Journal articles on the topic 'Fullerides'

To see the other types of publications on this topic, follow the link: Fullerides.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fullerides.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Maruyama, Yusei, Tamotsu Inabe, Hironori Ogata, Hajime Hoshi, Naoki Nakamura, Yoshihisa Mori, Yohji Achiba, Shinzo Suzuki, Koichi Kikuchi, and Isao Ikemoto. "Novel Molecular System C60: Fullerites and Fullerides." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 218, no. 1 (June 1992): 297–98. http://dx.doi.org/10.1080/10587259208047057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HUANG, H., and Z. Z. GAN. "IMPURITY EFFECT ON THE TRANSITION TEMPERATURE OF THE SUPERCONDUCTING FULLERIDES." International Journal of Modern Physics B 25, no. 12 (May 10, 2011): 1577–84. http://dx.doi.org/10.1142/s0217979211058924.

Full text
Abstract:
We study the alkali-metal-doped fulleride systems based on an impurity model. The bound states are induced by the impurity potential, and the local density of states of the neighboring molecules at the Fermi level is remarkably reduced. We point out that the superconductivity of the whole system will be destroyed when the average distance between the impurities reaches the order of the coherence length. It gives a reasonable explanation to the strange behavior of the transition temperature of the superconducting fullerides.
APA, Harvard, Vancouver, ISO, and other styles
3

Menelaou, M., Y. Takabayashi, H. E. Okur, R. H. Zadik, and K. Prassides. "Structural and electronic response of overexpanded superconducting fullerides close to the Mott insulator boundary." International Journal of Modern Physics B 32, no. 17 (July 9, 2018): 1840020. http://dx.doi.org/10.1142/s0217979218400209.

Full text
Abstract:
The ternary fulleride, Rb[Formula: see text]Cs[Formula: see text]C[Formula: see text], is the most expanded member of the family of face-centered cubic (fcc) structured superconducting fullerides ever accessed with superconductivity surviving at ambient pressure closest to the Mott insulator boundary. Here, we study the evolution of its structural and electronic properties with temperature. At ambient temperature, Rb[Formula: see text]Cs[Formula: see text]C[Formula: see text] lies in the Mott–Jahn–Teller (MJT) insulating part of the phase diagram. High-resolution synchrotron X-ray diffraction shows that its structure remains strictly cubic at all temperatures, but the transition to the metallic state at [Formula: see text] 50 K — evident in the evolution of the magnetic susceptibility with temperature — is accompanied by a lattice collapse, [Formula: see text]V/V0 of [Formula: see text]. Bulk superconductivity then emerges on further cooling with a T[Formula: see text] of 25.9 K. The results permit the extension of the electronic phase diagram of A3C[Formula: see text] fullerides as close as possible to the metal–insulator (M–I) crossover.
APA, Harvard, Vancouver, ISO, and other styles
4

Prassides, Kosmas, Yasuhiro Takabayashi, and Takeshi Nakagawa. "Mixed valency in rare-earth fullerides." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, no. 1862 (September 7, 2007): 151–61. http://dx.doi.org/10.1098/rsta.2007.2147.

Full text
Abstract:
Mixed-valence phenomena associated with the highly correlated narrow-band behaviour of the 4f electrons in rare earths are well documented for a variety of rare-earth chalcogenides, borides and intermetallics (Kondo insulators and heavy fermions). The family of rare-earth fullerides with stoichiometry RE 2.75 C 60 (RE=Sm, Yb, Eu) also displays an analogous phenomenology and a remarkable sensitivity of the rare-earth valency to external stimuli (temperature and pressure) making them the first known molecular-based members of this fascinating class of materials. Using powerful crystallographic and spectroscopic techniques which provide direct indications of what is happening in these materials at the microscopic level, we find a rich variety of temperature- and pressure-driven abrupt or continuous valence transitions—the electronically active fulleride sublattice acts as an electron reservoir that can accept electrons from or donate electrons to the rare-earth 4f/5d bands, thereby sensitively modulating the valence of the rare-earth sublattice.
APA, Harvard, Vancouver, ISO, and other styles
5

Adebanjo, G. D., P. E. Kornilovitch, and J. P. Hague. "Superlight pairs in face-centred-cubic extended Hubbard models with strong Coulomb repulsion." Journal of Physics: Condensed Matter 34, no. 13 (January 19, 2022): 135601. http://dx.doi.org/10.1088/1361-648x/ac484e.

Full text
Abstract:
Abstract The majority of fulleride superconductors with unusually high transition-temperature to kinetic-energy ratios have a face-centred-cubic (FCC) structure. We demonstrate that, within extended Hubbard models with strong Coulomb repulsion, paired fermions in FCC lattices have qualitatively different properties than pairs in other three-dimensional cubic lattices. Our results show that strongly bound, light, and small pairs can be generated in FCC lattices across a wide range of the parameter space. We estimate that such pairs can Bose condense at high temperatures even if the lattice constant is large (as in the fullerides).
APA, Harvard, Vancouver, ISO, and other styles
6

Prassides, Kosmas. "Do Fullerene Superconductors Belong to the High-Tc Superconductivity Universe?" Acta Crystallographica Section A Foundations and Advances 70, a1 (August 5, 2014): C619. http://dx.doi.org/10.1107/s2053273314093802.

Full text
Abstract:
A3C60 (A = alkali metal) superconductors were known to adopt face-centred cubic (fcc) structures with their superconducting Tc increasing monotonically with increasing interfullerene spacing, reaching a 33 K maximum for RbCs2C60 – this physical picture had remained unaltered since 1992. Trace superconductivity (s/c fraction<0.1%) at 40 K under pressure was also reported in 1995 in multiphase samples with nominal composition Cs3C60. Despite numerous attempts by many groups worldwide, this remained unconfirmed and the structure and composition of the material responsible for superconductivity unidentified. Thus the possibility of enhancing fulleride superconductivity and understanding the structures and properties of these archetypal molecular solids had remained elusive. Here I will present our recent progress in this field in accessing high-symmetry hyperexpanded alkali fullerides in the vicinity of the Mott-Hubbard metal-insulator boundary and at previously inaccessible intermolecular separations. The physical picture that emerges for the alkali fullerides is that, contrary to long-held beliefs, they are the simplest members of the high-Tc superconductivity family. We demonstrated this by showing that in the two hyperexpanded Cs3C60 polymorphs (fcc- and A15-structured) [1-3], superconductivity emerges upon applied pressure out of an antiferromagnetic insulating state and displays an unconventional behaviour – a superconductivity dome – explicable by the prominent role of strong electron correlations.
APA, Harvard, Vancouver, ISO, and other styles
7

Fullagar, Wilfred K. "Molecular Fullerides." Fullerene Science and Technology 7, no. 6 (November 1999): 1175–79. http://dx.doi.org/10.1080/10641229909350307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kulbachinskii, V. A., B. M. Bulychev, V. G. Kytin, A. V. Krechetov, E. A. Konstantinova, and R. A. Lunin. "Superconductivity, Electron Paramagnetic Resonance, and Raman Scattering Studies of Heterofullerides with Cs and Mg." Advances in Condensed Matter Physics 2008 (2008): 1–6. http://dx.doi.org/10.1155/2008/941372.

Full text
Abstract:
In the present study, the results of investigation of physical properties of heterofulleridesA3−xMxC60(A=K, Rb, Cs, M=Be, Mg, Ca, Al, Fe, Tl,x=1,2); as well asRbCsTlC60,KCsTlC60, andKMg2C60are described. All of the fullerides were synthesized by the exchange reactions of alkaline fullerides with anhydrous metal halides. Superconductivity was found inRbCsTlC60andKCsTlC60.
APA, Harvard, Vancouver, ISO, and other styles
9

Kamarás, Katalin, and Gyöngyi Klupp. "Metallicity in fullerides." Dalton Transactions 43, no. 20 (2014): 7366. http://dx.doi.org/10.1039/c4dt00206g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gunnarsson, O. "Superconductivity in fullerides." Reviews of Modern Physics 69, no. 2 (April 1, 1997): 575–606. http://dx.doi.org/10.1103/revmodphys.69.575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Saito, Susumu, and Atsushi Oshiyama. "Sr6C60andBa6C60: Semimetallic fullerides." Physical Review Letters 71, no. 1 (July 5, 1993): 121–24. http://dx.doi.org/10.1103/physrevlett.71.121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

da Silva, Renato C., Cristiano C. Bastos, and Antonio C. Pavão. "High-T fullerides." Physica C: Superconductivity and its Applications 561 (June 2019): 13–17. http://dx.doi.org/10.1016/j.physc.2019.02.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Claves, D., Y. Ksari, G. Chouteau, A. Collomb, and Ph Touzain. "Samarium-based fullerides." Solid State Communications 99, no. 5 (August 1996): 359–61. http://dx.doi.org/10.1016/0038-1098(96)00180-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Allen, K. M., A. C. Duggan, A. J. Fowkes, J. M. Fox, P. F. Henry, and M. J. Rosseinsky. "New Metal Fullerides." Fullerene Science and Technology 5, no. 4 (June 1997): 653–79. http://dx.doi.org/10.1080/15363839708012224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zadik, Ruth H., Yasuhiro Takabayashi, Gyöngyi Klupp, Ross H. Colman, Alexey Y. Ganin, Anton Potočnik, Peter Jeglič, et al. "Optimized unconventional superconductivity in a molecular Jahn-Teller metal." Science Advances 1, no. 3 (April 2015): e1500059. http://dx.doi.org/10.1126/sciadv.1500059.

Full text
Abstract:
Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above Tc is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C603– electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of Tc with interfulleride separation, demonstrating molecular electronic structure control of superconductivity.
APA, Harvard, Vancouver, ISO, and other styles
16

Apostol, M., F. Rachdi, C. Goze, and L. Hajji. "On sodium clusters in C60 fullerides." Canadian Journal of Chemistry 75, no. 1 (January 1, 1997): 77–82. http://dx.doi.org/10.1139/v97-012.

Full text
Abstract:
Sodium (Na) clusters in octahedral cages of Na-intercalated fullerides Na6C60 and Na11C60 are studied within a Thomas–Fermi model. It is shown that the tetrahedral Na4 cluster in Na6C60 has an electric charge ~ +2.7 (in electron charge units), while the body-centered cubic Na9 cluster in Na11C60 is almost electrically neutral. Keywords: sodium clusters, alkali fullerides, Thomas–Fermi theory, ionization charge.
APA, Harvard, Vancouver, ISO, and other styles
17

Benning, P. J., D. M. Poirier, T. R. Ohno, Y. Chen, M. B. Jost, F. Stepniak, G. H. Kroll, J. H. Weaver, J. Fure, and R. E. Smalley. "C60andC70fullerenes and potassium fullerides." Physical Review B 45, no. 12 (March 15, 1992): 6899–913. http://dx.doi.org/10.1103/physrevb.45.6899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Oshiyama, A., S. Saito, Y. Miyamoto, and N. Hamada. "Electronic structure of fullerides." Journal of Physics and Chemistry of Solids 53, no. 12 (December 1992): 1689–97. http://dx.doi.org/10.1016/0022-3697(92)90161-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zimmer, G., K. F. Thier, M. Mehring, and F. Rachdi. "NMR on alkali fullerides." Applied Magnetic Resonance 11, no. 2 (June 1996): 263–83. http://dx.doi.org/10.1007/bf03162058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Fullagar, Wilfred K. "ChemInform Abstract: Molecular Fullerides." ChemInform 31, no. 11 (June 10, 2010): no. http://dx.doi.org/10.1002/chin.200011297.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

SONG, WEI, JING LU, ZHENGXIANG GAO, MING NI, LUNHUI GUAN, ZUJIN SHI, ZHENNAN GU, et al. "STRUCTURAL AND ELECTRONIC PROPERTIES OF ONE DIMENSIONAL KxC60 CRYSTAL ENCAPSULATED IN CARBON NANOTUBE." International Journal of Modern Physics B 21, no. 10 (April 20, 2007): 1705–14. http://dx.doi.org/10.1142/s0217979207036953.

Full text
Abstract:
The structural and electronic properties of potential one dimensional (1D) superconductor — K x C 60 chain encapsulated inside a single-walled carbon nanotube is studied using first principles calculations. The stoichiometry of K to C 60 of the 1D K x C 60 crystal can reach 9, in contrast to a maximal stoichiometry of 6 found in the K doped bulk fullerides. The K 4s electrons are completely ionized, and fill chiefly the C 60-derived bands in a nonrigid way. The density of states at the Fermi level of the encapsulated 1D K x C 60 crystal is comparable to that in K doped bulk fullerides.
APA, Harvard, Vancouver, ISO, and other styles
22

Gaboardi, Mattia, Chiara Milanese, Giacomo Magnani, Alessandro Girella, Daniele Pontiroli, Pacifico Cofrancesco, Amedeo Marini, and Mauro Riccò. "Optimal hydrogen storage in sodium substituted lithium fullerides." Physical Chemistry Chemical Physics 19, no. 33 (2017): 21980–86. http://dx.doi.org/10.1039/c7cp04353h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

WU, JIANGWEN, HONGKAI GUO, QUN WEI, and ZHUQUAN GU. "SUPERCONDUCTING ENERGY GAP IN FULLERIDES." Modern Physics Letters B 22, no. 19 (July 30, 2008): 1851–57. http://dx.doi.org/10.1142/s0217984908016522.

Full text
Abstract:
In fullerides, the deviation of the superconducting energy gap from BCS prediction, especially close to TC, in experiments is an old, but not well-understood problem. If phase fluctuations are considered, the calculated temperature temperature of the energy gap is accurately consistent with the experimental one, and the deviation of the gap is a certain result.
APA, Harvard, Vancouver, ISO, and other styles
24

Gerasimov, A. A., U. V. Tugai, and D. V. Fedorchenko. "Orientational Ordering in Anisotropic Fullerides." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 265, no. 1 (June 1995): 225–36. http://dx.doi.org/10.1080/10587259508041694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sun, Yongping, Tatiana Drovetskaya, Robert D. Bolskar, Robert Bau, Peter D. W. Boyd, and Christopher A. Reed. "Fullerides of Pyrrolidine-Functionalized C60." Journal of Organic Chemistry 62, no. 11 (May 1997): 3642–49. http://dx.doi.org/10.1021/jo970357u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Claves, D., Y. Ksari-Habiles, G. Chouteau, and Ph Touzain. "Crystal chemistry of europium fullerides." Solid State Communications 106, no. 7 (May 1998): 431–35. http://dx.doi.org/10.1016/s0038-1098(98)00082-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Claves, D., and A. Hamwi. "The polymorphism of samarium fullerides." Solid State Communications 113, no. 6 (December 1999): 357–62. http://dx.doi.org/10.1016/s0038-1098(99)00481-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wertheim, G. K., D. N. E. Buchanan, and J. E. Rowe. "Electronic structure of barium fullerides." Chemical Physics Letters 206, no. 1-4 (April 1993): 193–96. http://dx.doi.org/10.1016/0009-2614(93)85540-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Murphy, D. W., M. J. Rosseinsky, R. C. Haddon, A. P. Ramirez, A. F. Hebard, R. Tycko, R. M. Fleming, and G. Dabbagh. "Superconductivity in alkali metal fullerides." Physica C: Superconductivity 185-189 (December 1991): 403–8. http://dx.doi.org/10.1016/0921-4534(91)92006-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Pusztai, T., G. Bortel, G. Faigel, G. Oszlányi, M. Tegze, P. W. Stephens, and László Forró. "Structure Refinements of Alkali Fullerides." Materials Science Forum 228-231 (July 1996): 683–88. http://dx.doi.org/10.4028/www.scientific.net/msf.228-231.683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

ZUL’FIGAROV, A. O., V. A. POTASKALOV, A. P. POMYTKIN, A. A. ANDRIIKO, D. V. SHCHUR, O. A. KRIUKOVA, and V. G. KHOMENKO. "Electrochemical synthesis of lithium fullerides." Chemistry of Metals and Alloys 6, no. 1/2 (2013): 40–42. http://dx.doi.org/10.30970/cma6.0238.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tosatti, E. "PHYSICS: Fullerides in a Squeeze." Science 323, no. 5921 (March 20, 2009): 1570–71. http://dx.doi.org/10.1126/science.1171840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Chen, Y., F. Stepniak, J. H. Weaver, L. P. F. Chibante, and R. E. Smalley. "Fullerides of alkaline-earth metals." Physical Review B 45, no. 15 (April 15, 1992): 8845–48. http://dx.doi.org/10.1103/physrevb.45.8845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ulas, Seyithan, Jürgen Weippert, Sharali Malik, Dmitry Strelnikov, Bastian Kern, Matteo Amati, Luca Gregoratti, Maya Kiskinova, and Artur Böttcher. "High-Temperature Csx C58 Fullerides." physica status solidi (b) 256, no. 3 (November 23, 2018): 1800453. http://dx.doi.org/10.1002/pssb.201800453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

ALLEN, K. M., A. C. DUGGAN, A. J. FOWKES, J. M. FOX, P. F. HENRY, and M. J. ROSSEINSKY. "ChemInform Abstract: New Metal Fullerides." ChemInform 28, no. 42 (August 3, 2010): no. http://dx.doi.org/10.1002/chin.199742312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Zadik, Ruth H., Yasuhiro Takabayashi, Ross H. Colman, Gaston Garbarino, and Kosmas Prassides. "Pressure-induced Mott-insulator–metal crossover at ambient temperature in an overexpanded fulleride." Materials Chemistry Frontiers 2, no. 5 (2018): 993–98. http://dx.doi.org/10.1039/c8qm00048d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Datars, W. R., S. Galts, T. Olech, and P. K. Ummat. "An efficient fulleride production system." Canadian Journal of Physics 73, no. 1-2 (January 1, 1995): 38–44. http://dx.doi.org/10.1139/p95-006.

Full text
Abstract:
A complete system for the production of the fullerides C60 and C70 is described. Emphasis is placed on efficient, continuous production of high-quality materials. Carbon soot with a content of 2–5% of a mixture of C60 and C70 is prepared from carbon rods with an arc furnace. The mixture is separated from the carbon by using a Soxhlet extractor. The C60 and C70 are separated with a chromotography column in which the solvent is cycled continuously. The separated C60 is purified by sublimation. The C70 is separated from heavier fullerides with a second chromotography procedure. Single crystals of C60 are prepared from pure C60 powder by slow sublimation. The C60 is characterized by mass spectroscopy, X-ray diffraction, and Raman and infrared spectroscopy. Typical data obtained with these techniques are shown.
APA, Harvard, Vancouver, ISO, and other styles
38

Yamazaki, Satoshi, and Yoshio Kuramoto. "Repulsive Interaction Helps Superconductivity in Fullerides." Journal of the Physical Society of Japan 82, no. 5 (May 15, 2013): 054713. http://dx.doi.org/10.7566/jpsj.82.054713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Leng, F., I. C. Gerber, P. Lecante, W. Bacsa, J. Miller, J. R. Gallagher, S. Moldovan, M. Girleanu, M. R. Axet, and P. Serp. "Synthesis and structure of ruthenium-fullerides." RSC Advances 6, no. 73 (2016): 69135–48. http://dx.doi.org/10.1039/c6ra12023g.

Full text
Abstract:
We report a simple and original procedure for preparing Ru–C60 polymeric chains, which spontaneously self-assemble as polymeric spherical particles, and can be surface decorated with Ru nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
40

Shimoda, Hideo, Yoshihiro Iwasa, Yasuhiro Miyamoto, Yutaka Maniwa, and Tadaoki Mitani. "Superconductivity in Alkali-Ammonia Complex Fullerides." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 285, no. 1 (July 1, 1996): 181–86. http://dx.doi.org/10.1080/10587259608030798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Riccò, M., F. Gianferrari, D. Pontiroli, M. Belli, C. Bucci, and T. Shiroka. "Unconventional isotope effects in superconducting fullerides." EPL (Europhysics Letters) 81, no. 5 (January 31, 2008): 57002. http://dx.doi.org/10.1209/0295-5075/81/57002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Mele, E. J., and S. C. Erwin. "Electron propagation in orientationally disordered fullerides." Physical Review B 50, no. 4 (July 15, 1994): 2150–58. http://dx.doi.org/10.1103/physrevb.50.2150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mitra, Manidipa, Haranath Ghosh, and S. N. Behera. "Raman scattering in alkali doped fullerides." Physica B: Condensed Matter 304, no. 1-4 (September 2001): 159–65. http://dx.doi.org/10.1016/s0921-4526(01)00498-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dahlke, Patrik, Mark S. Denning, Paul F. Henry, and Matthew J. Rosseinsky. "Superconductivity in Expanded fcc C603-Fullerides." Journal of the American Chemical Society 122, no. 49 (December 2000): 12352–61. http://dx.doi.org/10.1021/ja002861d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Taroni, Andrea. "Alkali fullerides reveal more superconductivity secrets." Materials Today 13, no. 7-8 (July 2010): 8. http://dx.doi.org/10.1016/s1369-7021(10)70113-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Böttcher, A., S. Fichtner-Endruschat, and H. Niehus. "Surface electronic properties of Cs-fullerides." Surface Science 376, no. 1-3 (April 1997): 151–62. http://dx.doi.org/10.1016/s0039-6028(97)01305-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Iwasa, Y., T. Takenobu, H. Kitano, and A. Maeda. "Metal–insulator transition in C60 fullerides." Physica C: Superconductivity 388-389 (May 2003): 615–16. http://dx.doi.org/10.1016/s0921-4534(02)02767-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tanigaki, Katsumi, and Otto Zhou. "Conductivity and Superconductivity in C60 Fullerides." Journal de Physique I 6, no. 12 (December 1996): 2159–73. http://dx.doi.org/10.1051/jp1:1996212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Böhm, Michael C., and Joachim Schulte. "Superconductivity in alkali-doped C60 fullerides." Physica C: Superconductivity 252, no. 3-4 (October 1995): 282–94. http://dx.doi.org/10.1016/0921-4534(95)00444-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Palstra, T. T. M., and R. C. Haddon. "Electronic properties of metal doped fullerides." Solid State Communications 92, no. 1-2 (October 1994): 71–81. http://dx.doi.org/10.1016/0038-1098(94)90860-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography