratio of organic to aqueous phase of 2 for 68.5 min. In additional experiments, dimethyl sulfoxide and/or 1-butanol were added to the aqueous phase and the change in furan conversion rates was observed.
APA, Harvard, Vancouver, ISO, and other styles
2

Yuliati, Frita, Peter J. Deuss, Hero J. Heeres, and Francesco Picchioni. "Towards Thermally Reversible Networks Based on Furan-Functionalization of Jatropha Oil." Molecules 25, no. 16 (2020): 3641. http://dx.doi.org/10.3390/molecules25163641.

Full text
Abstract:
A novel biobased monomer for the preparation of thermally reversible networks based on the Diels-Alder reaction was synthesized from jatropha oil. The oil was epoxidized and subsequently reacted with furfurylamine to attach furan groups via an epoxide ring opening reaction. However, furfurylamine also reacted with the ester groups of the triglycerides via aminolysis, thus resulting in short-chain molecules that ultimately yielded brittle thermally reversible polymers upon cross-linking via a Diels-Alder reaction. A full-factorial experimental design was used in finding the optimum conditions to minimize ester aminolysis and to maximize the epoxide ring opening reaction as well as the number of furans attached to the modified oil. The optimum conditions were determined experimentally and were found to be 80 °C, 24 h, 1:1 molar ratio, with 50 mol % of LiBr with respect to the modified oil, resulting in 35% of ester conversion, 99% of epoxide conversion, and an average of 1.32 furans/triglyceride. Ultimately, further optimization by a statistical approach led to an average of 2.19 furans per triglyceride, which eventually yielded a flexible network upon cross-linking via a Diels-Alder reaction instead of the brittle one obtained when the furan-functionalization reaction was not optimized.
APA, Harvard, Vancouver, ISO, and other styles
3

Yang, Yanliang, Dongsheng Deng, Dong Sui, Yanfu Xie, Dongmi Li, and Ying Duan. "Facile Preparation of Pd/UiO-66-v for the Conversion of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol under Mild Conditions in Water." Nanomaterials 9, no. 12 (2019): 1698. http://dx.doi.org/10.3390/nano9121698.

Full text
Abstract:
The hydrogenation of furan ring in the biomass-derived furans is of great importance for the conversion of biomass to valuable chemicals. Fabrication of high activity and selectivity catalyst for this hydrogenation under mild conditions was one of the focuses of this research. In this manuscript, UiO-66-v, in which vinyl bonded to the benzene ring, was first prepared. Then, the uniformly distributed vinyl was used as the reductant for the preparation of Pd/UiO-66-v. The catalyst was characterized by X-ray diffraction, thermogravimetric, N2 physical adsorption/desorption, X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscopy, energy dispersive spectrometer elemental mappings, and inductively coupled plasma atomic emission spectroscopy to find the Pd/UiO-66-v had a narrow palladium nanoparticles size of 3–5 nm and maintained the structure and thermal stability of UiO-66-v. The Pd/UiO-66-v was used for the hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol in water. 99% conversion of furfuryl alcohol was obtained with 90% selectivity to tetrahydrofurfuryl alcohol after reacted at 0.5 MPa H2, 303 K for 12 h. The Pd/UiO-66-v was proved to be effective for the hydrogenation of furan ring in furans and could be used for at least five times.
APA, Harvard, Vancouver, ISO, and other styles
4

Mao, Yanli, and François Mathey. "The Conversion of Furans into Phosphinines." Chemistry – A European Journal 17, no. 38 (2011): 10745–51. http://dx.doi.org/10.1002/chem.201100834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kumar, Hemant, and Marco Fraaije. "Conversion of Furans by Baeyer-Villiger Monooxygenases." Catalysts 7, no. 6 (2017): 179. http://dx.doi.org/10.3390/catal7060179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hu, Xun, Roel J. M. Westerhof, Liping Wu, Dehua Dong, and Chun-Zhu Li. "Upgrading biomass-derived furans via acid-catalysis/hydrogenation: the remarkable difference between water and methanol as the solvent." Green Chemistry 17, no. 1 (2015): 219–24. http://dx.doi.org/10.1039/c4gc01826e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Ting, Xianming Guo, Tao Chen, and Juan Li. "The Pd(0) and Pd(ii) cocatalyzed isomerization of alkynyl epoxides to furans: a mechanistic investigation using DFT calculations." Dalton Transactions 49, no. 27 (2020): 9223–30. http://dx.doi.org/10.1039/d0dt00965b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guillard, Jér̂ome, Otto Meth-Cohn, Charles W. Rees, Andrew J. P. White, and David J. Williams. "Direct conversion of macrocyclic furans into macrocyclic isothiazoles." Chemical Communications, no. 3 (January 17, 2002): 232–33. http://dx.doi.org/10.1039/b110287g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pelter, Andrew, and Martin Rowlands. "The conversion of furans to 2(3H)-butenolides." Tetrahedron Letters 28, no. 11 (1987): 1203–6. http://dx.doi.org/10.1016/s0040-4039(00)95326-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Lujiang, Yuanye Jiang, Qian Yao, et al. "Direct production of indoles via thermo-catalytic conversion of bio-derived furans with ammonia over zeolites." Green Chemistry 17, no. 2 (2015): 1281–90. http://dx.doi.org/10.1039/c4gc02250e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography