Academic literature on the topic 'Functional depth'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Functional depth.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Functional depth"
Claeskens, Gerda, Mia Hubert, Leen Slaets, and Kaveh Vakili. "Multivariate Functional Halfspace Depth." Journal of the American Statistical Association 109, no. 505 (January 2, 2014): 411–23. http://dx.doi.org/10.1080/01621459.2013.856795.
Full textHelander, Sami, Germain Van Bever, Sakke Rantala, and Pauliina Ilmonen. "Pareto depth for functional data." Statistics 54, no. 1 (December 12, 2019): 182–204. http://dx.doi.org/10.1080/02331888.2019.1700418.
Full textTuya, F., A. Herrero-Barrencua, N. E. Bosch, A. D. Abreu, and R. Haroun. "Reef fish at a remote tropical island (Principe Island, Gulf of Guinea): disentangling taxonomic, functional and phylogenetic diversity patterns with depth." Marine and Freshwater Research 69, no. 3 (2018): 395. http://dx.doi.org/10.1071/mf17233.
Full textNawy, Tal. "In-depth functional dissection of enhancers." Nature Methods 9, no. 4 (March 27, 2012): 323. http://dx.doi.org/10.1038/nmeth.1963.
Full textIeva, Francesca, and Anna M. Paganoni. "Depth Measures for Multivariate Functional Data." Communications in Statistics - Theory and Methods 42, no. 7 (April 2013): 1265–76. http://dx.doi.org/10.1080/03610926.2012.746368.
Full textLópez-Pintado, Sara, and Juan Romo. "Depth-based inference for functional data." Computational Statistics & Data Analysis 51, no. 10 (June 2007): 4957–68. http://dx.doi.org/10.1016/j.csda.2006.10.029.
Full textLehman, Will, and R. Hasanzadeh Nafari. "An Empirical, Functional approach to Depth Damages." E3S Web of Conferences 7 (2016): 05002. http://dx.doi.org/10.1051/e3sconf/20160705002.
Full textHowieson, Diane B. "The Functional Brain in Depth and Breadth." Journal of the International Neuropsychological Society 4, no. 6 (November 1998): 691. http://dx.doi.org/10.1017/s1355617798256165.
Full textAgostinelli, Claudio. "Local half-region depth for functional data." Journal of Multivariate Analysis 163 (January 2018): 67–79. http://dx.doi.org/10.1016/j.jmva.2017.10.004.
Full textSguera, Carlo, Pedro Galeano, and Rosa Lillo. "Spatial depth-based classification for functional data." TEST 23, no. 4 (May 20, 2014): 725–50. http://dx.doi.org/10.1007/s11749-014-0379-1.
Full textDissertations / Theses on the topic "Functional depth"
Adams, Daniel Lewis. "Functional organisation of the monkey visual cortex for stereoscopic depth." Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268000.
Full textThompson, Helen Louise. "Molecular architecture and functional group effects on segregation in polymers." Thesis, Durham University, 1998. http://etheses.dur.ac.uk/5000/.
Full textSood, Kanika. "Comparison of Functional Dependency Extraction Methods and an Application of Depth First Search." Thesis, University of Oregon, 2014. http://hdl.handle.net/1794/18413.
Full textObrová, Klára [Verfasser], and Michael [Akademischer Betreuer] Lanzer. "In depth functional characterization of Plasmodium berghei ferlin-like protein / Klara Obrova ; Betreuer: Michael Lanzer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177044218/34.
Full textRisterucci, Paul. "Coupling of electron spectroscopies for high resolution elemental depth distribution profiles in complex architectures of functional materials." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0047/document.
Full textThis thesis tackles the challenge of probing in a non-destructive way deeply buried interfaces in multilayer stacks used in technologically-relevant devices with an innovative photoemission method based on Hard X-ray PhotoElectron Spectroscopy (HAXPES) and inelastic background analysis. In this thesis, a numerical procedure has been implemented to quantify the matching between a HAXPES measured inelastic background and a simulated inelastic background that is representative of a given depth distribution of the chemical elements. The method allows retrieving depth distributions at large depths via a semi-automated procedure. First, this method has been tested by studying an ultra-thin layer of lanthanum buried at depth >50 nm in a high-k metal gate sample. The influence of the parameters involved in the analysis is studied unraveling the primary importance of the inelastic scattering cross section. The combination of HAXPES with inelastic background analysis using this novel method maximizes the probing depth to an unprecedented level, allowing to probe the sample up to 65 nm below the surface with a high sensitivity to a nm-thick layer. Second, the previously-checked inelastic background analysis is combined with that of high resolution core-level spectra in the case of the source part of a high electron mobility transistor. The two analyses are complementary as they allow retrieving the elemental depth distribution and the chemical state, respectively. The result gives a complete picture of the elemental intermixing within the sample when it is annealed at various temperatures
Denne afhandling omhandler problemet med at probe dybt begravede grænseflader i multilags stacks, som bruges i teknologisk relevante devices, med en innovativ fotoemissions metode, der er baseret på Hard X-ray PhotoElectron Spectroscopy (HAXPES) og analyse af den uelastiske baggrund. I afhandlingen er en numerisk procedure blevet implementeret til at kvantificere forskellen mellem en HAXPES målt uelastisk baggrund og en modelleret baggrund, som svarer til en given dybdefordeling af atomerne. Metoden muliggør, med en halv-automatisk procedure, at bestemme dybdefordelingen i store dybder. Metoden er først blevet testet ved at studere et ultra-tyndt lag af lanthan, som er begravet i en dybde > 50 nm i en high-k-metal-gate prøve. Indflydelsen af parametrene der ingår i analysen er blevet studeret for at opklare den primære betydning af det anvendte uelastiske spredningstværsnit. Kombinationen af HAXPES med analyse af den uelastiske baggrund og brug af den nye numeriske metode giver en hidtil uset probe-dybde, som giver mulighed for at probe den atomare sammens ætning i op til 65 nm dybde under overfladen og med høj følsomhed af et kun nm tykt lag. Dernæst er den uelastiske baggrundsanalyse blevet kombineret med højopløst core-level spektroskopi for at studere de aktive dele i en høj-elektronmobilitets transistor. De to analyser er komplementære, idet de henholdsvis bestemmer den atomare fordeling og atomernes kemiske bindingstilstand. Resultatet giver et fuldstændigt billede af atomernes omfordeling i prøven når denne opvarmes til forskellige temperaturer
Staerman, Guillaume. "Functional anomaly detection and robust estimation." Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. http://www.theses.fr/2022IPPAT021.
Full textEnthusiasm for Machine Learning is spreading to nearly all fields such as transportation, energy, medicine, banking or insurance as the ubiquity of sensors through IoT makes more and more data at disposal with an ever finer granularity. The abundance of new applications for monitoring of complex infrastructures (e.g. aircrafts, energy networks) together with the availability of massive data samples has put pressure on the scientific community to develop new reliable Machine-Learning methods and algorithms. The work presented in this thesis focuses around two axes: unsupervised functional anomaly detection and robust learning, both from practical and theoretical perspectives.The first part of this dissertation is dedicated to the development of efficient functional anomaly detection approaches. More precisely, we introduce Functional Isolation Forest (FIF), an algorithm based on randomly splitting the functional space in a flexible manner in order to progressively isolate specific function types. Also, we propose the novel notion of functional depth based on the area of the convex hull of sampled curves, capturing gradual departures from centrality, even beyond the envelope of the data, in a natural fashion. Estimation and computational issues are addressed and various numerical experiments provide empirical evidence of the relevance of the approaches proposed. In order to provide recommendation guidance for practitioners, the performance of recent functional anomaly detection techniques is evaluated using two real-world data sets related to the monitoring of helicopters in flight and to the spectrometry of construction materials.The second part describes the design and analysis of several robust statistical approaches relying on robust mean estimation and statistical data depth. The Wasserstein distance is a popular metric between probability distributions based on optimal transport. Although the latter has shown promising results in many Machine Learning applications, it suffers from a high sensitivity to outliers. To that end, we investigate how to leverage Medians-of-Means (MoM) estimators to robustify the estimation of Wasserstein distance with provable guarantees. Thereafter, a new statistical depth function, the Affine-Invariant Integrated Rank-Weighted (AI-IRW) depth is introduced. Beyond the theoretical analysis carried out, numerical results are presented, providing strong empirical confirmation of the relevance of the depth function proposed. The upper-level sets of statistical depths—the depth-trimmed regions—give rise to a definition of multivariate quantiles. We propose a new discrepancy measure between probability distributions that relies on the average of the Hausdorff distance between the depth-based quantile regions w.r.t. each distribution and demonstrate that it benefits from attractive properties of data depths such as robustness or interpretability. All algorithms developed in this thesis are open-sourced and available online
Gühmann, Martin [Verfasser], and Gáspár [Akademischer Betreuer] Jékely. "A functional characterization of a Go‑opsin and a ratio-chromatic depth gauge in Platynereis dumerilii / Martin Gühmann ; Betreuer: Gáspár Jékely." Tübingen : Universitätsbibliothek Tübingen, 2017. http://d-nb.info/1167247051/34.
Full textDima, Danai. "Investigation of neural correlates of bottom-up and top-down processing with functional magnetic resonance imaging and electroencephalogram. Exemplified by the binocular depth inversion-paradigm." Hannover Bibliothek der Tierärztlichen Hochschule Hannover, 2009. http://d-nb.info/1000116735/34.
Full textBaldy, Ngayo Christine. "Enabling Conditions for Organizational Change Production by Cross Functional Teams in Multinational Corporations : An In-Depth Multi Cases Study of the Marketing, Sales and Distribution Transformation in Pharmaceutical Multinational Companies." Phd thesis, HEC, 2011. http://pastel.archives-ouvertes.fr/pastel-00708802.
Full textDima, Danai [Verfasser]. "Investigation of neural correlates of bottom-up and top-down processing with functional magnetic resonance imaging and electroencephalogram : exemplified by the binocular depth inversion-paradigm / Danai Dima." Hannover : Bibliothek der Tierärztlichen Hochschule Hannover, 2009. http://d-nb.info/1000116735/34.
Full textBooks on the topic "Functional depth"
Cathro, Jo. Functional and healthy foods: In-depth review of UK consumer attitudes. (Leatherhead): Market Intelligence Section, 1995.
Find full textRiver, Laura-Marie. Functionally Ill: Revelations. Las Vegas, Nevada: Laura-Marie, 2019.
Find full textUnited States. General Accounting Office. General Government Division. Commerce's trade functions. Washington, D.C. (P.O. Box 37050, Washington 20013): The Office, 1995.
Find full textMontero, Rosa. The Delta Function. Lincoln: University of Nebraska Press, 1991.
Find full textNew York (State). Dept. of Environmental Conservation. Organization and function book. [Albany, N.Y.]: The Department, 1993.
Find full textRiver, Laura-Marie. Functionally Ill: To Help Yourself & Others. Las Vegas, Nevada: Laura-Marie, 2019.
Find full textRiver, Laura-Marie. Functionally Ill: More Vibrant Than Usual. Las Vegas, Nevada: Laura-Marie, 2020.
Find full textA, Hitt Michael, and Marketing Science Institute, eds. The birth, life and death of a cross-functional new product design team. Cambridge, Mass: Marketing Science Institute, 1996.
Find full textWingquist, Carl F. Bit wear-flat temperature as a function of depth of cut and speed. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Find full textR, Maio Gregory, and Olson James M. 1953-, eds. Why we evaluate: Functions of attitudes. Mahwah, N.J: Lawrence Erlbaum, 2000.
Find full textBook chapters on the topic "Functional depth"
Nieto-Reyes, Alicia, and Heather Battey. "Statistical functional depth." In Contributions to Statistics, 197–202. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55846-2_26.
Full textAravinth, Anto. "Monads in Depth." In Beginning Functional JavaScript, 125–40. Berkeley, CA: Apress, 2017. http://dx.doi.org/10.1007/978-1-4842-2656-8_9.
Full textAravinth, Anto, and Srikanth Machiraju. "Monads in Depth." In Beginning Functional JavaScript, 181–203. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4087-8_9.
Full textCuesta-Albertos, Juan, and Alicia Nieto-Reyes. "A Random Functional Depth." In Contributions to Statistics, 121–26. Heidelberg: Physica-Verlag HD, 2008. http://dx.doi.org/10.1007/978-3-7908-2062-1_20.
Full textBalzanella, Antonio, and Romano Elvira. "A Depth Function for Geostatistical Functional Data." In Studies in Classification, Data Analysis, and Knowledge Organization, 9–16. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17377-1_2.
Full textLòpez-Pintado, Sara, and Ying Wei. "Depth for Sparse Functional Data." In Contributions to Statistics, 209–12. Heidelberg: Physica-Verlag HD, 2011. http://dx.doi.org/10.1007/978-3-7908-2736-1_32.
Full textLoring, David W., Kimford J. Meador, and Gregory P. Lee. "Functional Hippocampal Assessment with Depth Electrodes." In The Neuropsychology of Epilepsy, 247–62. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-2350-9_12.
Full textNieto-Reyes, Alicia. "On the Properties of Functional Depth." In Contributions to Statistics, 239–44. Heidelberg: Physica-Verlag HD, 2011. http://dx.doi.org/10.1007/978-3-7908-2736-1_37.
Full textLópez-Pintado, Sara, and Juan Romo. "Depth-based classification for functional data." In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 103–19. Providence, Rhode Island: American Mathematical Society, 2006. http://dx.doi.org/10.1090/dimacs/072/08.
Full textNagy, Stanislav. "Depth in Infinite-dimensional Spaces." In Functional and High-Dimensional Statistics and Related Fields, 187–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47756-1_25.
Full textConference papers on the topic "Functional depth"
Mertzanidou, Thomy, Nick Calvert, David S. Tuch, Danail Stoyanov, and Simon R. Arridge. "Tomosynthesis method for depth resolution of beta emitters." In Biomedical Applications in Molecular, Structural, and Functional Imaging, edited by Barjor Gimi and Andrzej Krol. SPIE, 2019. http://dx.doi.org/10.1117/12.2511753.
Full textKwon, Amy, and Ming Ouyang. "Clustering of Functional Data by Band Depth." In 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2016. http://dx.doi.org/10.4108/eai.3-12-2015.2262364.
Full textMa, Yaqi, Fei Wu, Yishen Xu, and Yan Ye. "Design of bifocal metalens with extended depth of focus." In International Conference on Optoelectronic Information and Functional Materials (OIFM 2023), edited by Yabo Fu and Kolla Bhanu Prakash. SPIE, 2023. http://dx.doi.org/10.1117/12.2686971.
Full textTanifuji, Manabu, Wataru Suzuki, R. Uma Maheswari, and Kazushige Tsunoda. "Depth resolved imaging of neural activity by optical coherence tomography (functional OCT)." In Asia Communications and Photonics Conference and Exhibition. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/acp.2009.fu3.
Full textContini, Davide, Lorenzo Spinelli, Alessandro Torricelli, Antonio Pifferi, and Rinaldo Cubeddu. "Novel method for depth-resolved brain functional imaging by time-domain NIRS." In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/ecbo.2007.6629_7.
Full textContini, Davide, Lorenzo Spinelli, Alessandro Torricelli, Antonio Pifferi, and Rinaldo Cubeddu. "Novel method for depth-resolved brain functional imaging by time-domain NIRS." In European Conference on Biomedical Optics, edited by Brian W. Pogue and Rinaldo Cubeddu. SPIE, 2007. http://dx.doi.org/10.1117/12.728104.
Full textBauer, Waldemar, Adrian Dudek, and Jerzy Baranowski. "Recognizing Commutator Motors Fault from Acoustics Signals Using Bayesian Functional Data Depth." In 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE, 2022. http://dx.doi.org/10.1109/mmar55195.2022.9874262.
Full textCao, Wei, Yurong Li, and Qiurong Xie. "In-Depth Analysis of Functional Corticomuscular Coupling after Stroke Using UEFD-PTE." In 2023 7th Asian Conference on Artificial Intelligence Technology (ACAIT). IEEE, 2023. http://dx.doi.org/10.1109/acait60137.2023.10528465.
Full textTian, Fenghua, Haijing Niu, Sabin Khadka, Zi-Jing Lin, and Hanli Liu. "Algorithmic depth compensation improves transverse resolution and quantification in functional diffuse optical tomography." In SPIE BiOS, edited by Bruce J. Tromberg, Arjun G. Yodh, Mamoru Tamura, Eva M. Sevick-Muraca, and Robert R. Alfano. SPIE, 2011. http://dx.doi.org/10.1117/12.875835.
Full textErnst, D., M. Peyer, D. Täschler, Patrick Steiner, A. Bossen, B. Považay, and Ch Meier. "Multi-channel near-infrared spectrometer for functional depth-resolved tissue examination and positioning applications." In SPIE BiOS, edited by Israel Gannot. SPIE, 2014. http://dx.doi.org/10.1117/12.2036381.
Full textReports on the topic "Functional depth"
Gonzales, Anthony Peter. CARICOM Report No. 1 (2002). Inter-American Development Bank, January 2002. http://dx.doi.org/10.18235/0008586.
Full textLevin, Ilan, John W. Scott, Moshe Lapidot, and Moshe Reuveni. Fine mapping, functional analysis and pyramiding of genes controlling begomovirus resistance in tomato. United States Department of Agriculture, November 2014. http://dx.doi.org/10.32747/2014.7594406.bard.
Full textLers, Amnon, and Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7586455.bard.
Full textCao, Siyang, Yihao Wei, Huihui Xu, Jian Weng, Tiantian Qi, Fei Yu, Su Liu, Ao Xiong, Peng Liu, and Hui Zeng. Crosstalk between Ferroptosis and Chondrocytes in Osteoarthritis: A Systematic Review of in-vivo and in-vitro Studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, March 2023. http://dx.doi.org/10.37766/inplasy2023.3.0044.
Full textAbdolmaleki, Kourosh. PR-453-134504-R05 On Bottom Stability Upgrade - MS III. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2021. http://dx.doi.org/10.55274/r0012195.
Full textSongyang, Zhou. Genetic and Functional Studies of Genes that Regulate DNA-Damage-Induced Cell Death. Fort Belvoir, VA: Defense Technical Information Center, May 2002. http://dx.doi.org/10.21236/ada406809.
Full textSongyang, Zhou. Genetic and Functional Studies of Genes That Regulate DNA-Damage-Induced Cell Death. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada446751.
Full textSongyang, Zhou. Genetic and Functional Studies of Genes That Regulate DNA-Damage-Induced Cell Death. Fort Belvoir, VA: Defense Technical Information Center, May 2003. http://dx.doi.org/10.21236/ada417994.
Full textYang, X., T. A. Buscheck, K. Mansoor, and S. A. Carroll. Magnetotelluric Detection Thresholds as a Function of Leakage Plume Depth, TDS and Volume. Office of Scientific and Technical Information (OSTI), April 2017. http://dx.doi.org/10.2172/1357405.
Full textYang, Ying, Xiangting Huang, Yuge Wang, and Lan Chen. The impact of Triglyceride-Glucose Index on Ischemic Stroke: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0145.
Full text