Academic literature on the topic 'Fungal Efflux Pumps'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fungal Efflux Pumps.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fungal Efflux Pumps"

1

Cannon, Richard D., Erwin Lamping, Ann R. Holmes, Kyoko Niimi, Philippe V. Baret, Mikhail V. Keniya, Koichi Tanabe, Masakazu Niimi, Andre Goffeau, and Brian C. Monk. "Efflux-Mediated Antifungal Drug Resistance." Clinical Microbiology Reviews 22, no. 2 (April 2009): 291–321. http://dx.doi.org/10.1128/cmr.00051-08.

Full text
Abstract:
SUMMARY Fungi cause serious infections in the immunocompromised and debilitated, and the incidence of invasive mycoses has increased significantly over the last 3 decades. Slow diagnosis and the relatively few classes of antifungal drugs result in high attributable mortality for systemic fungal infections. Azole antifungals are commonly used for fungal infections, but azole resistance can be a problem for some patient groups. High-level, clinically significant azole resistance usually involves overexpression of plasma membrane efflux pumps belonging to the ATP-binding cassette (ABC) or the major facilitator superfamily class of transporters. The heterologous expression of efflux pumps in model systems, such Saccharomyces cerevisiae, has enabled the functional analysis of efflux pumps from a variety of fungi. Phylogenetic analysis of the ABC pleiotropic drug resistance family has provided a new view of the evolution of this important class of efflux pumps. There are several ways in which the clinical significance of efflux-mediated antifungal drug resistance can be mitigated. Alternative antifungal drugs, such as the echinocandins, that are not efflux pump substrates provide one option. Potential therapeutic approaches that could overcome azole resistance include targeting efflux pump transcriptional regulators and fungal stress response pathways, blockade of energy supply, and direct inhibition of efflux pumps.
APA, Harvard, Vancouver, ISO, and other styles
2

Holmes, Ann R., Mikhail V. Keniya, Irena Ivnitski-Steele, Brian C. Monk, Erwin Lamping, Larry A. Sklar, and Richard D. Cannon. "The Monoamine Oxidase A Inhibitor Clorgyline Is a Broad-Spectrum Inhibitor of Fungal ABC and MFS Transporter Efflux Pump Activities Which Reverses the Azole Resistance of Candida albicans and Candida glabrata Clinical Isolates." Antimicrobial Agents and Chemotherapy 56, no. 3 (December 27, 2011): 1508–15. http://dx.doi.org/10.1128/aac.05706-11.

Full text
Abstract:
ABSTRACTResistance to the commonly used azole antifungal fluconazole (FLC) can develop due to overexpression of ATP-binding cassette (ABC) and major facilitator superfamily (MFS) plasma membrane transporters. An approach to overcoming this resistance is to identify inhibitors of these efflux pumps. We have developed a pump assay suitable for high-throughput screening (HTS) that uses recombinantSaccharomyces cerevisiaestrains hyperexpressing individual transporters from the opportunistic fungal pathogenCandida albicans. The recombinant strains possess greater resistance to azoles and other pump substrates than the parental host strain. A flow cytometry-based HTS, which measured increased intracellular retention of the fluorescent pump substrate rhodamine 6G (R6G) within yeast cells, was used to screen the Prestwick Chemical Library (PCL) of 1,200 marketed drugs. Nine compounds were identified as hits, and the monoamine oxidase A inhibitor (MAOI) clorgyline was identified as an inhibitor of twoC. albicansABC efflux pumps, CaCdr1p and CaCdr2p. Secondaryin vitroassays confirmed inhibition of pump-mediated efflux by clorgyline. Clorgyline also reversed the FLC resistance ofS. cerevisiaestrains expressing other individual fungal ABC transporters (Candida glabrataCdr1p orCandida kruseiAbc1p) or theC. albicansMFS transporter Mdr1p. Recombinant strains were also chemosensitized by clorgyline to other azoles (itraconazole and miconazole). Importantly, clorgyline showed synergy with FLC against FLC-resistantC. albicansclinical isolates and aC. glabratastrain and inhibited R6G efflux from a FLC-resistantC. albicansclinical isolate. Clorgyline is a novel broad-spectrum inhibitor of two classes of fungal efflux pumps that acts synergistically with azoles against azole-resistantC. albicansandC. glabratastrains.
APA, Harvard, Vancouver, ISO, and other styles
3

de Moraes, Daniel Clemente, Ana Claudia Tessis, Rodrigo Rollin-Pinheiro, Jefferson Luiz Princival, José Augusto Ferreira Perez Villar, Leandro Augusto Barbosa, Eliana Barreto-Bergter, and Antônio Ferreira-Pereira. "Digoxin Derivatives Sensitize a Saccharomyces cerevisiae Mutant Strain to Fluconazole by Inhibiting Pdr5p." Journal of Fungi 8, no. 8 (July 25, 2022): 769. http://dx.doi.org/10.3390/jof8080769.

Full text
Abstract:
The poor outcome of treatments for fungal infections is a consequence of the increasing incidence of resistance to antifungal agents, mainly due to the overexpression of efflux pumps. To surpass this mechanism of resistance, a substance able to inhibit these pumps could be administered in association with antifungals. Saccharomyces cerevisiae possesses an efflux pump (Pdr5p) homologue to those found in pathogenic yeast. Digoxin is a natural product that inhibits Na+, K+-ATPase. The aim of this study was to evaluate whether digoxin and its derivatives (i.e., DGB, digoxin benzylidene) can inhibit Pdr5p, reversing the resistance to fluconazole in yeasts. An S. cerevisiae mutant strain that overexpresses Pdr5p was used in the assays. The effects of the compounds on yeast growth, efflux activity, and Pdr5p ATPase activity were measured. All derivatives enhanced the antifungal activity of fluconazole against S. cerevisiae, in comparison to fluconazole alone, with FICI values ranging from 0.031 to 0.500. DGB 1 and DGB 3 presented combined effects with fluconazole against a Candida albicans strain, with fractional inhibitory concentration index (FICI) values of 0.625 and 0.281, respectively The compounds also inhibited the efflux of rhodamine 6G and Pdr5p ATPase activity, with IC50 values ranging from 0.41 μM to 3.72 μM. The results suggest that digoxin derivatives impair Pdr5p activity. Considering the homology between Pdr5p and efflux pumps from pathogenic fungi, these compounds are potential candidates to be used in association with fluconazole to treat resistant fungal infections.
APA, Harvard, Vancouver, ISO, and other styles
4

Lopes, Marcos E. R., Tamires A. Bitencourt, Pablo R. Sanches, Maíra P. Martins, Vanderci M. Oliveira, Antonio Rossi, and Nilce M. Martinez-Rossi. "Alternative Splicing in Trichophyton rubrum Occurs in Efflux Pump Transcripts in Response to Antifungal Drugs." Journal of Fungi 8, no. 8 (August 20, 2022): 878. http://dx.doi.org/10.3390/jof8080878.

Full text
Abstract:
Dermatophytes are challenging to treat because they have developed many strategies to neutralize the stress triggered by antifungals. Drug tolerance is achieved by mechanisms such as drug efflux and biofilm formation, and cellular efflux is a consequence of the synergistic and compensatory regulation of efflux pumps. Alternative splicing (AS) has also been considered as a mechanism that enhances fungal adaptive responses. We used RNA-seq data from the dermatophyte Trichophyton rubrum exposed to undecanoic acid (UDA) to search for and validate AS in genes encoding efflux pumps. The magnitude of this phenomenon was evaluated using UDA and other antifungals (caspofungin, itraconazole, and terbinafine) in planktonic and biofilm cultures. In addition to the conventional isoforms, the efflux pump encoded by TERG_04309 presented two intron-retained isoforms. Biofilms trigger the simultaneous production of at least two isoforms. The intron-retained isoforms showed short lengths and topologically different organization. Furthermore, we identified the putative interaction of efflux pumps (TERG_04309 and TERG_04224). Co-expression of these genes suggests a synergistic action in antifungal resistance. Our data provide new insights into drug tolerance related to differential isoform usage and the co-expression of stress-responsive genes, which may lead to higher antifungal resistance, mainly in biofilms.
APA, Harvard, Vancouver, ISO, and other styles
5

Song, Jinxing, Jingwen Zhou, Lei Zhang, and Rongpeng Li. "Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development." Microorganisms 8, no. 10 (October 13, 2020): 1574. http://dx.doi.org/10.3390/microorganisms8101574.

Full text
Abstract:
In recent years, the role of mitochondria in pathogenic fungi in terms of azole resistance and fungal pathogenicity has been a rapidly developing field. In this review, we describe the molecular mechanisms by which mitochondria are involved in regulating azole resistance and fungal pathogenicity. Mitochondrial function is involved in the regulation of drug efflux pumps at the transcriptional and posttranslational levels. On the one hand, defects in mitochondrial function can serve as the signal leading to activation of calcium signaling and the pleiotropic drug resistance pathway and, therefore, can globally upregulate the expression of drug efflux pump genes, leading to azole drug resistance. On the other hand, mitochondria also contribute to azole resistance through modulation of drug efflux pump localization and activity. Mitochondria further contribute to azole resistance through participating in iron homeostasis and lipid biosynthesis. Additionally, mitochondrial dynamics play an important role in azole resistance. Meanwhile, mitochondrial morphology is important for fungal virulence, playing roles in growth in stressful conditions in a host. Furthermore, there is a close link between mitochondrial respiration and fungal virulence, and mitochondrial respiration plays an important role in morphogenetic transition, hypoxia adaptation, and cell wall biosynthesis. Finally, we discuss the possibility for targeting mitochondrial factors for the development of antifungal therapies.
APA, Harvard, Vancouver, ISO, and other styles
6

Yamawaki, Chika, Yoshihiro Yamaguchi, Akira Ogita, Toshio Tanaka, and Ken-ichi Fujita. "Dehydrozingerone Exhibits Synergistic Antifungal Activities in Combination with Dodecanol against Budding Yeast via the Restriction of Multidrug Resistance." Planta Medica International Open 5, no. 02 (April 2018): e61-e67. http://dx.doi.org/10.1055/a-0757-7991.

Full text
Abstract:
AbstractDrug resistance in fungal infections has been a more frequent occurrence with the increasing number of immunocompromised patients. In efforts to overcome the problem of fungal drug resistance, we focused on the phenolic compound dehydrozingerone, which is isolated from Zingiber officinale. The effectiveness of this compound on the model yeast Saccharomyces cerevisiae has not been reported. In our study, dehydrozingerone showed a weak antifungal activity against the yeast, but demonstrated a synergistic effect in combination with dodecanol, which typically only restricts cell growth transiently. Efflux of rhodamine 6G through the multidrug efflux pumps was significantly restricted by dehydrozingerone. The transcription level of PDR5, encoding a primary multidrug efflux pump in S. cerevisiae, was enhanced with dodecanol treatment, whereas the level was reduced by dehydrozingerone. These results suggest that dehydrozingerone may be effective for potentiating antifungal activity of other drugs that are expelled from fungi by multidrug transporters like Pdr5p.
APA, Harvard, Vancouver, ISO, and other styles
7

Silva, Laura Nunes, Lívia de Souza Ramos, Simone Santiago Carvalho Oliveira, Lucas Barros Magalhães, Eamim Daidrê Squizani, Lívia Kmetzsch, Marilene Henning Vainstein, Marta Helena Branquinha, and André Luis Souza dos Santos. "Insights into the Multi-Azole Resistance Profile in Candida haemulonii Species Complex." Journal of Fungi 6, no. 4 (October 11, 2020): 215. http://dx.doi.org/10.3390/jof6040215.

Full text
Abstract:
The Candida haemulonii complex (C. duobushaemulonii, C. haemulonii, and C. haemulonii var. vulnera) is composed of emerging, opportunistic human fungal pathogens able to cause invasive infections with high rates of clinical treatment failure. This fungal complex typically demonstrates resistance to first-line antifungals, including fluconazole. In the present work, we have investigated the azole resistance mechanisms expressed in Brazilian clinical isolates forming the C. haemulonii complex. Initially, 12 isolates were subjected to an antifungal susceptibility test, and azole cross-resistance was detected in almost all isolates (91.7%). In order to understand the azole resistance mechanistic basis, the efflux pump activity was assessed by rhodamine-6G. The C. haemulonii complex exhibited a significantly higher rhodamine-6G efflux than the other non-albicans Candida species tested (C. tropicalis, C. krusei, and C. lusitaneae). Notably, the efflux pump inhibitors (Phe-Arg and FK506) reversed the fluconazole and voricolazole resistance phenotypes in the C. haemulonii species complex. Expression analysis indicated that the efflux pump (ChCDR1, ChCDR2, and ChMDR1) and ERG11 genes were not modulated by either fluconazole or voriconazole treatments. Further, ERG11 gene sequencing revealed several mutations, some of which culminated in amino acid polymorphisms, as previously reported in azole-resistant Candida spp. Collectively, these data point out the relevance of drug efflux pumps in mediating azole resistance in the C. haemulonii complex, and mutations in ERG11p may contribute to this resistance profile.
APA, Harvard, Vancouver, ISO, and other styles
8

Ivanov, Marija, Abhilash Kannan, Dejan S. Stojković, Jasmina Glamočlija, Ricardo C. Calhelha, Isabel C. F. R. Ferreira, Dominique Sanglard, and Marina Soković. "Camphor and Eucalyptol—Anticandidal Spectrum, Antivirulence Effect, Efflux Pumps Interference and Cytotoxicity." International Journal of Molecular Sciences 22, no. 2 (January 6, 2021): 483. http://dx.doi.org/10.3390/ijms22020483.

Full text
Abstract:
Candidaalbicans represents one of the most common fungal pathogens. Due to its increasing incidence and the poor efficacy of available antifungals, finding novel antifungal molecules is of great importance. Camphor and eucalyptol are bioactive terpenoid plant constituents and their antifungal properties have been explored previously. In this study, we examined their ability to inhibit the growth of different Candida species in suspension and biofilm, to block hyphal transition along with their impact on genes encoding for efflux pumps (CDR1 and CDR2), ergosterol biosynthesis (ERG11), and cytotoxicity to primary liver cells. Camphor showed excellent antifungal activity with a minimal inhibitory concentration of 0.125–0.35 mg/mL while eucalyptol was active in the range of 2–23 mg/mL. The results showed camphor’s potential to reduce fungal virulence traits, that is, biofilm establishment and hyphae formation. On the other hand, camphor and eucalyptol treatments upregulated CDR1;CDR2 was positively regulated after eucalyptol application while camphor downregulated it. Neither had an impact on ERG11 expression. The beneficial antifungal activities of camphor were achieved with an amount that was non-toxic to porcine liver cells, making it a promising antifungal compound for future development. The antifungal concentration of eucalyptol caused cytotoxic effects and increased expression of efflux pump genes, which suggests that it is an unsuitable antifungal candidate.
APA, Harvard, Vancouver, ISO, and other styles
9

Durães, Fernando, Nikoletta Szemerédi, Decha Kumla, Madalena Pinto, Anake Kijjoa, Gabriella Spengler, and Emília Sousa. "Metabolites from Marine-Derived Fungi as Potential Antimicrobial Adjuvants." Marine Drugs 19, no. 9 (August 25, 2021): 475. http://dx.doi.org/10.3390/md19090475.

Full text
Abstract:
Marine-derived fungi constitute an interesting source of bioactive compounds, several of which exhibit antibacterial activity. These acquire special importance, considering that antimicrobial resistance is becoming more widespread. The overexpression of efflux pumps, capable of expelling antimicrobials out of bacterial cells, is one of the most worrisome mechanisms. There has been an ongoing effort to find not only new antimicrobials, but also compounds that can block resistance mechanisms which can be used in combination with approved antimicrobial drugs. In this work, a library of nineteen marine natural products, isolated from marine-derived fungi of the genera Neosartorya and Aspergillus, was evaluated for their potential as bacterial efflux pump inhibitors as well as the antimicrobial-related mechanisms, such as inhibition of biofilm formation and quorum-sensing. Docking studies were performed to predict their efflux pump action. These compounds were also tested for their cytotoxicity in mouse fibroblast cell line NIH/3T3. The results obtained suggest that the marine-derived fungal metabolites are a promising source of compounds with potential to revert antimicrobial resistance and serve as an inspiration for the synthesis of new antimicrobial drugs.
APA, Harvard, Vancouver, ISO, and other styles
10

Usai, Donatella, Matthew Donadu, Alessandra Bua, Paola Molicotti, Stefania Zanetti, Sandra Piras, Paola Corona, Roberta Ibba, and Antonio Carta. "Enhancement of antimicrobial activity of pump inhibitors associating drugs." Journal of Infection in Developing Countries 13, no. 02 (February 28, 2019): 162–64. http://dx.doi.org/10.3855/jidc.11102.

Full text
Abstract:
Introduction: with the continuous emergence of pathogenic resistance to conventional drugs through efflux pumps, increasing efforts are directed toward discovering efflux inhibitory molecules. Methodology: in this study three P-glycoprotein (P13CP, P22CP, P34CP) efflux-inhibitors (EIs), belonging to the series of phenoxymethylquinoxalines capable to restore/potentiate the antiproliferative activity of doxorubicin and vincristine against human tumor cell lines and different antibiotics against clinical isolates, were investigated on 10 clinical strains of Candida and 12 clinical and ATCC strains of Gram positive and Gram-negative bacteria. Results: MFC values of FLC were reduced in all Candida strains by the P22CP and P34CP inhibitors, and in 5/10 fungal strains by the P13CP inhibitor. Conclusion: novel antibiotics with new modes of action are urgently required to suppress the rise of MDR bacteria. An alternative approach would be to identify molecules that can interfere with the process of efflux.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fungal Efflux Pumps"

1

Singh, Shweta, Sandeep Hans, Zeeshan Fatima, and Saif Hameed. "Overcoming Fungal Multidrug Resistance by Natural Compounds Targeting Efflux Pumps." In Frontiers in Anti-Infective Drug Discovery: Volume 7, 249–60. BENTHAM SCIENCE PUBLISHERS, 2018. http://dx.doi.org/10.2174/9781681085623118070008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography