Journal articles on the topic 'Fundamental constants'

To see the other types of publications on this topic, follow the link: Fundamental constants.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fundamental constants.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

McNaught, Ian J., and Gavin D. Peckham. "Two fundamental constants." Journal of Chemical Education 64, no. 12 (December 1987): 999. http://dx.doi.org/10.1021/ed064p999.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Fritzsch, Harald. "Fundamental physical constants." Uspekhi Fizicheskih Nauk 179, no. 4 (2009): 383. http://dx.doi.org/10.3367/ufnr.0179.200904d.0383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jacobsen, T. "On fundamental constants." European Journal of Physics 17, no. 2 (March 1, 1996): 92. http://dx.doi.org/10.1088/0143-0807/17/2/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

PERES, ASHER. "VARIABILITY OF FUNDAMENTAL CONSTANTS." International Journal of Modern Physics D 12, no. 09 (October 2003): 1751–54. http://dx.doi.org/10.1142/s0218271803004043.

Full text
Abstract:
Are universal fundamental constants really constant over cosmological times? Recent observations of the fine structure of spectral lines in the early universe have been interpreted as due to a variation of the fine structure constant e2/4πε0ℏc. From the assumed validity of Maxwell equations in general relativity and well known experimental facts, it is proved that e and ℏ are absolute constants. On the other hand, the speed of light need not be constant.
APA, Harvard, Vancouver, ISO, and other styles
5

Mohr, Peter J., Barry N. Taylor, and David B. Newell. "The fundamental physical constants." Physics Today 60, no. 7 (July 2007): 52–55. http://dx.doi.org/10.1063/1.2761803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Troitskiĭ, V. S. "Evolution of fundamental constants." Soviet Journal of Quantum Electronics 17, no. 9 (September 30, 1987): 1212–13. http://dx.doi.org/10.1070/qe1987v017n09abeh009915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jacobsen, T. "Bremsstrahlung and fundamental constants." European Journal of Physics 17, no. 6 (November 1, 1996): 365. http://dx.doi.org/10.1088/0143-0807/17/6/012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Casey, Terence W. "Cosmology and the Fundamental Constants." Physics Essays 2, no. 1 (March 1, 1989): 44–46. http://dx.doi.org/10.4006/1.3036470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Okun, Lev B. "The fundamental constants of physics." Uspekhi Fizicheskih Nauk 161, no. 9 (1991): 177–94. http://dx.doi.org/10.3367/ufnr.0161.199109e.0177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fritzsch, Harald. "The fundamental constants in physics." Physics-Uspekhi 52, no. 4 (April 30, 2009): 359–67. http://dx.doi.org/10.3367/ufne.0179.200904d.0383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Mohr, Peter J., and Barry N. Taylor. "QED and the fundamental constants." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 235, no. 1-4 (July 2005): 1–6. http://dx.doi.org/10.1016/j.nimb.2005.03.135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

García, A. López, J. A. López Ortí, R. López Machí, and F. Marco Castillo. "Correction of Fundamental Catalogue Constants." International Astronomical Union Colloquium 127 (1991): 271. http://dx.doi.org/10.1017/s025292110006396x.

Full text
Abstract:
AbstractOne of the main problems in positional astronomy is determining the equator and vernal equinox of the reference system.In this paper we display a method of amendment of minor planets elements taking into account the perturbations in the coefficients of the equations of condition, also including the corrections of the vernal equinox and obliquity in the fitting.
APA, Harvard, Vancouver, ISO, and other styles
13

Mohr, Peter J. "The fundamental constants and theory." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363, no. 1834 (July 28, 2005): 2123–37. http://dx.doi.org/10.1098/rsta.2005.1641.

Full text
Abstract:
The Committee on Data for Science and Technology has recently recommended a new self-consistent set of values of basic constants and conversion factors of physics and chemistry. These values are based on a least-squares analysis that takes into account all of the latest relevant experimental and theoretical information in a consistent framework. Theory plays a role, because the experimental data are compared to the corresponding theoretical predictions which are functions of the fundamental constants. The best values of the constants are taken to be those that give the best agreement between the data and these predictions, in the least-squares sense. An overview of the calculations that influence the recommended values of the constants will be given.
APA, Harvard, Vancouver, ISO, and other styles
14

Okun', Lev B. "The fundamental constants of physics." Soviet Physics Uspekhi 34, no. 9 (September 30, 1991): 818–26. http://dx.doi.org/10.1070/pu1991v034n09abeh002475.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Taylor, B. N. "Basic standards and fundamental constants." IEEE Transactions on Instrumentation and Measurement 38, no. 2 (April 1989): 164–66. http://dx.doi.org/10.1109/19.192265.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Norman, Eric B. "Are fundamental constants really constant?" American Journal of Physics 54, no. 4 (April 1986): 317–21. http://dx.doi.org/10.1119/1.14847.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

MELNIKOV, V. N. "MULTIDIMENSIONAL COSMOLOGY AND FUNDAMENTAL CONSTANTS." International Journal of Modern Physics A 24, no. 08n09 (April 10, 2009): 1473–80. http://dx.doi.org/10.1142/s0217751x0904484x.

Full text
Abstract:
Studies of multidimensional models with different sources (models with S -branes, thin and thick brane worlds, Kaluza-Klein type models in curvature-nonlinear multidimensional gravity etc.) and their application to the cosmological constant, cosmological singularity, hierarchy and coincidence problems are presented. Their observational predictions: variations of fundamental physical constants, new types of black holes and wormholes are discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Fritzsch, Harald. "Fundamental Constants at High Energy." Fortschritte der Physik 50, no. 5-7 (May 2002): 518–24. http://dx.doi.org/10.1002/1521-3978(200205)50:5/7<518::aid-prop518>3.0.co;2-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Volovik, G. E. "Fundamental constants in effective theory." Journal of Experimental and Theoretical Physics Letters 76, no. 2 (July 2002): 77–79. http://dx.doi.org/10.1134/1.1510061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Petley, Brian. "Clocking the fundamental physical constants." Physics World 7, no. 1 (January 1994): 23–24. http://dx.doi.org/10.1088/2058-7058/7/1/29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Cohen, E. Richard, and Barry N. Taylor. "Fundamental Physical Constants 1986 Adjustments." Europhysics News 18, no. 5 (1987): 65–68. http://dx.doi.org/10.1051/epn/19871805065.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Barrow, J. D., and C. O'Toole. "Spatial variations of fundamental constants." Monthly Notices of the Royal Astronomical Society 322, no. 3 (April 11, 2001): 585–88. http://dx.doi.org/10.1046/j.1365-8711.2001.04157.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

de Laeter, John R. "Atomic Weights and Fundamental Constants." Interdisciplinary Science Reviews 19, no. 2 (June 1994): 121–28. http://dx.doi.org/10.1179/isr.1994.19.2.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Braun, E. "Fundamental Constants and Physical Units." Metrologia 28, no. 1 (January 1, 1991): 55–56. http://dx.doi.org/10.1088/0026-1394/28/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Tarbeev, Yu V., V. M. Mostepanenko, and M. I. �ides. "Fundamental physical constants and standards." Measurement Techniques 29, no. 8 (August 1986): 691–94. http://dx.doi.org/10.1007/bf00863947.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Uzan, Jean-Philippe. "The stability of fundamental constants." Comptes Rendus Physique 16, no. 5 (June 2015): 576–85. http://dx.doi.org/10.1016/j.crhy.2015.03.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kononogov, S. A. "Metrology and fundamental physical constants." Measurement Techniques 49, no. 2 (February 2006): 97–102. http://dx.doi.org/10.1007/s11018-006-0070-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bormashenko, Edward, and Avigdor Sheshnev. "Measurable values, numbers and fundamental physical constants: Is the Boltzmann constant Kb a fundamental physical constant?" Thermal Science 13, no. 4 (2009): 253–58. http://dx.doi.org/10.2298/tsci0904253b.

Full text
Abstract:
The status of fundamental physical constants is discussed. The nature of fundamental physical constants is cleared up, based on the analysis of the Boltzmann constant. A new definition of measurable values, 'mathematical' and 'physical' numbers and fundamental physical constants is proposed. Mathematical numbers are defined as values insensitive to the choice of both units and frames of reference, whereas 'physical numbers' are dimensionless values, insensitive to transformations of units and sensitive to the transformations of the frames of reference. Fundamental constants are classified as values sensitive to transformations of the units and insensitive to transformations of the frames of reference. It is supposed that a fundamental physical constant necessarily allows diminishing the number of independent etalons in a system of units.
APA, Harvard, Vancouver, ISO, and other styles
29

Trachenko, K., B. Monserrat, C. J. Pickard, and V. V. Brazhkin. "Speed of sound from fundamental physical constants." Science Advances 6, no. 41 (October 2020): eabc8662. http://dx.doi.org/10.1126/sciadv.abc8662.

Full text
Abstract:
Two dimensionless fundamental physical constants, the fine structure constant α and the proton-to-electron mass ratio mpme, are attributed a particular importance from the point of view of nuclear synthesis, formation of heavy elements, planets, and life-supporting structures. Here, we show that a combination of these two constants results in a new dimensionless constant that provides the upper bound for the speed of sound in condensed phases, vu. We find that vuc=α(me2mp)12, where c is the speed of light in vacuum. We support this result by a large set of experimental data and first-principles computations for atomic hydrogen. Our result expands the current understanding of how fundamental constants can impose new bounds on important physical properties.
APA, Harvard, Vancouver, ISO, and other styles
30

LEE, Ho Seong, Inseok YANG, and Kwang Cheol LEE. "Redefinition of Units with Fundamental Constants." Physics and High Technology 25, no. 11 (November 30, 2016): 19–24. http://dx.doi.org/10.3938/phit.25.059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fritzsch, H. "Fundamental constants and their time variation." Progress in Particle and Nuclear Physics 66, no. 2 (April 2011): 193–96. http://dx.doi.org/10.1016/j.ppnp.2011.01.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tomilin, K. A. "Fundamental constants, quantum metrology and electrodynamics." Physical Interpretation of Relativity Theory: Proceedings of International Meeting., no. 1 (December 2015): 511–22. http://dx.doi.org/10.18698/2309-7604-2015-1-511-522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Groten, Erwin. "A Comment on Fundamental Geodetic Constants." Highlights of Astronomy 10 (1995): 200. http://dx.doi.org/10.1017/s1539299600010960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Conroy, R. S. "Frequency standards, metrology and fundamental constants." Contemporary Physics 44, no. 2 (March 2003): 99–135. http://dx.doi.org/10.1080/00107910210164020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mayerhöfer, Thomas G., and Jürgen Popp. "Effective optical constants: A fundamental discrepancy." Vibrational Spectroscopy 42, no. 1 (October 2006): 118–23. http://dx.doi.org/10.1016/j.vibspec.2006.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Karshenboim, S. G., and E. Peik. "Astrophysics, atomic clocks and fundamental constants." European Physical Journal Special Topics 163, no. 1 (October 2008): 1–7. http://dx.doi.org/10.1140/epjst/e2008-00805-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Mendes, R. V. "Deformations, stable theories and fundamental constants." Journal of Physics A: Mathematical and General 27, no. 24 (December 21, 1994): 8091–104. http://dx.doi.org/10.1088/0305-4470/27/24/019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Clara, M. T., and C. J. A. P. Martins. "Primordial nucleosynthesis with varying fundamental constants." Astronomy & Astrophysics 633 (January 2020): L11. http://dx.doi.org/10.1051/0004-6361/201937211.

Full text
Abstract:
Primordial nucleosynthesis is an observational cornerstone of the Hot Big Bang model and a sensitive probe of physics beyond the standard model. Its success has been limited by the so-called lithium problem, for which many solutions have been proposed. We report on a self-consistent perturbative analysis of the effects of variations in nature’s fundamental constants, which are unavoidable in most extensions of the standard model, on primordial nucleosynthesis, focusing on a broad class of Grand Unified Theory models. A statistical comparison between theoretical predictions and observational measurements of 4He, D, 3He and, 7Li consistently yields a preferred value of the fine-structure constant α at the nucleosynthesis epoch that is larger than the current laboratory one. The level of statistical significance and the preferred extent of variation depend on model assumptions but the former can be more than four standard deviations, while the latter is always compatible with constraints at lower redshifts. If lithium is not included in the analysis, the preference for a variation of α is not statistically significant. The abundance of 3He is relatively insensitive to such variations. Our analysis highlights a viable and physically motivated solution to the lithium problem, which warrants further study.
APA, Harvard, Vancouver, ISO, and other styles
39

