Journal articles on the topic 'Functional electrical stimulation'

To see the other types of publications on this topic, follow the link: Functional electrical stimulation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Functional electrical stimulation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Rushton, D. N. "Functional electrical stimulation." Physiological Measurement 18, no. 4 (November 1, 1997): 241–75. http://dx.doi.org/10.1088/0967-3334/18/4/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Granat, Malcom H. "Functional electrical stimulation." Current Opinion in Orthopaedics 7, no. 6 (December 1996): 87–92. http://dx.doi.org/10.1097/00001433-199612000-00019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Grant, Lindsay. "Functional electrical stimulation." IEE Review 34, no. 11 (1988): 443. http://dx.doi.org/10.1049/ir:19880186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bohannon, Richard. "Functional electrical stimulation." Clinical Rehabilitation 4, no. 1 (February 1990): 81. http://dx.doi.org/10.1177/026921559000400113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Azevedo Coste, Christine, Milos Popovic, and Winfried Mayr. "Functional Electrical Stimulation." Artificial Organs 41, no. 11 (November 2017): 977–78. http://dx.doi.org/10.1111/aor.13052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shimada, Yoichi, Shigeru Ando, and Satoaki Chida. "Functional electrical stimulation." Artificial Life and Robotics 4, no. 4 (December 2000): 212–19. http://dx.doi.org/10.1007/bf02481177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

MATSUNAGA, Toshiki, and Yoichi SHIMADA. "Functional Electrical Stimulation (FES)." Journal of the Institute of Electrical Engineers of Japan 136, no. 10 (2016): 660–61. http://dx.doi.org/10.1541/ieejjournal.136.660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Grant, Lindsay, and Ian Swain. "Meeting report: Functional electrical stimulation." Journal of Medical Engineering & Technology 9, no. 3 (January 1985): 129–31. http://dx.doi.org/10.3109/03091908509018143.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Edlich, Richard, Stuart S. Howards, and Tyler C. Wind. "Functional Electrical Stimulation for Ejaculation." Journal of Long-Term Effects of Medical Implants 12, no. 3 (2002): 9. http://dx.doi.org/10.1615/jlongtermeffmedimplants.v12.i3.60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Granat, Malcolm H. "Functional electrical stimulation and rehabilitation." Current Opinion in Orthopaedics 5, no. 6 (December 1994): 90–95. http://dx.doi.org/10.1097/00001433-199412000-00018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sipski, Marca L., Joel A. Delisa, and Sue Schweer. "Functional Electrical Stimulation Bicycle Ergometry." American Journal of Physical Medicine & Rehabilitation 68, no. 3 (June 1989): 147–49. http://dx.doi.org/10.1097/00002060-198906000-00009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Packman-Braun, Roberta. "Misconceptions Regarding Functional Electrical Stimulation." Neurology Report 19, no. 3 (1995): 17–21. http://dx.doi.org/10.1097/01253086-199519030-00016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Wilson, Richard D., Anne M. Bryden, Kevin L. Kilgore, Nathaniel Makowski, Dennis Bourbeau, Krzysztof E. Kowalski, Anthony F. DiMarco, and Jayme S. Knutson. "Neuromodulation for Functional Electrical Stimulation." Physical Medicine and Rehabilitation Clinics of North America 30, no. 2 (May 2019): 301–18. http://dx.doi.org/10.1016/j.pmr.2018.12.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

HAMBRECHT, F. TERRY. "Functional Electrical Stimulation: An Overview." Pacing and Clinical Electrophysiology 12, no. 5 (May 1989): 840–43. http://dx.doi.org/10.1111/j.1540-8159.1989.tb01907.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Bajd, Tadej, Marincek Crt, and Marko Munih. "Functional electrical stimulation with surface electrodes." Journal of Automatic Control 18, no. 2 (2008): 3–9. http://dx.doi.org/10.2298/jac0802003b.

Full text
Abstract:
The review investigates the objective evidences of benefits derived from surface functional electrical stimulation (FES) of lower and upper extremities for people after incomplete spinal cord injury (SCI) and stroke. FES can offer noticeable benefits in walking ability. It can be efficiently combined with treadmill and body weight support. Voluntary muscle strength and endurance gain can be achieved through FES assisted gait training together with increased gait velocity in absence of electrical stimulator. Cyclic FES, FES augmented by biofeedback, and FES used in various daily activities can result in substantial improvements of the voluntary control of upper extremities.
APA, Harvard, Vancouver, ISO, and other styles
16

Everaert, Dirk G., Aiko K. Thompson, Su Ling Chong, and Richard B. Stein. "Does Functional Electrical Stimulation for Foot Drop Strengthen Corticospinal Connections?" Neurorehabilitation and Neural Repair 24, no. 2 (October 27, 2009): 168–77. http://dx.doi.org/10.1177/1545968309349939.

Full text
Abstract:
Background. Long-term use of a foot-drop stimulator applying functional electrical stimulation (FES) to the common peroneal nerve improves walking performance even when the stimulator is off. This “therapeutic” effect might result from neuroplastic changes. Objective. To determine the effect of long-term use of a foot-drop stimulator on residual corticospinal connections in people with central nervous system disorders. Methods. Ten people with nonprogressive disorders (eg, stroke) and 26 with progressive disorders (eg, multiple sclerosis) used a foot-drop stimulator for 3 to 12 months while walking in the community. Walking performance and electrophysiological variables were measured before and after FES use. From the surface electromyogram of the tibialis anterior muscle, we measured the following: (1) motor-evoked potential (MEP) from transcranial magnetic stimulation over the motor cortex, (2) maximum voluntary contraction (MVC), and (3) maximum motor wave (Mmax) from stimulating the common peroneal nerve. Results. After using FES, MEP and MVC increased significantly by comparable amounts, 50% and 48%, respectively, in the nonprogressive group and 27% and 17% in the progressive group; the changes were positively correlated ( R2 = .35; P < .001). Walking speed increased with the stimulator off (therapeutic effect) by 24% ( P = .008) and 7% ( P = .014) in the nonprogressive and progressive groups, respectively. The changes in Mmax were small and not correlated with changes in MEP. Conclusions. The large increases in MVC and MEP suggest that regular use of a foot-drop stimulator strengthens activation of motor cortical areas and their residual descending connections, which may explain the therapeutic effect on walking speed.
APA, Harvard, Vancouver, ISO, and other styles
17

Popo, Ignacio Hernandez, Alejandro Emilio Leyva Gutiérrez, Rigoberto Martínez Méndez, and Pedro David Alonso Serrano. "Etapa de Potencia de un Estimulador Transcutáneo para Estimulación Funcional y Medular." RECIBE, REVISTA ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA 7, no. 2 (October 31, 2018): B2–1—B2–19. http://dx.doi.org/10.32870/recibe.v7i2.108.

Full text
Abstract:
La enfermedad vascular cerebral (EVC) afecta cada año a más de 15 millones de personas en el mundo, de ellos, 5 millones sufren discapacidad permanentemente y 5 millones deben pasar por un largo proceso de rehabilitación para regresar a sus vidas normales. Dentro de las técnicas de rehabilitación, la Estimulación Eléctrica Funcional (EEF) se ha utilizado durante décadas para tratar a pacientes hemipléjicos con un éxito relativo. Otra técnica que ha logrado resultados experimentales muy promisorios es la estimulación medular invasiva. Esta consiste en colocar electrodos directamente en la médula y estimular eléctricamente. Con el fin de evitar la invasividad de esta técnica, recientemente se ha propuesto la Estimulación Eléctrica Medular Transcutánea (EEMT). Esta técnica aún se encuentra en etapa de investigación, y una de las principales limitantes es la falta de estimuladores capaces de proveer la potencia y generación de pulsos adecuados para una adecuada estimulación y que permitan el desarrollo de más investigación sobre esta técnica. El prototipo aquí presentado consiste en la etapa de potencia de un estimulador capaz de generar pulsos para las técnicas de estimulación EEF y EEMT y formará parte de otros bloques (no presentados en este documento) para conformar un estimulador bimodal con fines de investigación que se utilizará en el Instituto Nacional de Rehabilitación LGII. El dispositivo presentado es capaz de proporcionar impulsos bifásicos de 50 μs a 500 μs, con frecuencia variable en un rango de 1 a 150 Hz con una amplitud de más de 190 mA, así como una corriente constante de hasta 10 mA. Estos parámetros son adecuados para realizar estimulación de tipo EEF y EEMT de acuerdo con el estado del arte de la técnica.
APA, Harvard, Vancouver, ISO, and other styles
18

Biss, S., and B. Fox. "Functional electrical stimulation in incomplete tetraplegia." Physiotherapy Practice 4, no. 3 (January 1988): 163–67. http://dx.doi.org/10.3109/09593988809159067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

MURAKAMI, Tatsuhiro, Kiyoyasu HASEGAWA, Taro OHASHI, Yoshitaka YANAGIHARA, Goro OBINATA, Atsushi NAKAYAMA, Kiyoshi NAGASAKU, and Yoichi SHIMADA. "Teleoperation System Using Functional Electrical Stimulation." Transactions of the Society of Instrument and Control Engineers 36, no. 12 (2000): 1132–37. http://dx.doi.org/10.9746/sicetr1965.36.1132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Peckham, P. Hunter, and Jayme S. Knutson. "Functional Electrical Stimulation for Neuromuscular Applications." Annual Review of Biomedical Engineering 7, no. 1 (August 15, 2005): 327–60. http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Turi, Zsolt, Walter Paulus, and Andrea Antal. "Functional Neuroimaging and Transcranial Electrical Stimulation." Clinical EEG and Neuroscience 43, no. 3 (July 2012): 200–208. http://dx.doi.org/10.1177/1550059412444978.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Twist, Donna J., Joan A. Culpepper-Morgan, Kristjan T. Ragnarsson, Claudio R. Petrillo, and Mary Jeanne Kreek. "NEUROENDOCRINE CHANGES DURING FUNCTIONAL ELECTRICAL STIMULATION." American Journal of Physical Medicine & Rehabilitation 71, no. 3 (June 1992): 156–63. http://dx.doi.org/10.1097/00002060-199206000-00006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sujith, O. K. "Functional electrical stimulation in neurological disorders." European Journal of Neurology 15, no. 5 (May 2008): 437–44. http://dx.doi.org/10.1111/j.1468-1331.2008.02127.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Popovic, Milos R., and Thierry Keller. "Modular transcutaneous functional electrical stimulation system." Medical Engineering & Physics 27, no. 1 (January 2005): 81–92. http://dx.doi.org/10.1016/j.medengphy.2004.08.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Okada, N., Y. Igawa, and O. Nishizawa. "Functional Electrical Stimulation for Detrusor Instability." International Urogynecology Journal and Pelvic Floor Dysfunction 10, no. 5 (August 1, 1999): 329–35. http://dx.doi.org/10.1007/s001929970011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Subramanya, Krishna Bhat, Ajithanjaya Kumar Mijar Kanakabettu, and Manjunatha Mahadevappa. "Functional electrical stimulation for stoke rehabilitation." Medical Hypotheses 78, no. 5 (May 2012): 687. http://dx.doi.org/10.1016/j.mehy.2012.01.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ochi, Mitsuhiro, Noriaki Kato, Satoru Saeki, and Kenji Hachisuka. "Gait Rehabilitation Using Functional Electrical Stimulation." Japanese Journal of Rehabilitation Medicine 54, no. 1 (2017): 19–22. http://dx.doi.org/10.2490/jjrmc.54.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Jovičić, Nenad S., Lazar V. Saranovac, and Dejan B. Popović. "Wireless distributed functional electrical stimulation system." Journal of NeuroEngineering and Rehabilitation 9, no. 1 (2012): 54. http://dx.doi.org/10.1186/1743-0003-9-54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sarddar, Debabrata, Madhurendra Kumar, and Suman Kumar Sikdar. "Functional Electrical Stimulation using PIC Microcontroller." International Journal of Computer Applications 44, no. 12 (April 30, 2012): 31–35. http://dx.doi.org/10.5120/6317-8662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Loeb, G. E., C. J. Zamin, J. H. Schulman, and P. R. Troyk. "Injectable microstimulator for functional electrical stimulation." Medical & Biological Engineering & Computing 29, no. 6 (November 1991): NS13—NS19. http://dx.doi.org/10.1007/bf02446097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Popović, Dejan B. "Advances in functional electrical stimulation (FES)." Journal of Electromyography and Kinesiology 24, no. 6 (December 2014): 795–802. http://dx.doi.org/10.1016/j.jelekin.2014.09.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Fornusek, C., T. H. Gwinn, and R. Heard. "Cardiorespiratory responses during functional electrical stimulation cycling and electrical stimulation isometric exercise." Spinal Cord 52, no. 8 (June 3, 2014): 635–39. http://dx.doi.org/10.1038/sc.2014.85.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Buckmire, Alie J., Danielle R. Lockwood, Cynthia J. Doane, and Andrew J. Fuglevand. "Distributed stimulation increases force elicited with functional electrical stimulation." Journal of Neural Engineering 15, no. 2 (January 16, 2018): 026001. http://dx.doi.org/10.1088/1741-2552/aa9820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

SASAKI, Hisayuki, and Takayuki TAKAHASHI. "Stimulation for multiple finger exion by functional electrical stimulation." Proceedings of JSME annual Conference on Robotics and Mechatronics (Robomec) 2016 (2016): 2A2–02b5. http://dx.doi.org/10.1299/jsmermd.2016.2a2-02b5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hu, Jia Ming, Mei Zhen Qian, Hisashi Tanigawa, Xue Mei Song, and Anna Wang Roe. "Focal Electrical Stimulation of Cortical Functional Networks." Cerebral Cortex 30, no. 10 (June 2, 2020): 5532–43. http://dx.doi.org/10.1093/cercor/bhaa136.

Full text
Abstract:
Abstract Traditional electrical stimulation of brain tissue typically affects relatively large volumes of tissue spanning multiple millimeters. This low spatial resolution stimulation results in nonspecific functional effects. In addition, a primary shortcoming of these designs was the failure to take advantage of inherent functional organization in the cerebral cortex. Here, we describe a new method to electrically stimulate the brain which achieves selective targeting of single feature-specific domains in visual cortex. We provide evidence that this paradigm achieves mesoscale, functional network-specificity, and intensity dependence in a way that mimics visual stimulation. Application of this approach to known feature domains (such as color, orientation, motion, and depth) in visual cortex may lead to important functional improvements in the specificity and sophistication of brain stimulation methods and has implications for visual cortical prosthetic design.
APA, Harvard, Vancouver, ISO, and other styles
36

Romadhon, Aditya Johan. "Stimulasi Magnetik Lebih Meningkatkan Kemampuan Fungsional pada Pasien Nyeri Punggung Bawah Dibanding Stimulasi Elektris." Jurnal Keterapian Fisik 5, no. 1 (May 4, 2020): 21–27. http://dx.doi.org/10.37341/jkf.v5i1.169.

Full text
Abstract:
AbstractIntroduction : A long with the development of physical agents modalities, there are many recent modalities that has many beneficial for physical therapy practice, generally physical agents modalities are suit for musculoskeletal cases, one of beneficial effect for musculoskeletal case is maintaining of muscle’s physiology, electrical stimulations are familiar modalities we find in physiotherapy practice, this modality is use to inhibit pain signal and produce muscle contraction. Recently a new physical agent modality such as magnetic stimulation also has smiliar effect such as electrical stimulations, however there are less evidence to compare magnetic and electrical stimulation for musculoskeletal problems. Objective : Purpose of this study to compare magnetic and electrical stimulation effect for reducing pain and improve functional activity in low back pain patients. Methods : 60 low back pain patients recruited as subjects, devided into two groups, Group 1 given magnetic stimulation and Group 2 given electrical stimulation, after four mounth intervention two days in every weeks, pain index and functional activity measured with Oswestry instrument. Result : After 4 mounth intervention we find reducing pain index and improvement of functional activity in two groups, Group 1 the Oswestry score is 0.2 ± 0.08, while Group 2 the Oswestry score is 0.3 ± 0.05, based on the result we analyzed with Wilcoxon test, we find significant different between two groups, the significant value is 0.001 (p<0.05). Conclussion : magnetic stimulation is more effective to reduce pain index and improve functional activity by using Oswestry instrument than electrical stimulation. Keyword : Magnetic, Electrical, Stimulation, C fiber, A delta fiber
APA, Harvard, Vancouver, ISO, and other styles
37

MacEwan, Matthew R., Paul Gamble, Manu Stephen, and Wilson Z. Ray. "Therapeutic electrical stimulation of injured peripheral nerve tissue using implantable thin-film wireless nerve stimulators." Journal of Neurosurgery 130, no. 2 (February 2019): 486–95. http://dx.doi.org/10.3171/2017.8.jns163020.

Full text
Abstract:
OBJECTIVEElectrical stimulation of peripheral nerve tissue has been shown to accelerate axonal regeneration. Yet existing methods of applying electrical stimulation to injured peripheral nerves have presented significant barriers to clinical translation. In this study, the authors examined the use of a novel implantable wireless nerve stimulator capable of simultaneously delivering therapeutic electrical stimulation of injured peripheral nerve tissue and providing postoperative serial assessment of functional recovery.METHODSFlexible wireless stimulators were fabricated and implanted into Lewis rats. Thin-film implants were used to deliver brief electrical stimulation (1 hour, 20 Hz) to sciatic nerves after nerve crush or nerve transection-and-repair injuries.RESULTSElectrical stimulation of injured nerves via implanted wireless stimulators significantly improved functional recovery. Brief electrical stimulation was observed to increase the rate of functional recovery after both nerve crush and nerve transection-and-repair injuries. Wireless stimulators successfully facilitated therapeutic stimulation of peripheral nerve tissue and serial assessment of nerve recovery.CONCLUSIONSImplantable wireless stimulators can deliver therapeutic electrical stimulation to injured peripheral nerve tissue. Implantable wireless nerve stimulators might represent a novel means of facilitating therapeutic electrical stimulation in both intraoperative and postoperative settings.
APA, Harvard, Vancouver, ISO, and other styles
38

Kagaya, Hitoshi, Yoichi Shimada, Kozo Sato, Mineyoshi Sato, Kiyomi Iizuka, and Goro Obinata. "An electrical knee lock system for functional electrical stimulation." Archives of Physical Medicine and Rehabilitation 77, no. 9 (September 1996): 870–73. http://dx.doi.org/10.1016/s0003-9993(96)90272-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Ye, Gongkai, Saima S. Ali, Austin J. Bergquist, Milos R. Popovic, and Kei Masani. "A Generic Sequential Stimulation Adapter for Reducing Muscle Fatigue during Functional Electrical Stimulation." Sensors 21, no. 21 (October 30, 2021): 7248. http://dx.doi.org/10.3390/s21217248.

Full text
Abstract:
Background: Clinical applications of conventional functional electrical stimulation (FES) administered via a single electrode are limited by rapid onset neuromuscular fatigue. “Sequential” (SEQ) stimulation, involving the rotation of pulses between multiple active electrodes, has been shown to reduce fatigue compared to conventional FES. However, there has been limited adoption of SEQ in research and clinical settings. Methods: The SEQ adapter is a small, battery-powered device that transforms the output of any commercially available electrical stimulator into SEQ stimulation. We examined the output of the adaptor across a range of clinically relevant stimulation pulse parameters to verify the signal integrity preservation ability of the SEQ adapter. Pulse frequency, amplitude, and duration were varied across discrete states between 4 and 200 Hz, 10 and100 mA, and 50 and 2000 μs, respectively. Results: A total of 420 trials were conducted, with 80 stimulation pulses per trial. The SEQ adapter demonstrated excellent preservation of signal integrity, matching the pulse characteristics of the originating stimulator within 1% error. The SEQ adapter operates as expected at pulse frequencies up to 160 Hz, failing at a frequency of 200 Hz. Conclusion: The SEQ adapter represents an effective and low-cost solution to increase the utilization of SEQ in existing rehabilitation paradigms.
APA, Harvard, Vancouver, ISO, and other styles
40

Marsolais, E. B., and R. Kobetic. "Functional electrical stimulation for walking in paraplegia." Journal of Bone & Joint Surgery 69, no. 5 (June 1987): 728–33. http://dx.doi.org/10.2106/00004623-198769050-00014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Edlich, Richard, and William A. Randall. "EDITORIAL: Modern Concepts of Functional Electrical Stimulation." Journal of Long-Term Effects of Medical Implants 12, no. 3 (2002): 2. http://dx.doi.org/10.1615/jlongtermeffmedimplants.v12.i3.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Edlich, Richard, Robert P. Wilder, Tyler C. Wind, and Brenda E. Crider. "Functional Electrical Stimulation for a Dropped Foot." Journal of Long-Term Effects of Medical Implants 12, no. 3 (2002): 12. http://dx.doi.org/10.1615/jlongtermeffmedimplants.v12.i3.20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bhatia, Dinesh, Gagan Bansal, R. P. Tewari, and K. K. Shukla. "State of art: Functional Electrical Stimulation (FES)." International Journal of Biomedical Engineering and Technology 5, no. 1 (2011): 77. http://dx.doi.org/10.1504/ijbet.2011.038474.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Granat, Malcolm H. "Functional electrical stimulation and hybrid orthosis systems." Current Opinion in Orthopaedics 4, no. 6 (December 1993): 105–9. http://dx.doi.org/10.1097/00001433-199312000-00019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rattay, F., and M. Aberham. "Modeling axon membranes for functional electrical stimulation." IEEE Transactions on Biomedical Engineering 40, no. 12 (1993): 1201–9. http://dx.doi.org/10.1109/10.250575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

STEIN, RICHARD B. "Functional Electrical Stimulation after Spinal Cord Injury." Journal of Neurotrauma 16, no. 8 (August 1999): 713–17. http://dx.doi.org/10.1089/neu.1999.16.713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mayr, Winfried, and Manfred Bijak. "Current Trends in Functional Electrical Stimulation Research." Artificial Organs 26, no. 3 (March 2002): 213. http://dx.doi.org/10.1046/j.1525-1594.2002.00905.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Geirsson, G., and M. Fall. "Maximal Functional Electrical Stimulation in Routine Practice." Journal of Urology 160, no. 6 Part 1 (December 1998): 2305–6. http://dx.doi.org/10.1016/s0022-5347(01)62341-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Fisekovic, N., and D. B. Popovic. "New controller for functional electrical stimulation systems." Medical Engineering & Physics 23, no. 6 (July 2001): 391–99. http://dx.doi.org/10.1016/s1350-4533(01)00069-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rushton, D. N. "Functional Electrical Stimulation and rehabilitation—an hypothesis." Medical Engineering & Physics 25, no. 1 (January 2003): 75–78. http://dx.doi.org/10.1016/s1350-4533(02)00040-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography