Academic literature on the topic 'Functional Pruning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functional Pruning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Functional Pruning"
SHAMIR, N., D. SAAD, and E. MAROM. "NEURAL NET PRUNING BASED ON FUNCTIONAL BEHAVIOR OF NEURONS." International Journal of Neural Systems 04, no. 02 (June 1993): 143–58. http://dx.doi.org/10.1142/s0129065793000134.
Full textElston, G. N., T. Oga, and I. Fujita. "Spinogenesis and Pruning Scales across Functional Hierarchies." Journal of Neuroscience 29, no. 10 (March 11, 2009): 3271–75. http://dx.doi.org/10.1523/jneurosci.5216-08.2009.
Full textIwasaki, Hideya, Takeshi Morimoto, and Yasunao Takano. "Pruning with improving sequences in lazy functional programs." Higher-Order and Symbolic Computation 24, no. 4 (November 2011): 281–309. http://dx.doi.org/10.1007/s10990-012-9086-3.
Full textLugaresi, Adriana, Cristiano André Steffens, Angélica Schmitz Heinzen, Cristhian Leonardo Fenili, Alberto Fontanella Brighenti, Mariuccia Schlichting De Martin, and Cassandro Vidal Talamini do Amarante. "The influence of the summer pruning on ‘Fuji’ apples storage under controlled atmosphere." Acta Scientiarum. Agronomy 46, no. 1 (December 12, 2023): e63557. http://dx.doi.org/10.4025/actasciagron.v46i1.63557.
Full textLi, J., J. Liu, H. Toivonen, and J. Yong. "Effective Pruning for the Discovery of Conditional Functional Dependencies." Computer Journal 56, no. 3 (June 24, 2012): 378–92. http://dx.doi.org/10.1093/comjnl/bxs082.
Full textZhang, Qi, Ying Zhang, Pengyao Miao, Meihui Chen, Mengru Du, Xiaomin Pang, Jianghua Ye, Haibin Wang, and Xiaoli Jia. "Effects of Pruning on Tea Tree Growth, Soil Enzyme Activity and Microbial Diversity." Agronomy 13, no. 5 (April 25, 2023): 1214. http://dx.doi.org/10.3390/agronomy13051214.
Full textLow, Lawrence K., and Hwai-Jong Cheng. "Axon pruning: an essential step underlying the developmental plasticity of neuronal connections." Philosophical Transactions of the Royal Society B: Biological Sciences 361, no. 1473 (July 28, 2006): 1531–44. http://dx.doi.org/10.1098/rstb.2006.1883.
Full textLeporini, Mariarosaria, Rosa Tundis, Vincenzo Sicari, and Monica Rosa Loizzo. "Citrus species: Modern functional food and nutraceutical-based product ingredient." Italian Journal of Food Science 33, no. 2 (May 27, 2021): 63–107. http://dx.doi.org/10.15586/ijfs.v33i2.2009.
Full textMäkelä, Annikki. "A Carbon Balance Model of Growth and Self-Pruning in Trees Based on Structural Relationships." Forest Science 43, no. 1 (February 1, 1997): 7–24. http://dx.doi.org/10.1093/forestscience/43.1.7.
Full textSun, Xiaochuan, Yu Wang, Mingxiang Hao, Yingqi Li, and Tianyu Huang. "Reservoir structure optimization of echo state networks: A detrended multiple cross-correlation pruning perspective." Journal of Intelligent & Fuzzy Systems 46, no. 5-6 (October 24, 2024): 11263–75. http://dx.doi.org/10.3233/jifs-233605.
Full textDissertations / Theses on the topic "Functional Pruning"
Shabarshova, Liudmila. "Geometric functional pruning for change point detection in low-dimensional exponential family models." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM026.
Full textChange point detection is a common unsupervised learning problem in many application areas, especially in biology, genomics, sensor network monitoring, and cyber-security. Typically, either a posteriori change detection, i.e. offline, or sequential change detection, i.e. online, is considered.Standard dynamic programming methods for change point detection have been proposed to optimise either the likelihood or the log-likelihood ratio of a change point model. These methods are exact and recover optimal segmentations. However, they have quadratic complexity. Continuously reducing the set of potential change point candidates, called pruning, is a way to reduce the computational complexity of standard dynamic programming methods. Over the last decade, a new class of dynamic programming methods, called functional pruning, has been proposed. The functional pruning techniques used in these methods have already proved to be computationally efficient for univariate parametric change point models. Extending univariate functional pruning rules to multivariate settings is difficult if we aim for the most efficient pruning. It leads to non-convex optimisation problems.This thesis introduces two novel, computationally efficient, functional pruning dynamic programming methods for the detection of change points in low-dimensional exponential family models: the offline multiple change point detection method, GeomFPOP (Kmax = ∞), and the online single change point detection method, MdFOCuS.Computational geometry is the basis of the functional pruning rules for these methods. The pruning rule of GeomFPOP (Kmax = ∞) uses a geometric heuristic to update and prune potential change point candidates over time. The pruning rule of MdFOCuS uses a connection to a convex hull problem that simplifies the search for change point location to be pruned. Further we mathematically demonstrate that this pruning technique leads to a quasi-linear runtime complexity.These two pruning rules show significant improvements in computational complexity for low-dimensional exponential family models in simulation studies. In one minute, the Rcpp implementations of these methods can process more than 2 × 106 observations in a bivariate signal without change with i.i.d. Gaussian noise
Prewitt, Sarah F. "Phylogenetic and Functional Characterization of Cotton (Gossypium hirsutum) CENTRORADIALIS/TERMINAL FLOWER1/SELF-PRUNING Genes." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062895/.
Full textPalm, Emanuel. "Implications and Impact of Blockchain Transaction Pruning." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64986.
Full textKučírek, Tomáš. "Umělá inteligence pro hraní her." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2012. http://www.nusl.cz/ntk/nusl-412861.
Full textKubisz, Jan. "Využití umělé inteligence k monitorování stavu obráběcího stroje." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-417752.
Full textBook chapters on the topic "Functional Pruning"
Qiu, Shoumeng, Yuzhang Gu, and Xiaolin Zhang. "BFRIFP: Brain Functional Reorganization Inspired Filter Pruning." In Lecture Notes in Computer Science, 16–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86380-7_2.
Full textQiu, Shoumeng, Yuzhang Gu, and Xiaolin Zhang. "Correction to: BFRIFP: Brain Functional Reorganization Inspired Filter Pruning." In Lecture Notes in Computer Science, C1. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86380-7_57.
Full textZouggar, Souad Taleb, and Abdelkader Adla. "A New Function for Ensemble Pruning." In Decision Support Systems VIII: Sustainable Data-Driven and Evidence-Based Decision Support, 181–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90315-6_15.
Full textSha, Chaofeng, Keqiang Wang, Xiaoling Wang, and Aoying Zhou. "Ensemble Pruning: A Submodular Function Maximization Perspective." In Database Systems for Advanced Applications, 1–15. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05813-9_1.
Full textShi, Daming, Junbin Gao, Daniel So Yeung, and Fei Chen. "Radial Basis Function Network Pruning by Sensitivity Analysis." In Advances in Artificial Intelligence, 380–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24840-8_27.
Full textSutton-Charani, Nicolas, Sébastien Destercke, and Thierry Denœux. "Training and Evaluating Classifiers from Evidential Data: Application to E2M Decision Tree Pruning." In Belief Functions: Theory and Applications, 87–94. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11191-9_10.
Full textBorera, Eddy C., Larry D. Pyeatt, Arisoa S. Randrianasolo, and Madhi Naser-Moghadasi. "POMDP Filter: Pruning POMDP Value Functions with the Kaczmarz Iterative Method." In Advances in Artificial Intelligence, 254–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16761-4_23.
Full textHoque, Md Tamjidul, Madhu Chetty, and Laurence S. Dooley. "Efficient Computation of Fitness Function by Pruning in Hydrophobic-Hydrophilic Model." In Biological and Medical Data Analysis, 346–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11573067_35.
Full textParkinson, Randall W., Monica Perez-Bedmar, and Jenna A. Santangelo. "Red mangrove (Rhizophora mangle L.) litter fall response to selective pruning (Indian River Lagoon, Florida, U.S.A.)." In Diversity and Function in Mangrove Ecosystems, 63–76. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4078-2_7.
Full textLi, Jing, Bao-Liang Lu, and Michinori Ichikawa. "An Algorithm for Pruning Redundant Modules in Min-Max Modular Network with GZC Function." In Lecture Notes in Computer Science, 293–302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11539087_35.
Full textConference papers on the topic "Functional Pruning"
Yang, Dun-An, Jing-Jia Liou, and Harry H. Chen. "Transient Fault Pruning for Effective Candidate Reduction in Functional Debugging." In 2022 IEEE International Test Conference (ITC). IEEE, 2022. http://dx.doi.org/10.1109/itc50671.2022.00014.
Full textLi, Qingwei, Wenyong Zhang, Zhiwen Shen, and He Qifeng. "Photovoltaic power output forecasting based on similar day analysis and sensitive pruning extreme learning machine." In 2022 International Conference on Optoelectronic Information and Functional Materials (OIFM 2022), edited by Chao Zuo. SPIE, 2022. http://dx.doi.org/10.1117/12.2638674.
Full textCheng, Feng, and Zhe Yang. "New Pruning Methods for Mining Minimal Functional Dependencies from Large-Scale Distributed Data." In 2018 Sixth International Conference on Advanced Cloud and Big Data (CBD). IEEE, 2018. http://dx.doi.org/10.1109/cbd.2018.00055.
Full textMandros, Panagiotis, Mario Boley, and Jilles Vreeken. "Discovering Reliable Dependencies from Data: Hardness and Improved Algorithms." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/864.
Full textGhosh, Gourhari, Ajay Sidpara, and P. P. Bandyopadhyay. "Characterization of Nanofinished WC-Co Coating Using Advanced 3D Surface Texture Parameters." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6592.
Full textLiu, Yuchen, S. Y. Kung, and David Wentzlaff. "Evolving transferable neural pruning functions." In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3512290.3528694.
Full textRodriguez Lizana, Antonio, Maria Joao Pereira, Alzira Ramos, Manuel Moreno Garcia, and Manuel Ribeiro. "STUDY OF THE UNCERTAINTY OF THE AMOUNT OF PRUNING IN THE OLIVE GROVE USING GEOSTATISTICAL ALGORITHMS." In 22nd International Multidisciplinary Scientific GeoConference 2022. STEF92 Technology, 2022. http://dx.doi.org/10.5593/sgem2022v/3.2/s14.50.
Full textOliveira, Saulo A. F., Ajalmar R. Rocha Neto, and João P. P. Gomes. "On Model Complexity Reduction in Instance-Based Learners." In Anais Estendidos da Conference on Graphics, Patterns and Images. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/sibgrapi.est.2022.23253.
Full textFlávia de A. Campos, Lívia, Liara M. de Mattos, Aline D. P. dos Santos, and Luis C. Paschoarelli. "An Approach to Evaluation of Aesthetic Function on Usability: An Exploratory Study About Descriptors of Aesthetic in Pruning Shears." In Applied Human Factors and Ergonomics Conference. AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001315.
Full textSetiono, R., and A. Gaweda. "Neural network pruning for function approximation." In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. IEEE, 2000. http://dx.doi.org/10.1109/ijcnn.2000.859435.
Full text