Antypas, Dionysios, Dmitry Budker, Victor V. Flambaum, Mikhail G. Kozlov, Gilad Perez, and Jun Ye. "Fast Apparent Oscillations of Fundamental Constants." Annalen der Physik 532, no. 4 (April 2020): 1900566. http://dx.doi.org/10.1002/andp.201900566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Karshenboim, Savely G., Peter J. Mohr, and David B. Newell. "Advances in Determination of Fundamental Constants." Journal of Physical and Chemical Reference Data 44, no. 3 (September 2015): 031101. http://dx.doi.org/10.1063/1.4926575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Gilliard, Richard P. "Fundamental units and constants of physics." Advanced Studies in Theoretical Physics 14, no. 4 (2020): 209–17. http://dx.doi.org/10.12988/astp.2020.91466.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Klose, Volkmar, and Bernhard Kramer. "Fundamental Constants in Physics and Metrology." Metrologia 22, no. 3 (January 1, 1986): 117. http://dx.doi.org/10.1088/0026-1394/22/3/e01.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Fukui, Takao. "Fundamental constants and higher-dimensional universe." General Relativity and Gravitation 20, no. 10 (October 1988): 1037–45. http://dx.doi.org/10.1007/bf00759024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Tuninskii, V. S. "Adjusting correlated values of fundamental constants." Measurement Techniques 29, no. 8 (August 1986): 702–6. http://dx.doi.org/10.1007/bf00863950.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Faustov, R. N. "Quantum electrodynamics and the fundamental constants." Measurement Techniques 33, no. 1 (January 1990): 7–14. http://dx.doi.org/10.1007/bf00866807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Studentsov, N. V. "Unit systems and the fundamental constants." Measurement Techniques 40, no. 3 (March 1997): 197–202. http://dx.doi.org/10.1007/bf02504075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Varshalovich, D. A., and A. Y. Potekhin. "Cosmological variability of fundamental physical constants." Space Science Reviews 74, no. 3-4 (November 1995): 259–68. http://dx.doi.org/10.1007/bf00751411.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bonifacio, P., H. Rahmani, J. B. Whitmore, M. Wendt, M. Centurion, P. Molaro, R. Srianand, et al. "Fundamental constants and high-resolution spectroscopy." Astronomische Nachrichten 335, no. 1 (January 2014): 83–91. http://dx.doi.org/10.1002/asna.201312005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Deal, M., and C. J. A. P. Martins. "Primordial nucleosynthesis with varying fundamental constants." Astronomy & Astrophysics 653 (September 2021): A48. http://dx.doi.org/10.1051/0004-6361/202140725.

Full text
Abstract:
The success of primordial nucleosynthesis has been limited by the long-standing lithium problem. We use a self-consistent perturbative analysis of the effects of the relevant theoretical parameters on primordial nucleosynthesis, including variations of nature’s fundamental constants, to explore the problem and its possible solutions in the context of the latest observations and theoretical modeling. We quantify the amount of depletion needed to solve the lithium problem, and show that transport processes of chemical elements in stars are able to account for it. Specifically, the combination of atomic diffusion, rotation, and penetrative convection allows us to reproduce the lithium surface abundances of Population II stars, starting from the primordial lithium abundance. We also show that even with this depletion factor, a preference for a value of the fine-structure constant at this epoch remains that is larger than the value currently obtained in the laboratory by a few parts per million of relative variation at a statistical significance level of two to three standard deviations. This preference is driven by the recently reported discrepancy between the best-fit values for the baryon-to-photon ratio (or equivalently, the Deuterium abundance) inferred from cosmic microwave background and primordial nucleosynthesis analyses, and is largely insensitive to the Helium-4 abundance. We thus conclude that the lithium problem most likely has an astrophysical solution, while the Deuterium discrepancy provides a possible indication of new physics.
APA, Harvard, Vancouver, ISO, and other styles
50

McConnon, Aili. "Latest values of fundamental physics constants." Scilight 2021, no. 39 (September 24, 2021): 391101. http://dx.doi.org/10.1063/10.0005894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography