Academic literature on the topic 'Functions of bounded deformation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functions of bounded deformation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Functions of bounded deformation"
Dal Maso, Gianni. "Generalised functions of bounded deformation." Journal of the European Mathematical Society 15, no. 5 (2013): 1943–97. http://dx.doi.org/10.4171/jems/410.
Full textConti, Sergio, Matteo Focardi, and Flaviana Iurlano. "Which special functions of bounded deformation have bounded variation?" Proceedings of the Royal Society of Edinburgh: Section A Mathematics 148, no. 1 (October 17, 2017): 33–50. http://dx.doi.org/10.1017/s030821051700004x.
Full textBabadjian, Jean-Francois. "Traces of functions of bounded deformation." Indiana University Mathematics Journal 64, no. 4 (2015): 1271–90. http://dx.doi.org/10.1512/iumj.2015.64.5601.
Full textAmbrosio, Luigi, Alessandra Coscia, and Gianni Dal Maso. "Fine Properties of Functions with Bounded Deformation." Archive for Rational Mechanics and Analysis 139, no. 3 (October 27, 1997): 201–38. http://dx.doi.org/10.1007/s002050050051.
Full textNie, Ziwei, and Xiaoping Yang. "Deformable Image Registration Using Functions of Bounded Deformation." IEEE Transactions on Medical Imaging 38, no. 6 (June 2019): 1488–500. http://dx.doi.org/10.1109/tmi.2019.2896170.
Full textHajłasz, Piotr. "On approximate differentiability of functions with bounded deformation." Manuscripta Mathematica 91, no. 1 (December 1996): 61–72. http://dx.doi.org/10.1007/bf02567939.
Full textChambolle, Antonin. "An approximation result for special functions with bounded deformation." Journal de Mathématiques Pures et Appliquées 83, no. 7 (July 2004): 929–54. http://dx.doi.org/10.1016/j.matpur.2004.02.004.
Full textNie, Ziwei, Chen Li, Hairong Liu, and Xiaoping Yang. "Deformable Image Registration Based on Functions of Bounded Generalized Deformation." International Journal of Computer Vision 129, no. 5 (February 4, 2021): 1341–58. http://dx.doi.org/10.1007/s11263-021-01439-x.
Full textEbobisse, François B. "Lusin-type approximation of BD functions." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 129, no. 4 (1999): 697–705. http://dx.doi.org/10.1017/s0308210500013081.
Full textFuchs, M., and M. Bildhauer. "Compact embeddings of the space of functions with bounded logarithmic deformation." Journal of Mathematical Sciences 172, no. 1 (December 17, 2010): 165–83. http://dx.doi.org/10.1007/s10958-010-0190-9.
Full textDissertations / Theses on the topic "Functions of bounded deformation"
Johan, Filip Rindler Johan Filip. "Lower Semicontinuity and Young Measures for Integral Functionals with Linear Growth." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:c4736fa2-ab51-4cb7-b1d9-cbab0ede274b.
Full textLind, Martin. "Functions of bounded variation." Thesis, Karlstad University, Division for Engineering Sciences, Physics and Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-209.
Full textThe paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
Lind, Martin. "Functions of Generalized Bounded Variation." Doctoral thesis, Karlstads universitet, Institutionen för matematik och datavetenskap, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-26342.
Full textBaksidestext The classical concept of the total variation of a function has been extended in several directions. Such extensions find many applications in different areas of mathematics. Consequently, the study of notions of generalized bounded variation forms an important direction in the field of mathematical analysis. This thesis is devoted to the investigation of various properties of functions of generalized bounded variation. In particular, we obtain the following results: sharp relations between spaces of generalized bounded variation and spaces of functions defined by integral smoothness conditions (e.g., Sobolev and Besov spaces); optimal properties of certain scales of function spaces of frac- tional smoothness generated by functionals of variational type; sharp embeddings within the scale of spaces of functions of bounded p-variation; results concerning bivariate functions of bounded p-variation, in particular sharp estimates of total variation in terms of the mixed Lp-modulus of continuity, and Fubini-type properties.
Fällström, Anders. "Algebras of bounded holomorphic functions." Doctoral thesis, Umeå universitet, Institutionen för matematik, teknik och naturvetenskap, 1994. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-114744.
Full textDiss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 6 uppsatser
digitalisering@umu
Backlund, Ulf. "Envelopes of holomorphy for bounded holomorphic functions." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 1992. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-141155.
Full textdigitalisering@umu.se
Chirikhin, Andrey. "Polynomial distribution functions on bounded closed intervals." Thesis, University of Warwick, 2007. http://wrap.warwick.ac.uk/3678/.
Full textDon, Sebastiano. "Functions of bounded variation in Carnot-Carathéodory spaces." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3426813.
Full textAnalizziamo alcune proprietà di funzioni a variazione limitata in spazi di Carnot-Carathéodory. Nel Capitolo 2 dimostriamo che esse sono approssimativamente differenziabili quasi ovunque, esaminiamo il loro insieme di discontinuità approssimata e la decomposizione della loro derivata distribuzionale. Assumendo un'ipotesi addizionale sullo spazio, che chiamiamo proprietà R, mostriamo che quasi tutti i punti di discontinuità approssimata sono di salto e studiamo una formula per la parte di salto della derivata. Nel Capitolo 3 dimostriamo un teorema di rango uno à la G. Alberti per la derivata distribuzionale di funzioni vettoriali a variazione limitata in una classe di gruppi di Carnot che contiene tutti i gruppi di Heisenberg H^n con n ≥ 2. Uno strumento chiave nella dimostrazione è costituito da alcune proprietà che legano le derivate orizzontali di una funzione a variazione limitata con il suo sottografico. Nel Capitolo 4 dimostriamo un risultato di compattezza per succesioni (u_j) equi-limitate in spazi metrici (X, d_j) quando lo spazio X è fissato ma la metrica può variare con j. Mostriamo inoltre un'applicazione agli spazi di Carnot-Carathéodory. I risultati del Capitolo 4 sono fondamentali per la dimostrazione di alcuni fatti contenuti nel Capitolo 2.
Dawson, Dan Paul. "Concerning Integral Approximations of Bounded Finitely Additive Set Functions." Thesis, University of North Texas, 1992. https://digital.library.unt.edu/ark:/67531/metadc332650/.
Full textGurney, David R. (David Robert). "Bounded, Finitely Additive, but Not Absolutely Continuous Set Functions." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc332375/.
Full textSababheh, Mohammad Suboh. "Constructions of bounded functions related to two-sided Hardy inequalities." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=102160.
Full textIn 1993, I. Klemes investigated one of the constructions (we shall call it the algebraic construction) and proved what is called a mixed norm generalization of Hardy's inequality. It turns out that we can work with the same construction and examine more properties of it in order to get more results.
The objectives of the thesis are to give more detailed properties of the algebraic construction and to use these properties in order to prove various versions of two-sided Hardy inequalities.
Books on the topic "Functions of bounded deformation"
Sheremeta, M. Analytic functions of bounded index. Kiev, Ukraine: VNTL Publishers, 1999.
Find full textBlaschke products: Bounded analytic functions. Ann Arbor: University of Michigan Press, 1985.
Find full textauthor, Banas Jozef 1950, and Merentes Díaz, Nelson José, author, eds. Bounded variation and around. Berlin: Walter de Gruyter GmbH & Co. KG, 2013.
Find full textZiemer, William P. Weakly differentiable functions: Sobolev spaces and functions of bounded variation. New York: Springer-Verlag, 1989.
Find full textTemli͡akov, V. N. Approximation of functions with bounded mixed derivative. Providence, R.I: American Mathematical Society, 1989.
Find full textLiflyand, Elijah. Functions of Bounded Variation and Their Fourier Transforms. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04429-9.
Full textNicola, Fusco, and Pallara Diego, eds. Functions of bounded variation and free discontinuity problems. Oxford: Clarendon Press, 2000.
Find full textOn the algebraic foundation of bounded cohomology. Providence, R.I: American Mathematical Society, 2011.
Find full textPytlik, T. Spherical functions and uniformly bounded representations of free group. Wroclaw: Mathem. inst. univ. Wroclaw, 1986.
Find full textQuantum bounded symmetric domains. Providence, R.I: American Mathematical Society, 2010.
Find full textBook chapters on the topic "Functions of bounded deformation"
Axler, Sheldon, Paul Bourdon, and Wade Ramey. "Bounded Harmonic Functions." In Harmonic Function Theory, 31–44. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-8137-3_2.
Full textAxler, Sheldon, Paul Bourdon, and Wade Ramey. "Bounded Harmonic Functions." In Harmonic Function Theory, 31–44. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/0-387-21527-1_2.
Full textZiemer, William P. "Functions of Bounded Variation." In Weakly Differentiable Functions, 220–82. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-1015-3_5.
Full textvan der Vaart, Aad W., and Jon A. Wellner. "Spaces of Bounded Functions." In Weak Convergence and Empirical Processes, 34–42. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-2545-2_5.
Full textLaczkovich, Miklós, and Vera T. Sós. "Functions of Bounded Variation." In Real Analysis, 399–406. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2766-1_17.
Full textWyner, A. D. "Spectra of Bounded Functions." In Open Problems in Communication and Computation, 46–48. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4808-8_9.
Full textRana, Inder. "Functions of bounded variation." In Graduate Studies in Mathematics, 397–99. Providence, Rhode Island: American Mathematical Society, 2002. http://dx.doi.org/10.1090/gsm/045/17.
Full textLeoni, Giovanni. "Functions of bounded variation." In Graduate Studies in Mathematics, 377–414. Providence, Rhode Island: American Mathematical Society, 2009. http://dx.doi.org/10.1090/gsm/105/13.
Full textBraides, Andrea. "Functions of bounded variation." In Approximation of Free-Discontinuity Problems, 7–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0097346.
Full textConvertito, Gregory, and David Cruz-Uribe. "Functions of Bounded Variation." In The Stieltjes Integral, 89–136. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781351242813-3.
Full textConference papers on the topic "Functions of bounded deformation"
Papetti, Daniele M., Vasco Coelho, Daniel A. Ashlock, Paolo Cazzaniga, Simone Spolaor, Daniela Besozzi, and Marco S. Nobile. "Local Bubble Dilation Functions: Hypersphere-bounded Landscape Deformations Simplify Global Optimization." In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863041.
Full textLaura, Patricio A. A. "Solution of Dynamic Problems of Structural Elements Using Simple Polynomial Approximations." In ASME 1991 Design Technical Conferences. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/detc1991-0314.
Full textJacobson, Alec, Ilya Baran, Jovan Popović, and Olga Sorkine. "Bounded biharmonic weights for real-time deformation." In ACM SIGGRAPH 2011 papers. New York, New York, USA: ACM Press, 2011. http://dx.doi.org/10.1145/1964921.1964973.
Full textVarol, Durdane, Melike Aydoğan, and Yaşar Polatoğlu. "Bounded harmonic mappings related to starlike functions." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882553.
Full textSingh, Akhilesh Kumar. "Functions of bounded variation on effect algebras." In ADVANCEMENT IN MATHEMATICAL SCIENCES: Proceedings of the 2nd International Conference on Recent Advances in Mathematical Sciences and its Applications (RAMSA-2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5008701.
Full textYaghoubi, Shakiba, Keyvan Majd, Georgios Fainekos, Tomoya Yamaguchi, Danil Prokhorov, and Bardh Hoxha. "Risk-bounded Control using Stochastic Barrier Functions." In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9483118.
Full textSinha, Shriprakash, and Gert J. Ter Horst. "Bounded multivariate surfaces on monovariate internal functions." In 2011 18th IEEE International Conference on Image Processing (ICIP 2011). IEEE, 2011. http://dx.doi.org/10.1109/icip.2011.6115595.
Full textMohamed, Norlyda, Aminah Abdul Malek, Nik Haziqah Wan Hamzah, Nur Suziana Suhaini, and Nurul Syahirah Madzuki. "Third Hankel determinant of bounded analytic functions." In THE 4TH INNOVATION AND ANALYTICS CONFERENCE & EXHIBITION (IACE 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5121062.
Full textDiakonikolas, Ilias, Daniel M. Kane, and Jelani Nelson. "Bounded Independence Fools Degree-2 Threshold Functions." In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2010. http://dx.doi.org/10.1109/focs.2010.8.
Full textLe Merdy, Christian. "Square functions, bounded analytic semigroups, and applications." In Perspectives in Operator Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc75-0-12.
Full textReports on the topic "Functions of bounded deformation"
Martinsson, Per-Gunnar, Vladimir Rokhlin, and Mark Tygert. On Interpolation and Integration in Finite-Dimensional Spaces of Bounded Functions. Fort Belvoir, VA: Defense Technical Information Center, March 2005. http://dx.doi.org/10.21236/ada458904.
Full textStefanski, L. A., R. J. Carroll, and D. Ruppert. Optimally Bounded Score Functions for Generalized Linear Models with Applications to Logistic Regression. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160348.
Full textSnyder, Victor A., Dani Or, Amos Hadas, and S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Full text