Journal articles on the topic 'Functional reprogramming'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Functional reprogramming.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Trakala, Marianna, Sara Rodríguez-Acebes, María Maroto, Catherine E. Symonds, David Santamaría, Sagrario Ortega, Mariano Barbacid, Juan Méndez, and Marcos Malumbres. "Functional Reprogramming of Polyploidization in Megakaryocytes." Developmental Cell 32, no. 2 (January 2015): 155–67. http://dx.doi.org/10.1016/j.devcel.2014.12.015.
Full textKubatiev, A. A., and A. A. Pal'tsyn. "INTRACELLULAR BRAIN REGENERATION: A NEW VIEW." Annals of the Russian academy of medical sciences 67, no. 8 (August 11, 2012): 21–25. http://dx.doi.org/10.15690/vramn.v67i8.345.
Full textKumar, Satish, Joanne E. Curran, David C. Glahn, and John Blangero. "Utility of Lymphoblastoid Cell Lines for Induced Pluripotent Stem Cell Generation." Stem Cells International 2016 (2016): 1–20. http://dx.doi.org/10.1155/2016/2349261.
Full textPaoletti, Camilla, Carla Divieto, and Valeria Chiono. "Impact of Biomaterials on Differentiation and Reprogramming Approaches for the Generation of Functional Cardiomyocytes." Cells 7, no. 9 (August 21, 2018): 114. http://dx.doi.org/10.3390/cells7090114.
Full textÖzcan, Ismail, and Baris Tursun. "Identifying Molecular Roadblocks for Transcription Factor-Induced Cellular Reprogramming In Vivo by Using C. elegans as a Model Organism." Journal of Developmental Biology 11, no. 3 (August 31, 2023): 37. http://dx.doi.org/10.3390/jdb11030037.
Full textKalo, Eric, Scott Read, and Golo Ahlenstiel. "Reprogramming—Evolving Path to Functional Surrogate β-Cells." Cells 11, no. 18 (September 8, 2022): 2813. http://dx.doi.org/10.3390/cells11182813.
Full textPeng, Bo, Hui Li, and Xuan-Xian Peng. "Functional metabolomics: from biomarker discovery to metabolome reprogramming." Protein & Cell 6, no. 9 (July 2, 2015): 628–37. http://dx.doi.org/10.1007/s13238-015-0185-x.
Full textTian, E., Guoqiang Sun, Guihua Sun, Jianfei Chao, Peng Ye, Charles Warden, Arthur D. Riggs, and Yanhong Shi. "Small-Molecule-Based Lineage Reprogramming Creates Functional Astrocytes." Cell Reports 16, no. 3 (July 2016): 781–92. http://dx.doi.org/10.1016/j.celrep.2016.06.042.
Full textZhu, Hui, Srilatha Swami, Pinglin Yang, Frederic Shapiro, and Joy Y. Wu. "Direct Reprogramming of Mouse Fibroblasts into Functional Osteoblasts." Journal of Bone and Mineral Research 35, no. 4 (December 30, 2019): 698–713. http://dx.doi.org/10.1002/jbmr.3929.
Full textZhou, Huanyu, Matthew E. Dickson, Min Soo Kim, Rhonda Bassel-Duby, and Eric N. Olson. "Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes." Proceedings of the National Academy of Sciences 112, no. 38 (September 9, 2015): 11864–69. http://dx.doi.org/10.1073/pnas.1516237112.
Full textZhu, Yanbo, Zi Yan, Ze Tang, and Wei Li. "Novel Approaches to Profile Functional Long Noncoding RNAs Associated with Stem Cell Pluripotency." Current Genomics 21, no. 1 (March 25, 2020): 37–45. http://dx.doi.org/10.2174/1389202921666200210142840.
Full textSun, Lizhe, Xiaofeng Yang, Zuyi Yuan, and Hong Wang. "Metabolic Reprogramming in Immune Response and Tissue Inflammation." Arteriosclerosis, Thrombosis, and Vascular Biology 40, no. 9 (September 2020): 1990–2001. http://dx.doi.org/10.1161/atvbaha.120.314037.
Full textAhlenius, Henrik, Soham Chanda, Ashley E. Webb, Issa Yousif, Jesse Karmazin, Stanley B. Prusiner, Anne Brunet, Thomas C. Südhof, and Marius Wernig. "FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice." Proceedings of the National Academy of Sciences 113, no. 30 (July 11, 2016): 8514–19. http://dx.doi.org/10.1073/pnas.1607079113.
Full textWei, Zhuang-Yao D., and Ashok K. Shetty. "Treating Parkinson’s disease by astrocyte reprogramming: Progress and challenges." Science Advances 7, no. 26 (June 2021): eabg3198. http://dx.doi.org/10.1126/sciadv.abg3198.
Full textTang, Yawen, Sajesan Aryal, Xiaoxiao Geng, Xinyue Zhou, Vladimir G. Fast, Jianyi Zhang, Rui Lu, and Yang Zhou. "TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming." Circulation 146, no. 20 (November 15, 2022): 1518–36. http://dx.doi.org/10.1161/circulationaha.122.059713.
Full textKim, Jaehong. "Regulation of Immune Cell Functions by Metabolic Reprogramming." Journal of Immunology Research 2018 (2018): 1–12. http://dx.doi.org/10.1155/2018/8605471.
Full textRogers, J. M., and H. Suga. "Discovering functional, non-proteinogenic amino acid containing, peptides using genetic code reprogramming." Organic & Biomolecular Chemistry 13, no. 36 (2015): 9353–63. http://dx.doi.org/10.1039/c5ob01336d.
Full textWang, Aline Yen Ling, and Charles Yuen Yung Loh. "Episomal Induced Pluripotent Stem Cells: Functional and Potential Therapeutic Applications." Cell Transplantation 28, no. 1_suppl (November 14, 2019): 112S—131S. http://dx.doi.org/10.1177/0963689719886534.
Full textChen, Olivia, and Li Qian. "Direct Cardiac Reprogramming: Advances in Cardiac Regeneration." BioMed Research International 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/580406.
Full textLiu, Kuangpin, Wei Ma, Chunyan Li, Junjun Li, Xingkui Zhang, Jie Liu, Wei Liu, et al. "Advances in transcription factors related to neuroglial cell reprogramming." Translational Neuroscience 11, no. 1 (February 20, 2020): 17–27. http://dx.doi.org/10.1515/tnsci-2020-0004.
Full textThomson, Alison J., Hadrien Pierart, Stephen Meek, Alexandra Bogerman, Linda Sutherland, Helen Murray, Edward Mountjoy, et al. "Reprogramming Pig Fetal Fibroblasts Reveals a Functional LIF Signaling Pathway." Cellular Reprogramming 14, no. 2 (April 2012): 112–22. http://dx.doi.org/10.1089/cell.2011.0078.
Full textArnholdt-Schmitt, Birgit, José H. Costa, and Dirce Fernandes de Melo. "AOX – a functional marker for efficient cell reprogramming under stress?" Trends in Plant Science 11, no. 6 (June 2006): 281–87. http://dx.doi.org/10.1016/j.tplants.2006.05.001.
Full textHuang, Pengyu, Ludi Zhang, Yimeng Gao, Zhiying He, Dan Yao, Zhitao Wu, Jin Cen, et al. "Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes." Cell Stem Cell 14, no. 3 (March 2014): 370–84. http://dx.doi.org/10.1016/j.stem.2014.01.003.
Full textBar-Nur, Ori, Mattia F. M. Gerli, Bruno Di Stefano, Albert E. Almada, Amy Galvin, Amy Coffey, Aaron J. Huebner, et al. "Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors." Stem Cell Reports 10, no. 5 (May 2018): 1505–21. http://dx.doi.org/10.1016/j.stemcr.2018.04.009.
Full textGrealish, Shane, Johan Jakobsson, and Malin Parmar. "Lineage reprogramming: A shortcut to generating functional neurons from fibroblasts." Cell Cycle 10, no. 20 (October 15, 2011): 3421–22. http://dx.doi.org/10.4161/cc.10.20.17691.
Full textTeijeira, Alvaro, Sara Labiano, Saray Garasa, Iñaki Etxeberria, Eva Santamaría, Ana Rouzaut, Michel Enamorado, et al. "Mitochondrial Morphological and Functional Reprogramming Following CD137 (4-1BB) Costimulation." Cancer Immunology Research 6, no. 7 (April 20, 2018): 798–811. http://dx.doi.org/10.1158/2326-6066.cir-17-0767.
Full textIeda, Masaki, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. Bruneau, and Deepak Srivastava. "Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors." Cell 142, no. 3 (August 2010): 375–86. http://dx.doi.org/10.1016/j.cell.2010.07.002.
Full textMoorlag, Simone J. C. F. M., Yessica Alina Rodriguez-Rosales, Joshua Gillard, Stephanie Fanucchi, Kate Theunissen, Boris Novakovic, Cynthia M. de Bont, et al. "BCG Vaccination Induces Long-Term Functional Reprogramming of Human Neutrophils." Cell Reports 33, no. 7 (November 2020): 108387. http://dx.doi.org/10.1016/j.celrep.2020.108387.
Full textBajpai, Vivek K., Laura Kerosuo, Georgios Tseropoulos, Kirstie A. Cummings, Xiaoyan Wang, Pedro Lei, Biao Liu, et al. "Reprogramming Postnatal Human Epidermal Keratinocytes Toward Functional Neural Crest Fates." STEM CELLS 35, no. 5 (March 5, 2017): 1402–15. http://dx.doi.org/10.1002/stem.2583.
Full textChandravanshi, Bhawna, and Ramesh Bhonde. "Reprogramming mouse embryo fibroblasts to functional islets without genetic manipulation." Journal of Cellular Physiology 233, no. 2 (August 11, 2017): 1627–37. http://dx.doi.org/10.1002/jcp.26068.
Full textMehdizadeh, Amir, and Masoud Darabi. "Reprogrammed Cell?based Therapy for Liver Disease: From Lab to Clinic." Journal of Renal and Hepatic Disorders 1, no. 1 (February 3, 2017): 20–28. http://dx.doi.org/10.15586/jrenhep.2017.6.
Full textKaimakis, Polynikis, Emma de Pater, Christina Eich, Parham Solaimani Kartalaei, Mari-Liis Kauts, Chris S. Vink, Reinier van der Linden, et al. "Functional and molecular characterization of mouse Gata2-independent hematopoietic progenitors." Blood 127, no. 11 (March 17, 2016): 1426–37. http://dx.doi.org/10.1182/blood-2015-10-673749.
Full textWahlestedt, Martin, Gudmundur L. Norddahl, Gerd Sten, Amol Ugale, Mary-Ann Micha Frisk, Ragnar Mattsson, Tomas Deierborg, Mikael Sigvardsson, and David Bryder. "An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state." Blood 121, no. 21 (May 23, 2013): 4257–64. http://dx.doi.org/10.1182/blood-2012-11-469080.
Full textMeiliana, Anna, and Andi Wijaya. "Epigenetic Reprogramming Induced Pluripotency." Indonesian Biomedical Journal 3, no. 2 (August 1, 2011): 93. http://dx.doi.org/10.18585/inabj.v3i2.139.
Full textBruzelius, Andreas, Srisaiyini Kidnapillai, Janelle Drouin-Ouellet, Tom Stoker, Roger A. Barker, and Daniella Rylander Ottosson. "Reprogramming Human Adult Fibroblasts into GABAergic Interneurons." Cells 10, no. 12 (December 8, 2021): 3450. http://dx.doi.org/10.3390/cells10123450.
Full textTesta, Gianluca, Giorgia Di Benedetto, and Fabiana Passaro. "Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration." International Journal of Molecular Sciences 22, no. 17 (September 1, 2021): 9517. http://dx.doi.org/10.3390/ijms22179517.
Full textMárquez, Javier, and José M. Matés. "Tumor Metabolome: Therapeutic Opportunities Targeting Cancer Metabolic Reprogramming." Cancers 13, no. 2 (January 16, 2021): 314. http://dx.doi.org/10.3390/cancers13020314.
Full textAguilar, Carlos A. "Reprogramming to help the old see like the young." Science Translational Medicine 12, no. 574 (December 16, 2020): eabf7738. http://dx.doi.org/10.1126/scitranslmed.abf7738.
Full textXie, H., N. Dubey, W. Shim, C. J. A. Ramachandra, K. S. Min, T. Cao, and V. Rosa. "Functional Odontoblastic-Like Cells Derived from Human iPSCs." Journal of Dental Research 97, no. 1 (September 12, 2017): 77–83. http://dx.doi.org/10.1177/0022034517730026.
Full textSwinstead, Erin E., Ville Paakinaho, and Gordon L. Hager. "Chromatin reprogramming in breast cancer." Endocrine-Related Cancer 25, no. 7 (July 2018): R385—R404. http://dx.doi.org/10.1530/erc-18-0033.
Full textHsu, Jasper, Andreea Reilly, Brian J. Hayes, Courtnee A. Clough, Eric Q. Konnick, Beverly Torok-Storb, Suleyman Gulsuner, et al. "Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes." Blood 134, no. 2 (July 11, 2019): 186–98. http://dx.doi.org/10.1182/blood.2018884338.
Full textPerveen, Sadia, Roberto Vanni, Marco Lo Iacono, Raffaella Rastaldo, and Claudia Giachino. "Direct Reprogramming of Resident Non-Myocyte Cells and Its Potential for In Vivo Cardiac Regeneration." Cells 12, no. 8 (April 15, 2023): 1166. http://dx.doi.org/10.3390/cells12081166.
Full textWang, Aline Yen Ling. "Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate." International Journal of Molecular Sciences 22, no. 15 (July 29, 2021): 8148. http://dx.doi.org/10.3390/ijms22158148.
Full textLong, Jincheng, James Walker, Wenjing She, Billy Aldridge, Hongbo Gao, Samuel Deans, Martin Vickers, and Xiaoqi Feng. "Nurse cell–derived small RNAs define paternal epigenetic inheritance in Arabidopsis." Science 373, no. 6550 (July 1, 2021): eabh0556. http://dx.doi.org/10.1126/science.abh0556.
Full textHou, Pingping, Yanqin Li, Xu Zhang, Chun Liu, Jingyang Guan, Honggang Li, Ting Zhao, et al. "Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds." Science 341, no. 6146 (July 18, 2013): 651–54. http://dx.doi.org/10.1126/science.1239278.
Full textStout, Robert D., Stephanie K. Watkins, and Jill Suttles. "Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages." Journal of Leukocyte Biology 86, no. 5 (July 15, 2009): 1105–9. http://dx.doi.org/10.1189/jlb.0209073.
Full textCardon, Tristan, Julien Franck, Etienne Coyaud, Estelle M. N. Laurent, Marina Damato, Michele Maffia, Daniele Vergara, Isabelle Fournier, and Michel Salzet. "Alternative proteins are functional regulators in cell reprogramming by PKA activation." Nucleic Acids Research 48, no. 14 (April 23, 2020): 7864–82. http://dx.doi.org/10.1093/nar/gkaa277.
Full textWeinberg, Marc S., Hugh E. Criswell, Sara K. Powell, Aadra P. Bhatt, and Thomas J. McCown. "Viral Vector Reprogramming of Adult Resident Striatal Oligodendrocytes into Functional Neurons." Molecular Therapy 25, no. 4 (April 2017): 928–34. http://dx.doi.org/10.1016/j.ymthe.2017.01.016.
Full textLi, Xiang, Xiaohan Zuo, Junzhan Jing, Yantao Ma, Jiaming Wang, Defang Liu, Jialiang Zhu, et al. "Small-Molecule-Driven Direct Reprogramming of Mouse Fibroblasts into Functional Neurons." Cell Stem Cell 17, no. 2 (August 2015): 195–203. http://dx.doi.org/10.1016/j.stem.2015.06.003.
Full textCharbonnier, Louis-Marie, Ye Cui, Emmanuel Stephen-Victor, Hani Harb, David Lopez, Jack J. Bleesing, Maria I. Garcia-Lloret, et al. "Functional reprogramming of regulatory T cells in the absence of Foxp3." Nature Immunology 20, no. 9 (August 5, 2019): 1208–19. http://dx.doi.org/10.1038/s41590-019-0442-x.
Full text