Academic literature on the topic 'Fuel injection timing angle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuel injection timing angle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuel injection timing angle"

1

Fang, T.-G., R. E. Coverdill, C.-F. F. Lee, and R. A. White. "Effect of the injection angle on liquid spray development in a high-speed direct-injection optical diesel engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 223, no. 8 (August 1, 2009): 1077–92. http://dx.doi.org/10.1243/09544070jauto1221.

Full text
Abstract:
In this paper, the spray development and its interaction with the piston geometry were investigated in a small-bore high-speed direct-injection optical diesel engine. The effects of injection angle, injection timing, injection pressure, and injection fuel quantity were studied. The entire liquid spray cycle was visualized by a background-corrected Mie-scattering technique using a high-speed digital video camera synchronized with a high-repetition-rate copper vapour laser. For some conditions, the initial injection velocity was estimated quantitatively. The results show that the injection angle and injection timing predominantly control the spray interaction with the piston geometry and the resulting air—fuel mixing mode. Narrow-angle injection leads to a significantly different air—fuel mixing process from the traditional wide-angle injector. If properly controlled, the narrow-angle direct-injection technique offers more flexibility on injection timing control with the fuel confined in the central bowl region without wetting the cylinder liner.
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Yingying, and Wanhua Su. "Effects of the injection parameters on the premixed charge compression ignition combustion and the emissions in a heavy-duty diesel engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, no. 7 (April 23, 2017): 915–26. http://dx.doi.org/10.1177/0954407017701023.

Full text
Abstract:
Numerous combustion strategies have been suggested for compression ignition engines in order to meet the stringent emission regulations with minimal sacrifice in the fuel economy. Premixed charge compression ignition combustion has the potential to reduce the nitrogen oxide emissions and the soot emissions while maintaining a high thermal efficiency and has become the research focus recently. Experiments and simulations were used to study the effects of the injection mode and the injection timing on the premixed charge compression ignition combustion and the emissions in a heavy-duty diesel engine at low and medium loads. The results reveal the following. At low loads, when the injection timing of a single injection is 35° crank angle before top dead centre because of the impinging position of the spray, the mixture is divided into two parts: the fuel above the chamber and the fuel in the piston bowl. This helps to utilize fully the in-cylinder air to form a homogeneous mixture. Also the nitrogen oxide emissions are the lowest. At medium loads, with a single injection, the injection mass is increased, the injection duration is prolonged and the mixing timing is reduced. As a result, the soot emissions, the carbon monoxide emissions and the unburned hydrocarbon emissions are increased dramatically; the best emissions are gained at an injection timing of 35° crank angle before top dead centre owing to the combined effect of the optimized mixing time and the optimized mixing space. At medium loads, with multiple injections, the injection mass is divided into four pulses, the mixing timings of which are all increased. The mixing space of the fuel–air mixture is also improved, and a more homogeneous mixture is obtained, which is beneficial to decreasing the soot emissions, the carbon monoxide emissions and the unburned hydrocarbon emissions in comparison with those for the single-injection case. When the injection timings of multiple injections are 80° crank angle before top dead centre, 65° crank angle before top dead centre, 50° crank angle before top dead centre and 35° crank angle before top dead centre, the best trade-off between the performance and the emissions can be achieved at medium loads.
APA, Harvard, Vancouver, ISO, and other styles
3

Khalid, Amir, Azwan Sapit, M. N. Anuar, Him Ramsy, Bukhari Manshoor, Izzuddin Zaman, and Zamani Ngali. "Analysis of Fuel Injection Parameter on Biodiesel and Diesel Spray Characteristics Using Common Rail System." Advanced Materials Research 974 (June 2014): 362–66. http://dx.doi.org/10.4028/www.scientific.net/amr.974.362.

Full text
Abstract:
Precise control of fuel injection is essential in modern diesel engines especially in controlling the precise injection quantity, flexible injection timing, flexible rate of injection with multiple injections and high injection pressures. It was known that the fuel-air mixing is mainly influenced by the fuel injection system and injector nozzle characteristics. Thus, mixture formation during ignition process associated with the exhaust emissions. The purpose of this study is to investigate the influence of spray characteristics on the mixture formation. In this study, common rail injector systems with different model of injector were used to simulate the actual mixture formation inside the engine chamber. The optical visualization system was constructed with a digital video camera in order to investigate the detailed behavior of mixture formation. This method can capture spray penetration length, spray angle, spray evaporation and mixture formation process clearly. The spray characteristic such as the penetration length, spray angle and spray area are increasing when the injection pressure increased. The mixture formation can be improved effectively by increasing the injection pressure.
APA, Harvard, Vancouver, ISO, and other styles
4

Luo, Li, Bin Xu, Zhi Hao Ma, Jian Wu, and Ming Li. "Effect of Injection Timing on Combustion Characteristics of a DI Diesel Engine Fuelled with Pistacia chinensis Bunge Seed Biodiesel." Advanced Materials Research 614-615 (December 2012): 337–42. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.337.

Full text
Abstract:
In this study, the effect of injection timing on combustion characteristics of a direct injection, electronically controlled, high pressure, common rail, turbocharged and intercooled engine fuelled with different pistacia chinensis bunge seed biodiesel/diesel blends has been experimentally investigated. The results indicated that brake specific fuel consumption reduces with the increasing of fuel injection advance angle and enhances with the increasing of biodiesel content in the blends. The peak of cylinder pressure and maximum combustion temperature increase evidently with the increment of fuel injection advance angle. However, the combustion of biodiesel blends starts earlier than diesel at the same fuel injection advance angle. At both conditions, the combustion duration and the peak of heat release rate are insensitive to the changing of injection timing.
APA, Harvard, Vancouver, ISO, and other styles
5

Chang, Hsu Fang, Wang Chih Cheng, and Feng Tsai Weng. "Effect of End of Injection Angle on Performance and Emission Formation for a Gasoline Engine." Applied Mechanics and Materials 300-301 (February 2013): 27–31. http://dx.doi.org/10.4028/www.scientific.net/amm.300-301.27.

Full text
Abstract:
The method of supplying fuel for an electronic-controlled fuel injection system is calculating the required fuel amounts under various operating conditions of engine and controlling the opening and closing timing of fuel injection. After fuel injection, the effects of condensation and atomization of injected fuel as well as fuel mixing for combustion are strongly dominated by the opening timing and duration of intake valves. This can further affect the emission composition and performance for an engine. As the emission regulation is getting more stringent and the requirement for minimizing specific fuel consumption is becoming more urgent, investigating the effect of closing timing of fuel injection has turned out to be a major issue. Therefore, this paper presents a study about a series of engine tests to investigate the effect of end of injection angle on the performance and emission formation for a gasoline engine. In these tests, the values of end of injection angle are adjusted using a control software for electronic-controlled fuel injection system so that the results can be analyzed under various engine speeds and loads.
APA, Harvard, Vancouver, ISO, and other styles
6

WOJS, Marcin, Piotr ORLIŃSKI, and Jakub LASOCKI. "The effect of alternative fuels injection timing on toxic substances formation in CI engines." Combustion Engines 168, no. 1 (February 1, 2017): 73–76. http://dx.doi.org/10.19206/ce-2017-112.

Full text
Abstract:
The present study describes selected issues associated with the emission level in toxic exhaust gases and fuel injection timing. The study was focused on the following types of fuels: Diesel oil (the base fuel) and the other fuels were the mixture of fatty acid methyl ester with Camelina (L10 – diesel fuel with 10% V/V FAME of Camelina and L20 – diesel fuel with 10% V/V FAME of Camelina) was used. Fuel injection advanced angle was set for three different values – the factory setting – 12° before TDC, later injection – 7° and earlier injection – 17°. The most important conclusion is that in most measurement points registered in the same engine operating conditions, the concentration of fuel NOx in L10 and L20 increased but PM emissions decreased which is caused by active oxygen located in the internal structure of the fuel. This fact contributes to the rise in temperature during the combustion process. At the same time factory settings of the angle makes NOx emissions lower and close to reference fuel.
APA, Harvard, Vancouver, ISO, and other styles
7

Perang, Mohd Rozi Mohd, Abdul Latiff Zulkarnain, Azhar Abdul Aziz, and Mohamad Azzad Mokhri. "Design of a Four-Stroke Homogeneous Charge Compression Ignition Engine." Applied Mechanics and Materials 388 (August 2013): 229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.388.229.

Full text
Abstract:
This research is to study the operation of the four-stroke HCCI engine. The design and analysis works have been performed using computer software which is GT-Power and Solidwork to study on the engine performance simulation work and 3-D modelling on the combustion chamber designed respectively. The design is based on 4-cylinder passenger car, 2000 cc and a four-stroke cycle engine. The compression ratio used is 10. The fuel used is ethanol in which the air-fuel ratio (AFR) is 9. The parameters selected have typical range of value based on the previous study and research done. With the use of GT-power, the analysis will consider two parameters which are the cam timing angle and the injection timing angle to get the optimum result for the HCCI engine. The typical angle of cam timing angle is between 2600 – 2700 since this is the moment of the compression cycle of the engine. For the injection timing angles, the angles that will be studied for this project are 50, 00, -50, -100,-150 and -200 relative to Top Dead Centre (TDC). The objective is to obtain the maximum torque and brake power when the engine speed is in between 4000 rpm to 5000 rpm and 6000 rpm to 7000 rpm respectively. Finally, the optimum conditions for the engine to perform better are at 2640 of cam timing angle for the valve and at -50 before TDC for the injection timing angle. The maximum torque and brake power achieved is 37.60 Nm at 4000 rpm and 23.46 kW at 7000 rpm.
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Bin, Li Luo, Jian Wu, and Zhi Hao Ma. "The Influence of Injection Timing on Emissions Characteristics of a DI Diesel Engine Fuelled with Pistacia Chinensis Bunge Seed Biodiesel." Advanced Materials Research 634-638 (January 2013): 846–51. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.846.

Full text
Abstract:
The effect of various fuel injection advance angles on the emissions of an electronically controlled, high pressure, common rail, turbocharged GW4D20 diesel engine fuelled with different pistacia chinensis bunge seed biodiesel/diesel blends has been experimentally investigated. The results indicate that brake specific fuel consumption reduces with the increasing of fuel injection advance angle, and the BSFC of blends is higher than diesel. At 25% load, CO and THC are significantly reduced compared with higher load. The CO emission increases with the increment of fuel injection advance angle. At 75% load, the CO of B10 is lowest, B20 highest. At the same speed, NOx increases with increment of fuel injection advance angle for diesel and biodiesel blends dramatically. However, NOx of blends and diesel are deteriorated at high load, but there are no obvious differences among them.
APA, Harvard, Vancouver, ISO, and other styles
9

Tennison, P. J., and R. Reitz. "An Experimental Investigation of the Effects of Common-Rail Injection System Parameters on Emissions and Performance in a High-Speed Direct-Injection Diesel Engine." Journal of Engineering for Gas Turbines and Power 123, no. 1 (June 6, 1999): 167–74. http://dx.doi.org/10.1115/1.1340638.

Full text
Abstract:
An investigation of the effect of injection parameters on emissions and performance in an automotive diesel engine was conducted. A high-pressure common-rail injection system was used with a dual-guided valve covered orifice nozzle tip. The engine was a four-valve single cylinder high-speed direct-injection diesel engine with a displacement of approximately 12 liter and simulated turbocharging. The engine experiments were conducted at full load and 1004 and 1757 rev/min, and the effects of injection pressure, multiple injections (single vs pilot with main), and pilot injection timing on emissions and performance were studied. Increasing the injection pressure from 600 to 800 bar reduced the smoke emissions by over 50 percent at retarded injection timings with no penalty in oxides of nitrogen NOx or brake specific fuel consumption (BSFC). Pilot injection cases exhibited slightly higher smoke levels than single injection cases but had similar NOx levels, while the single injection cases exhibited slightly better BSFC. The start-of-injection (SOI) of the pilot was varied while holding the main SOI constant and the effect on emissions was found to be small compared to changes resulting from varying the main injection timing. Interestingly, the point of autoignition of the pilot was found to occur at a nearly constant crank angle regardless of pilot injection timing (for early injection timings) indicating that the ignition delay of the pilot is a chemical delay and not a physical (mixing) one. As the pilot timing was advanced the mixture became overmixed, and an increase of over 50 percent in the unburned hydrocarbon emissions was observed at the most advanced pilot injection timing.
APA, Harvard, Vancouver, ISO, and other styles
10

Sudarmanta, Bambang, Alham A. K. Mahanggi, Dori Yuvenda, and Hary Soebagyo. "Optimization of Injection Pressure and Injection Timing on Fuel Sprays, Engine Performances and Emissions on a Developed DI 20C Biodiesel Engine Prototype." International Journal of Heat and Technology 38, no. 4 (December 31, 2020): 827–38. http://dx.doi.org/10.18280/ijht.380408.

Full text
Abstract:
Biodiesel, as a renewable fuel that has the potential to replace diesel fossil fuels. With properties in the form of viscosity, density, and surface tension, which are higher than diesel fossil fuel, biodiesel produces poor spray characteristics, and also the high cetane number and oxygen content so that the ignition delay is shorter causes the start of combustion will shift more forward, therefore need to improve injection parameters including injection pressure and timing. The aim of this research is to get the optimal injection parameter optimization so as to improve engine performances and emissions. The method used is to increase the fuel injection pressure from 200 to 230 kg/cm2 and the injection timings were retarded from 22° to 16° BTDC. The results show that increasing injection pressure can improve spray characteristics as indicated by shorter penetration and smaller spray diameter of 30% and 9.8%, respectively and increase in spray spread angle of 21.9%. Then the optimization of engine performances and emissions, obtained at an injection pressure of 230 kg/cm2 and injection timing of 16° BTDC with an increase of power and thermal efficiency of 3.9% and 13.9%, respectively and reduction in smoke emissions of 45.2% at high load.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fuel injection timing angle"

1

Клименко, Олександр Миколайович. "Оцінка впливу регулювання температурного стану поршнів на техніко-економічні показники дизеля." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21635.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук зі спеціальності 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2016. Дисертаційна робота присвячена дослідженню впливу регульованого температурного стану поршнів дизеля різного призначення на його техніко-економічні показники. Розроблено та реалізовано методику оцінки якості дизеля при регулюванні інтенсивності масляного охолодження поршнів та керуванні моментом початку впорскування палива в камеру згоряння, а також при врахуванні моделі експлуатації енергетичної установки. Проведено експериментальні дослідження впливу температурного стану поршнів з низькотеплопровідним покриттям поверхні камери згоряння транспортного дизеля, а також зміни кута випередження впорскування палива на показники токсичності відпрацьованих газів, паливної економічності та температурний стан деталей камери згоряння. В результаті виконаного оптимізаційного дослідження запропоновано характеристичні карти керування масляним охолодженням поршнів та моментом початку впорскування палива для комплексного покращення техніко-економічних показників дизеля. Оцінено ефективність впровадження запропонованих заходів в автомобільних та тракторних дизелях та стаціонарних дизельгенераторах. Запропоновано методику врахування температурного стану найбільш теплонавантажених зон поршня в загальній методиці оцінки якості дизеля. Проведені розрахункові дослідження дозволили визначити ефективність регулювання температурного стану поршнів на ресурсну міцність його камери згоряння.
Thesis for the science degree of the Candidate of technical sciences by speciality 05.05.03 – engines and power plants. – National Technical University "Kharkоv polytechnic institute", Kharkоv, 2016. Dissertation is devoted to research of complex influence of pistons temperature state regulation on the diesel engine technical and economic performance. In the dissertation work a method of estimating the quality of the diesel engine when regulating of the pistons temperature state, which takes into account indicators of exhaust gases toxicity and ICE fuel efficiency in each mode of the power plant operation is proposed. Experimental study of the effect of temperature condition of pistons with low conductive coating combustion chamber surface and changes the fuel injection timing angle on the exhaust gases toxicity, fuel economy and thermal condition of combustion chamber parts is done. As a result of the optimization research the characteristic cards control of pistons oilcooling and the fuel injection start for complex diesel engine technical and economic indicators improvement are proposed, the effectiveness of their use in automobile and tractor diesel engines and stationary diesel generators are estimated. The method of accounting of the most heat-loaded piston zones temperature state in general procedure of diesel quality assessment is proposed. Conducted estimated researches have allowed to define the effectiveness of pistons temperature state regulation on the combustion chamber resource strength.
APA, Harvard, Vancouver, ISO, and other styles
2

Клименко, Олександр Миколайович. "Оцінка впливу регулювання температурного стану поршнів на техніко-економічні показники дизеля." Thesis, НТУ "ХПІ", 2016. http://repository.kpi.kharkov.ua/handle/KhPI-Press/21632.

Full text
Abstract:
Дисертація на здобуття наукового ступеня кандидата технічних наук зі спеціальності 05.05.03 – двигуни та енергетичні установки. – Національний технічний університет "Харківський політехнічний інститут". – Харків, 2016. Дисертаційна робота присвячена дослідженню впливу регульованого температурного стану поршнів дизеля різного призначення на його техніко-економічні показники. Розроблено та реалізовано методику оцінки якості дизеля при регулюванні інтенсивності масляного охолодження поршнів та керуванні моментом початку впорскування палива в камеру згоряння, а також при врахуванні моделі експлуатації енергетичної установки. Проведено експериментальні дослідження впливу температурного стану поршнів з низькотеплопровідним покриттям поверхні камери згоряння транспортного дизеля, а також зміни кута випередження впорскування палива на показники токсичності відпрацьованих газів, паливної економічності та температурний стан деталей камери згоряння. В результаті виконаного оптимізаційного дослідження запропоновано характеристичні карти керування масляним охолодженням поршнів та моментом початку впорскування палива для комплексного покращення техніко-економічних показників дизеля. Оцінено ефективність впровадження запропонованих заходів в автомобільних та тракторних дизелях та стаціонарних дизельгенераторах. Запропоновано методику врахування температурного стану найбільш теплонавантажених зон поршня в загальній методиці оцінки якості дизеля. Проведені розрахункові дослідження дозволили визначити ефективність регулювання температурного стану поршнів на ресурсну міцність його камери згоряння.
Thesis for the science degree of the Candidate of technical sciences by speciality 05.05.03 – engines and power plants. – National Technical University "Kharkоv polytechnic institute", Kharkоv, 2016. Dissertation is devoted to research of complex influence of pistons temperature state regulation on the diesel engine technical and economic performance. In the dissertation work a method of estimating the quality of the diesel engine when regulating of the pistons temperature state, which takes into account indicators of exhaust gases toxicity and ICE fuel efficiency in each mode of the power plant operation is proposed. Experimental study of the effect of temperature condition of pistons with low conductive coating combustion chamber surface and changes the fuel injection timing angle on the exhaust gases toxicity, fuel economy and thermal condition of combustion chamber parts is done. As a result of the optimization research the characteristic cards control of pistons oilcooling and the fuel injection start for complex diesel engine technical and economic indicators improvement are proposed, the effectiveness of their use in automobile and tractor diesel engines and stationary diesel generators are estimated. The method of accounting of the most heat-loaded piston zones temperature state in general procedure of diesel quality assessment is proposed. Conducted estimated researches have allowed to define the effectiveness of pistons temperature state regulation on the combustion chamber resource strength.
APA, Harvard, Vancouver, ISO, and other styles
3

Kim, Chung-Gong. "A crank angle resolved CIDI engine combustion model with arbitrary fuel injection for control purpose." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5num=osu1086154960.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.
Title from first page of PDF file. Document formatted into pages; contains xxiv, 266 p. : ill. (some col.). Advisor: Yann G. Guezennec, Dept. of Mechanical Engineering. Includes bibliographical references (p. 259-266).
APA, Harvard, Vancouver, ISO, and other styles
4

Kus, Francis. "Solid Fuel Pneumatic Conveying and its Injection Geometry in a Pressurized Entrained Flow Gasifier." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34419.

Full text
Abstract:
Rising global energy demands have led to an increase in demand for clean, sustainable energy. A leading technology for reducing greenhouse gas (GHG) emission for existing coal-power infrastructure is gasification, which has sparked an interest in reactor modelling for design and performance analysis. Reduced order models (ROMs) have seen an increase in popularity for entrained flow gasifiers, as they offer a low-computational alternative to conventional computational fluid dynamic (CFD) modelling while maintaining the integrity of important operational parameters, such as carbon conversion and syngas yield. However, ROMs require more physical parameter inputs than are normally required for CFD modelling, such as the geometry of the gas-solid jet (specifically the jet half-angle). Experiments were conducted to understand the relation between the required input parameters for ROMs, such as fuel flow rate, transport gas flow rate, and jet half-angle, and develop useful correlations for ROM systems. A new configuration for pneumatic conveying was developed and tested at the pilot-scale system at NRCan CanmetENERGY. It was used to study the pneumatic conveying of pulverized fuels, specifically the influence of operating parameters such as pressure drop and gas flow rates on the fuel flow rate, and the geometry of the gas-solid fuel jet (notably the jet half-angle) injected into the gasifier. The mean fuel flow rate of pulverized fuels was shown to increase with increasing pressure drop and with decreasing gas flow rates in the fuel transfer line. The jet half-angle was shown to increase as the solid loading ratio in the jet core was decreased. Finally, the relative fuel flow variability was observed to be significantly influenced by the design of the pneumatic conveying system, with the fluctuations increasing with increasing pressure drop and with decreasing gas flow rate, similar to the mean flow rate.
APA, Harvard, Vancouver, ISO, and other styles
5

Rivas, Perea Manuel Eduardo. "Assessment of fuel consumption reduction strategies on a gasoline turbocharged direct injection engine with a cooled EGR system." Doctoral thesis, Universitat Politècnica de València, 2016. http://hdl.handle.net/10251/68497.

Full text
Abstract:
[EN] This research work presents the study of a low pressure EGR loop influence on a SI gasoline turbocharged direct injection engine in steady and transient testing conditions, with an optimization process of the original engine calibration in order to minimize the engine fuel consumption when cooled EGR is introduced in steady testing conditions. The cooled EGR strategy was also evaluated operating in synergy with other fuel consumption reduction strategies, such as: lean burn, multi-injection, higher coolant temperature and in-cylinder induced swirl motion. To fulfill the main objectives of this research work, firstly, a methodical process was followed, where a global methodology was first developed in order to obtain high accuracy engine tests, based on the experimental tools chosen that could comply with the requirements of the testing conditions, and the appropriate theoretical tools and procedure to post-process the tests performed. Secondly, a specific methodology was developed for each stage of the study and testing conditions, taking into account optimization processes or parametric tests in order to study the effect of a single parameter on engine's outputs or optimize an engine parameter in order to minimize the engine fuel consumption. As a first stage of the study, a basic analysis of the impact of cooled EGR on the engine combustion, performance, air management and exhaust emissions is presented. Afterwards, an optimization of the combustion phasing in order to minimize the fuel consumption was performed, and therefore the potential of cooled EGR in order to reduce the engine fuel consumption was observed for low load, part load and full load engine conditions, for two different engine speeds. In addition, a study in transient conditions of the engine operating with cooled EGR was performed. NEDC cycles were performed with different EGR valve openings and therefore a comparison of different cooled EGR rates influence on the engine performance, air management and accumulated exhaust emissions was presented. The second stage, consisted in a methodology developed to optimize the VVT setting and injection timing, for part load engine conditions, in order to maximize the cooled EGR potential to reduce engine fuel consumption. After this optimization, a synergy analysis of the optimum engine condition operating with cooled EGR and three other engine fuel consumption reduction strategies was performed. These strategies were tested to investigate and evaluate the potential of increasing the cooled EGR operational range to further decrease the engine fuel consumption. Furthermore, a basic study of the potential to reduce the engine fuel consumption and impact on combustion, air management and exhaust emissions of a lean burn strategy, in part load engine conditions, was presented as introduction of the final study of the cooled EGR strategy operating in synergy with the lean burn strategy in order to investigate the potential to control the exhaust emissions and reduce the engine fuel consumption.
[ES] El objetivo de este trabajo de investigación es estudiar la influencia de un lazo de baja presión de EGR en las prestaciones de un motor de gasolina de encendido provocado turbosobrealimentado e inyección directa, en condiciones de ensayos estacionarios y transitorios, con un proceso de optimización de la calibración original del motor para minimizar el consumo de combustible del motor. La estrategia de "cooled EGR" fue también evaluada operando en sinergia con otras estrategias usadas para reducir el consumo de combustible del motor, entre ellas: mezcla pobre, múltiples inyecciones, operación a alta temperatura del fluido refrigerante del motor y movimiento de "swirl" inducido en el cilindro. Para cumplir con los objetivos mencionados, se siguió un proceso metódico donde previamente se desarrolló una metodología global para obtener resultados de indudable calidad, basados en el uso de herramientas experimentales que cumplieran con los requerimientos de las condiciones de ensayo, y las apropiadas herramientas teóricas y procedimiento para post-procesar los ensayos realizados. En segundo lugar, se desarrolló una metodología específica para cada etapa del estudio, teniendo en cuenta los procesos de optimización o estudios paramétricos que se pudieran realizar. Como primera etapa, se presenta un estudio básico del impacto del "cooled EGR" en la combustión, prestaciones, renovación de la carga y emisiones contaminantes del motor. Seguidamente, se procedió a la optimización del centrado de la combustión con la finalidad de minimizar el consumo de combustible del motor y poder analizar el potencial del "cooled EGR" como estrategia de reducción de consumo de combustible. El estudio presentado se realizó para baja, media y alta carga del motor con dos diferentes regímenes de giro del motor. Adicionalmente, se llevó a cabo un estudio del motor operando en condiciones transitorias con "cooled EGR". Se realizaron una serie de ensayos usando el ciclo NEDC como base y se probaron diferentes estrategias sencillas de control de la apertura de la válvula de EGR para analizar la influencia del "cooled EGR" en condiciones transitorias. La segunda etapa consiste en el desarrollo de una metodología para optimizar los parámetros del diagrama de distribución (VVT) y el inicio de inyección, para cargas medias del motor, con la finalidad de maximizar el potencial de reducción de consumo de combustible de la estrategia "cooled EGR". Una vez realizada la optimización, se llevó a cabo un estudio usando la configuración óptima encontrada, operando en sinergia con otras tres estrategias usadas para reducir el consumo de combustible del motor. Estas estrategias fueron evaluadas con la finalidad de incrementar el rango de operación de la estrategia "cooled EGR" para lograr reducir aún más el consumo de combustible del motor. Adicionalmente, se llevó a cabo un estudio básico sobre la influencia de operar con mezcla pobre en la combustión, prestaciones, renovación de la carga y emisiones contaminantes del motor, como introducción al último estudio llevado a cabo sobre la posibilidad de usar la estrategia de mezcla pobre en conjunto con la estrategia de "cooled EGR", con la finalidad de analizar el potencial de controlar las emisiones contaminantes y reducir el consumo de combustible del motor al mismo tiempo.
[CAT] L'objectiu d'este treball d'investigació és estudiar la influència d'un llaç de baixa pressió d'EGR en les prestacions d'un motor de gasolina d'encesa provocat turbosobrealimentat i injecció directa, en condicions d'assajos estacionaris i transitoris, amb un procés d'optimització del calibratge original del motor per a minimitzar el consum de combustible del motor. L'estratègia de "cooled EGR" va ser també avaluada operand en sinergia amb altres estratègies usades per a reduir el consum de combustible del motor, entre elles: mescla pobra, múltiples injeccions, operació a alta temperatura del fluid refrigerant del motor i moviment de `"swirl" induït en el cilindre. Per a complir amb els objectius mencionats, es va seguir un procés metòdic on prèviament es va desenrotllar una metodologia global per a obtindre resultats d'indubtable qualitat, basats en l'ús de ferramentes experimentals que compliren amb els requeriments de les condicions d'assaig, i les apropiades ferramentes teòriques i procediment per a post- processar els assajos realitzats. En segon lloc, es va desenrotllar una metodologia específica per a cada etapa de l'estudi, tenint en compte els processos d'optimització o estudis paramètrics que es pogueren realitzar. Com a primera etapa, es presenta un estudi bàsic de l'impacte del "cooled EGR" en la combustió, prestacions, renovació de la càrrega i emissions contaminants del motor. A continuació, es va procedir a l'optimització del centrat de la combustió amb la finalitat de minimitzar el consum de combustible del motor i poder analitzar el potencial del "cooled EGR" com a estratègia de reducció de consum de combustible. L'estudi presentat es va realitzar per a baixa, mitja i alta càrrega del motor amb dos diferents règims de gir del motor. Addicionalment, es va dur a terme un estudi del motor operand en condicions transitòries amb "cooled EGR". Es van realitzar una sèrie d'assajos usant el cicle NEDC com a base i es van provar diferents estratègies senzilles de control de l'obertura de la vàlvula d'EGR per a analitzar la influència del "cooled EGR" en condicions transitòries. La segona etapa consistix en el desenrotllament d'una metodologia per a optimitzar els paràmetres del diagrama de distribució (VVT) i l'inici d'injecció, per a càrregues mitges del motor, amb la finalitat de maximitzar el potencial de reducció de consum de combustible de l'estratègia "cooled EGR". Una vegada realitzada l'optimització, es va dur a terme un estudi usant la configuració òptima trobada, operant en sinergia amb altres tres estratègies usades per a reduir el consum de combustible del motor. Estes estratègies van ser avaluades amb la finalitat d'incrementar el rang d'operació de l'estratègia "cooled EGR" per a aconseguir reduir encara més el consum de combustible del motor. Addicionalment, es va dur a terme un estudi bàsic sobre la influència d'operar amb mescla pobra en la combustió, prestacions, renovació de la càrrega i emissions contaminants del motor, com a introducció a l'últim estudi dut a terme sobre la possibilitat d'usar l'estratègia de mescla pobra en conjunt amb l'estratègia de "cooled EGR", amb la finalitat d'analitzar el potencial de controlar les emissions contaminants i reduir el consum de combustible del motor al mateix temps.
Rivas Perea, ME. (2016). Assessment of fuel consumption reduction strategies on a gasoline turbocharged direct injection engine with a cooled EGR system [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68497
TESIS
APA, Harvard, Vancouver, ISO, and other styles
6

Jääskö, Pontus, and Petter Morén. "Internal combustion engine durability monitor : Identifying and analysing engine parameters affecting knock and lambda." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-25498.

Full text
Abstract:
This study has been performed at Powertrain Engineering Sweden AB (PES), a fully owned subsidiary of Volvo Cars Group, which is constantly working to develop and improve internal combustion engines. As part of this work, durability tests are performed to analyse the impact of wear on the engines. At present, there is a strong focus on visual inspections after the engines have undergone durability tests. PES wants to develop a method where collected data from these tests can be used to explain how the phenomenon of knocking and the control of lambda changes over time. The study analyses one specific durability test and investigates the methodology of data analysis by using the open-source software platform Sympathy for Data, with an add-on developed by Volvo Cars Group, for data management, visualisation and analysis. To execute the analysis, engine parameters that affect these systems as well as parameters suitable to use as response variables are identified through literature studies of internal combustion engine fundamentalsas well as internal material, and knowledge acquired at the company. The result is presented in the form of an analysis generated by the node for partial least squares regression (PLSR) which is pre-programmed in Sympathy for Data as well as the images and graphs obtained as output. For knock, the signal for the final ignition angle was found to be suitable to use as the response variable in the PLSR. A suitable response variable for lambda was more difficult to identify, this is why both signals for the measured lambda and lambda adaptation are analysed. Studies of the internal material and knowledge highlighted the fact that several engine subsystems are highly dependent on each other and that even deeper research would be necessary to fully understand the process and identify the primary cause for the variations observed in the generated models. However, partial least squares regression was performed using parameters derived from literature reviews as input (predictors) in order produce regression models to explain the variance in sought response. Well-fitting models could be created with a varying number of latent variables needed for the different responses. The output obtained from the PLSR enables further studies of the specific cases as well as the methodology itself, hence, increase the use of data analysis with the help of the software used in the department for durability testing at PES.
Denna studie är utförd hos Powertrain Engineering Sweden AB (PES), vilka är ett helägt dotterbolag till Volvo Cars Group, som arbetar med att ta fram och förbättra förbränningsmotorer. En del i detta arbete är att genomföra långtidstest för att analysera hur motorernas egenskaper ändras vid förslitning över tid. I nuläget ligger stort fokus på visuella inspektioner efter att motorerna genomgått långtidstester. PES önskar utveckla en metod där redan insamlad data som registrerats i dessa tester kan förklara hur fenomenet knack och regleringen för lambda förändras över tid. Studien är genomförd i form av en fallstudie av ett specifikt långtidstest där den öppna programvaran Sympathy for Data, tillsammans med det av Volvo Cars Group utvecklade tillägget, används för datahantering, visualisering och analys. Studien undersöker också metodiken för dataanalys med nämnd programvara. För att genomföra detta identifieras motorparametrar som påverkar de undersökta systemen samt parametrar som lämpar sig att användas som responsvariabler i en regressionsmodell. Dessa parametrar togs fram genom litteraturstudier om de fundamentala delarna i en förbränningsmotor samt från företaget förvärvad intern kunskap kring systemen. Resultatet presenteras i form av en analys genomförd med den, i Sympathy for Data, förprogrammerade noden för partial least squares regression(PLSR) samt de bilder och grafer som erhålls. För knack visade det sig att den slutliga tändningsvinkeln var lämplig att använda som respons i PLSR-modellen. En lämplig responsvariabel för lambda var mer svåridentifierad, detta förklarar varför signalerna för uppmätt lambda och lambda adaption analyseras. Inläsning av internt material och grundläggande information om förbränningsmotorer visade att delsystem i ottomotorn är beroende och påverkas av varandra vilket innebär att mer ingående studier i dessa delsystem är nödvändigt för att förstå hela processen och hitta grundorsakerna till variationerna som påvisas för responssignalerna. Vidare utfördes PLSR med de parametrar som härletts från litteraturstudier som indatasignaler (prediktorer) för att skapa en regressionsmodell som förklarar variansen i sökta responssignaler. Beroende av responssignal krävdes varierande antal latenta variabler för att uppnå en tillräckligt precis modell. Resultatet från PLSR möjliggör vidare forskning inom området och metoden som använts och har på så sätt möjliggjort för fortsatt utveckling. Detta i sin tur kan öka användandet av dataanalys med hjälp av den programvara som används vid avdelningen för långtidstest hos PES.
APA, Harvard, Vancouver, ISO, and other styles
7

CHEN, YUNG-CHANG, and 陳永章. "The Effects of Ignition Timing Angle on Gasoline Injection Motocycle Performance with Gasoline Fuel Adding Biodiesel." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/c4ssyj.

Full text
Abstract:
碩士
中華科技大學
機電光工程研究所在職專班
106
The purpose of this study is to understand the impact of fuel additives on engine output horsepower through experiments to increase understanding of the knowledge of gasoline fuel additives. Evaluate the efficacy of the additive by using a programmable computer system to change the specific speed and adjust the ignition timing angle. The program observes the experimental results through five parameter settings. The experimental parameters include: engine speed (5000 rpm, 6000 rpm, 7000 rpm), fuel type (gasoline, gasoline added 1% biodiesel and gasoline added 2% biodiesel), ignition timing angle (BTDC 26°~ 34°, BTDC 27°~35°, BTDC 28°~36°, BTDC 29°~37°), rolling resistance coefficient 0.01 and air-fuel ratio AFR 13.3, to discuss the effect of the above operation on engine output horsepower and fuel consumption. . In this study, commercially available 92 unleaded gasoline (G100) was used in a single-cylinder four-stroke machine jet engine, and 1% and 2% bio-diesel were added to unleaded gasoline as experimental fuels (GB1 and GB2). Under the operating conditions of engine speed N=5000, 6000, 7000 rpm and air-fuel ratio control under AFR=13.3, the influence of ignition timing angle on engine output horsepower and fuel consumption is analyzed by experimental results, using biodiesel as Gasoline additives, with the help of a programmable computer system (aRacer RC1 Super), adjust the ignition timing angle within a specific speed range, and fail to achieve the hypothetical goal of increasing horsepower and reducing fuel consumption.
APA, Harvard, Vancouver, ISO, and other styles
8

McLean, James Elliott. "Injection Timing Effects on Brake Fuel Conversion Efficiency and Engine System's Respones." Thesis, 2011. http://hdl.handle.net/1969.1/ETD-TAMU-2011-08-10017.

Full text
Abstract:
Societal concerns on combustion-based fuel consumption are ever-increasing. With respect to internal combustion engines, this translates to a need to increase brake fuel conversion efficiency (BFCE). Diesel engines are a relatively efficient internal combustion engine to consider for numerous applications, but associated actions to mitigate certain exhaust emissions have generally deteriorated engine efficiency. Conventionally, diesel engine emission control has centered on in-cylinder techniques. Although these continue to hold promise, the industry trend is presently favoring the use of after-treatment devices which create new opportunities to improve the diesel engine's brake fuel conversion efficiency. This study focuses on injection timing effects on the combustion processes, engine efficiency, and the engine system's responses. The engine in the study is a medium duty diesel engine (capable of meeting US EPA Tier III off road emission standards) equipped with common rail direct fuel injection, variable geometry turbo charging, and interfaced with a custom built engine controller. The study found that injection timing greatly affected BFCE by changing the combustion phasing. BFCE would increase up to a maximum then begin to decrease as phasing became less favorable. Combustion phasing would change from being mostly mixing controlled combustion to premixed combustion as injection timing would advance allowing more time for fuel to mix during the ignition delay. Combustion phasing, in turn, would influence many other engine parameters. As injection timing is advanced, in-cylinder temperatures and pressures amplify, and intake and exhaust manifold pressures deteriorate. Rate of heat release and rate of heat transfer increase when injection timing is advanced. Turbocharger speed falls with the advancing injection timing. Torque, however, rose to a maximum then fell off again even though engine speed and fueling rate were held constant between different injection timings. Interestingly, the coefficient of heat transfer changes from a two peak curve to a smooth one peak curve as the injection timing is advanced further. The major conclusion of the study is that injection advance both positively and negatively influences the diesel engine's response which contributes to the brake fuel conversion efficiency.
APA, Harvard, Vancouver, ISO, and other styles
9

Chia-HoCheng and 鄭佳和. "Influence of Fuel Injection Angle on the Operation of a Small Pulse Detonation Engine." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/90855661545159895386.

Full text
Abstract:
碩士
國立成功大學
機械工程學系
102
Effects of inlet channel angle on the gas feeding dynamics in pulsed detonation cycle in a micro pulsed detonation engine were investigated in the study. Stoichiometric of ethylene/oxygen were used and high-speed cinematography were applied to observe the flame propagation in mixing section and inlet manifolds upstream of the ignition spot. Laser shadowgraph was also utilized to analyze the shock propagations in the manifolds. It can be found that both of 60° and 90° were typical detonation wave, and a low-speed detonation mode in 30° case. By using a gas chromatography(GC) to measure the mixing status in different angle cases. The equivalent ratio decreased with inlet angle increase. It can be seen that with the smaller inlet angle, there were an intense shock wave propagating back into the inlet manifolds. With 90° inlet angle, the shock wave could only propagate until the cross section, and the expansion resulted in the dissipation of the shock. A dynamic pressure sensor was installed on the oxygen feeding channel to quantify the pressure evolutions in the inlet manifold. The results showed that the shut-off duration for the 30° to 90° inlet was about 306, 219 and 299 us respectively. And reduce to 281, 266 and 270 us by increasing supply pressure. Comparison of single shot and continuous operating of 70 Hz, there were the slowest reaction wave velocity in the inlet section. A cavity design has been apply in the manifold. It can be seen that the shock wave in oxygen manifold were not obvious in cavity case. And the value of peak pressure were 0.45 MPa in original design but there were only 0.12 MPa in cavity case.
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Shengfu, and 王聖夫. "The Study Fuel Injection Timing in Diesel Engine for Pyrolysis Biofuel of Waste Whee." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/26496280570567025490.

Full text
Abstract:
碩士
國立中正大學
機械工程學系暨研究所
99
This paper to tires in the cracking furnace, low temperature below 350 ℃ in the cracking gases generated by the condensation of the resulting tire pyrolysis oil, in two different proportions of commercial diesel (D100) mix, its called T10, T20 bio-oil, diesel engines do real vehicle dynamometer test, known single-cylinder fuel injection quantity and injection angle from m_f1 crank angle θ_A to θ_D, atomized oil droplets to establish θ_A to θ_B mode, when the starting point of spontaneous combustion occurred θ_B the establishment of atomized droplets burning mode, theoretical calculations of the engine combustion chamber temperature, obtained by the state role in relation to the piston of the pressure to get the role of the crank shaft of the torque and speed worthy of the theoretical calculations with the instructions horsepower, analysis results that change the initial injection point θ_A, can effectively reduce the pollutants NOx and HC, the output power in, θ_A changes can help to add the tire pyrolysis oil for diesel engine oil of better output horsepower.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fuel injection timing angle"

1

John, D. St. Effect of jet injection angle and number of jets on mixing and emissions from a reacting crossflow at atmospheric pressure. [Washington, D.C.]: National Aeronautics and Space Administration STI Preogram Office, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

S, Samuelsen G., and NASA Glenn Research Center, eds. Effect of jet injection angle and number of jets on mixing and emissions from a reacting crossflow at atmospheric pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fuel injection timing angle"

1

Li, Peng, Jianjun Zhu, and Wenjie Wu. "Effect of Fuel Injection Advance Angle on Combustion and Emissions of Dual Fuel Compression Ignition Engine." In Application of Intelligent Systems in Multi-modal Information Analytics, 1313–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-15740-1_163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Saxena, Mohit Raj, and Rakesh Kumar Maurya. "Impact of Fuel Premixing Ratio and Injection Timing on Reactivity Controlled Compression Ignition Engine." In Combustion for Power Generation and Transportation, 277–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3785-6_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dobai, Attila, and Ákos Bereczky. "Investigation of Diesel – n-Butanol Fuel Blend in the Function of Pre-injection Angle." In Lecture Notes in Mechanical Engineering, 3–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75677-6_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajendran, Vigneswaran, Dhinesh Balasubramanian, Akash Deep, and Sunil Kumar Mahla. "Effect of 1,4-Dioxane Emulsified Fuel on Diesel Engine Performance and Emission Operating with Varying Injection Timing." In Energy, Environment, and Sustainability, 197–213. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1513-9_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shestakov, D. S., and L. V. Plotnikov. "Influence of the Fuel Injection Advance Angle on the Technical and Environmental Performance of a Diesel Engine (21/21) with a Turbocharger." In Lecture Notes in Mechanical Engineering, 383–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-85233-7_46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atgur, Vinay, Gowda Manavendra, Gururaj Pandurangarao Desai, and Boggarapu Nageswara Rao. "CFD Combustion Simulations and Experiments on the Blended Biodiesel Two-Phase Engine Flows." In Computational Fluid Dynamics [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102088.

Full text
Abstract:
Biodiesels are the promising sources of alternative energy. Combustion phenomenon of blended biodiesels differs to those of diesel due to changes in physio-chemical properties. Experimental investigations are costly and time-consuming process, whereas mathematical modeling of the reactive flows is involved. This chapter deals with combustion simulations on four-stroke single-cylinder direct injection compression ignition engine running at a constant speed of 1500 rpm, injection timing of 25° BTDC with diesel and 20% blend of Jatropha biodiesel. Standard finite volume method of computational fluid dynamics (CFD) is capable of simulating two-phase engine flows by solving three-dimensional Navier–Stokes equations with k-ε turbulence model. Combustion simulations have been carried out for half-cycle by considering the two strokes compression and expansion at zero load condition. The model mesh consists of 557,558 elements with 526,808 nodes. Fuel injection begins at 725° and continues till 748° of the crank angle. Charge motion within the cylinder, turbulent kinetic energy, peak pressure, penetration length, and apparent heat release rate are analyzed with respect to the crank angle for diesel and its B-20 Jatropha blend. Experimental data supports the simulation results. B-20 Jatropha blend possesses similar characteristics of diesel and serves as an alternative to diesel.
APA, Harvard, Vancouver, ISO, and other styles
7

Kumar, Rajesh, and R. P. Gakkhar. "Experimental Investigation for Performance Optimization of Biodiesel-Fueled Diesel Engine Using Taguchi-Gray Relational Analysis." In Optimization Techniques for Problem Solving in Uncertainty, 198–225. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5091-4.ch008.

Full text
Abstract:
The objective of this analysis is to determine optimum parameters for maximum performance and minimum emission for biodiesel-fueled diesel engine. The experiments were designed using Taguchi L25 orthogonal array. Five parameters—fuel blend, load, speed, injection timing, and injection pressure—each with five levels were selected. Cylinder pressure, exhaust temperature, brake thermal efficiency, brake specific fuel consumption, carbon monoxide, unburned hydrocarbons, nitric oxide, and smoke were response parameters. Optimum combination of parameters was determined by grey relational analysis. The confirmatory test was performed at optimum combination. The grey relational grade and signal-to-noise ratio was determined. The contribution of individual parameter was determined by ANOVA analysis. Optimum performance was obtained at 80% load and 1900 rpm speed with B50 fuel at injection timing of 15.50 BTDC with 225 bar injection pressure. Finally, grey relational grade was improved by 3.7%.
APA, Harvard, Vancouver, ISO, and other styles
8

Babu, D., and R. Anand. "Influence of fuel injection timing and nozzle opening pressure on a CRDI-assisted diesel engine fueled with biodiesel-diesel-alcohol fuel." In Advances in Eco-Fuels for a Sustainable Environment, 353–90. Elsevier, 2019. http://dx.doi.org/10.1016/b978-0-08-102728-8.00013-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Balasubramanian, Prabakaran. "An Attempt in Blending Higher Volume of Ethanol with Diesel for Replacing the Neat Diesel to Fuel Compression Ignition Engines." In Bioethanol [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95263.

Full text
Abstract:
Alcohols are renewable in nature and can be manufactured from biomass. Butanol a higher alcohol, can be utilized as co-solvent to prevent the phase separation of diesel-ethanol blends as per the previous researches.. This experimentation has been conducted with the blends of diesel-ethanol with various proportions of n-butanol followed by the solubility test in the temperature range of 5–25°C. The results indicate that 45% of ethanol can be blended with diesel by the assistance of 10% of n-butanol to make the final blend stable up to a temperature of 5°C for 20 days, which met the requirements of the essential properties (ASTM). Existing diesel engine has been modified as per the optimal level of parameters such as intake air temperature (IAT), fuel injection timing (FIT), nozzle opening pressure (NOP) and compression ratio (CR) obtained using Taghuchi method of L9 orthogonal array. Arrived out parameters are 75°C of IAT, 29°before top dead centre of FIT, 210 bar of NOP and 19: 1 of compression ratio. The implementation of these parameters in diesel engine and fueling with diesel-ethanol butanol blend containing 45% ethanol produced closer performance and emissions characteristics compared to that of diesel. However, the emissions of smoke, hydrocarbon and carbon monoxide produced by the optimal blend are found to be marginally higher compared to that of diesel. These can be ratified by the introduction of after treatment systems modifications.
APA, Harvard, Vancouver, ISO, and other styles
10

Balasubramanian, Prabakaran. "An Attempt in Blending Higher Volume of Ethanol with Diesel for Replacing the Neat Diesel to Fuel Compression Ignition Engines." In Bioethanol Technologies. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95263.

Full text
Abstract:
Alcohols are renewable in nature and can be manufactured from biomass. Butanol a higher alcohol, can be utilized as co-solvent to prevent the phase separation of diesel-ethanol blends as per the previous researches. This experimentation has been conducted with the blends of diesel-ethanol with various proportions of n-butanol followed by the solubility test in the temperature range of 5–25°C. The results indicate that 45% of ethanol can be blended with diesel by the assistance of 10% of n-butanol to make the final blend stable up to a temperature of 5°C for 20 days, which met the requirements of the essential properties (ASTM). Existing diesel engine has been modified as per the optimal level of parameters such as intake air temperature (IAT), fuel injection timing (FIT), nozzle opening pressure (NOP) and compression ratio (CR) obtained using Taghuchi method of L9 orthogonal array. Arrived out parameters are 75°C of IAT, 29° before top dead centre of FIT, 210 bar of NOP and 19: 1 of compression ratio. The implementation of these parameters in diesel engine and fueling with diesel-ethanol butanol blend containing 45% ethanol produced closer performance and emissions characteristics compared to that of diesel. However, the emissions of smoke, hydrocarbon and carbon monoxide produced by the optimal blend are found to be marginally higher compared to that of diesel. These can be ratified by the introduction of after treatment systems modifications.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fuel injection timing angle"

1

Song, Jingeun, Mingi Choi, Daesik Kim, and Sungwook Park. "Combustion Characteristics of Methane Direct Injection Engine Under Various Injection Timings and Injection Pressures." In ASME 2016 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icef2016-9437.

Full text
Abstract:
The performance of a methane direct injection engine was investigated under various fuel injection timings and injection pressures. A single-cylinder optical engine was used to acquire in-cylinder pressure data and flame images. An outward-opening injector was installed at the center of the cylinder head. Experimental results showed that the combustion characteristics were strongly influenced by the end of injection timing rather than the start of injection timing. Late injection enhanced the combustion speed because the short duration between the end of injection and the spark induced strong turbulence. The flame propagation speeds under various injection timings were directly compared using crank-angle-resolved sequential flame images. The injection pressure was not an important factor in the combustion; the three injection pressure cases of 0.5, 0.8, and 1.1 MPa yielded similar combustion trends. In the cases of late injection, the injection timings of which were near the Intake Valve Closing (IVC) timing, the volumetric efficiency was higher (by 4%) than in the earlier injection cases. This result implies that the methane direct injection engine can achieve higher torque by means of the late injection strategy.
APA, Harvard, Vancouver, ISO, and other styles
2

Elnajjar, Emad, Mohamed Y. E. Selim, and Farag Omar. "Effect of Dual Fuel Engine Parameters and Fuel Type on Engine Noise Emissions." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24253.

Full text
Abstract:
Investigating experimentally the effects of different fuel types and engine parameters on the overall generated engine noise levels. Engine parameters such as: Engine speed, Injection timing angle, engine loading, different pilot fuel to gases fuel ratio and engine compression ratio. Engine noises due to combustion, turbulent flow and motoring were reported in this study by direct sound pressure level SPL (dB) measurements and compared to the maximum cylinder pressure rise rate with respect to the engine crank angle (dP/dθ)max. Experimental procedures conducted using a Ricardo diesel version variable compression research engine. The study was conducted for three different fuels: single diesel fuel, and dual fuel engine that uses LPG or natural gas. The study for each fuel type covered the following operating parameters range, engine speed from 20–28 rev/sec, injection timing form 20 to 45° BTDC, compression ratio from 16 to 22, load range 2 to 14 N.m, and ratio of pilot to gaseous fuel from 0 to 10%. The study reported the location (crank angle) corresponding to maximum cylinder pressure and max pressure rise rate. Results from testing dual fuel engine with varying design and operating parameters are presented and discussed. The present work reported higher SPL (dB) generated from burning a dual fuel compared to burning diesel fuel only.
APA, Harvard, Vancouver, ISO, and other styles
3

Sanada, Kazushi, and Tetsuro Miyazaki. "Application of DDVC Fuel Injection System to Ship Speed Control." In BATH/ASME 2016 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fpmc2016-1760.

Full text
Abstract:
This paper describes an application of direct drive volume control (DDVC) to ship speed control. The DDVC fuel injection device consists of an AC servo motor, a fixed-displacement oil-hydraulic pump, and an oil-hydraulic cylinder. The cylinder piston pushes a fuel pump to pressurize fuel and an injection valve opens to inject fuel into a combustion chamber. Timing and the quantity of fuel injection can be controlled by the electric signal added to the AC servo motor. In this paper, the DDVC fuel injection device is applied to engine speed control of marine diesel engine and ship speed control. A simulation model is made including a model of the DDVC fuel injection device, propeller model, and hull motion model. Firstly, engine speed control system is proposed. Stop injection angle is automatically adjusted according to engine speed error signal. Secondarily, ship speed control is proposed. Propeller pitch angle is used to control ship speed. Simulation study of these control systems are presented to show the capability of the DDVC fuel injection device for marine diesel engine.
APA, Harvard, Vancouver, ISO, and other styles
4

Kolodziej, Christopher P., and Stephen A. Ciatti. "Effects of Injector Nozzle Inclusion Angle on Extending the Lower Load Limit of Gasoline Compression Ignition Using 87 AKI Gasoline." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5632.

Full text
Abstract:
Gasoline Compression Ignition (GCI) is a promising single-fuel advanced combustion concept for increased efficiency and reduced emissions in comparison with current conventional combustion modes. Gasoline fuels are advantageous in premixed combustion concepts because of their increased volatility and reduced reactivity compared to diesel. These qualities help reduce emissions of particulate matter (PM) and oxides of nitrogen (NOx), while making combustion phasing (and therefore combustion noise reduction) easier to manage. One of the challenges of using a gasoline with an anti-knock index (AKI) of 87 in a premixed combustion concept is being able to achieve stable low load operation. (Note that AKI is equivalent to (RON + MON)/2.) With such small injection quantities of a relatively more volatile and less reactive fuel than diesel, the injection timing of minimum load fueling needs to be early enough to allow the auto-ignition chemistry enough time, but late enough to keep the fuel from over-mixing and losing ignition propensity. The objective of this study was to investigate the advantages and disadvantages of reducing the injector nozzles’ inclusion angle from 148° to 120° on the combustion and emissions performance of GCI at 850 RPM and low load. To assess these effects, minimum fueling injection timing sweeps were performed with a 3% coefficient of variance of indicated mean effective pressure with each injector nozzle angle at 500 and 250 bar injection pressure. The results from these experiments revealed that both reduced injector nozzle angle and reduced injection pressure increased ignition propensity and allowed for reduced fueling and stable low load extension to 1 bar brake mean effective pressure using 87 AKI gasoline without any external boosting or heating. Combustion characteristics (such as noise) and emissions are discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Park, Su Han, In Mo Youn, Sung Wook Park, and Chang Sik Lee. "Effect of Multiple Injection Strategy on Atomization and Emission Reduction Characteristics in a Diesel-Ethanol Fueled Engine." In ASME 2010 4th International Conference on Energy Sustainability. ASMEDC, 2010. http://dx.doi.org/10.1115/es2010-90166.

Full text
Abstract:
The aim of this work is to investigate the effect of the multiple injections on the overall spray and the exhaust emissions characteristics in a common rail four cylinder diesel engine operated using diesel-ethanol blended fuels. In order to prevent the phase separation in blended fuels, biodiesel fuel that based on palm oil added to the blended fuels. The reduction problem of cetane number in blended fuels was supplemented by the addition of biodiesel fuel. The spray characteristics were analyzed through the spray images which obtained by the high speed camera. In addition, the combustion and exhaust emissions characteristics were measured and analyzed by using a four cylinder diesel engine with common rail injection system. It revealed that the increase of the injection interval induces the slow development rate of the second spray in the multiple injection modes. The spray cone angle of the single injection mode is wider than that of the multiple injection modes. The advance of the first injection timing caused the reduction of the second injection quantity, and the relaxation of the combustion pressure rise rate. NOx emission shows a reduction trend by the increased ethanol blending ratio, while it shows an increasing pattern by the advance of the first injection timing at the fixed second injection. In HC and CO emissions, the short injection interval between the first and the second injections is better than long injection interval.
APA, Harvard, Vancouver, ISO, and other styles
6

Adair, Jessica, Matthew Viele, and Ed Van Dyne. "Ion Sensing for Off-Highway Diesel Engines to Meet Future Emissions Regulations." In ASME 2006 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/ices2006-1332.

Full text
Abstract:
Emissions regulations for off-highway engines are tightening towards those of on-highway engines. Present designs will not be able to meet these more stringent regulations because of their use of mechanical fuel injection timing control; more advanced timing control will be required. Ion sensing combined with variable fuel injection timing may help these engines meet the emissions requirements without the drastic price increase that usually accompanies a switch to advanced fuel injection technology. Ion sensing can detect the start of combustion and this signal can be used for closed loop control for the injection timing. The integrity of the ion signal is highly dependent on combustion chamber geometry, sensor placement, and even the polarity of the charge across the sensor. Optimizing all of these effects could improve the detection of the start of combustion from an ion sensor to less than one crank angle degree and provide a signal for closed loop control of the injection timing.
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, Myung Yoon, Ki Hyung Lee, and Chang Sik Lee. "Experimental Investigation of HCCI Combustion With Reduced Compression Ratio and Narrow Include Angle Injector in a Small DI Diesel Engine." In ASME 2005 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/icef2005-1256.

Full text
Abstract:
An experimental investigation was performed on a small direct injection (DI) diesel engine equipped with a common-rail injection system to reduce exhaust emissions through HCCI (homogenous charge compression ignition) combustion. Recently, strict environmental standard requirements call for both lower fuel consumption and reduced emissions that could not be achieved by conventional diesel combustion. In this work experimental investigations to achieve simultaneous reduction of NOx and soot by combustion of more diluted fuel/air mixture before the start of ignition were carried out. To realize this fundamental concept, the experimental conditions including injection timing and EGR rate are varied with the different engine configurations. For reducing the deposition of early injected fuel, spray angle of injector is reduced to 60° and piston head shape also modified to fit with the new injector and to reduce the compression ratio to 15:1 for expanding the ignition delay to form diluted mixture before the ignition. Experimental results show that reduced spray angle with modified piston head allow very low NOx and soot emission level while maintaining the high IMEP of diesel combustion.
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Raj, Yan Wang, Ryan Vojtech, and James Cigler. "Effect of Fuel Injection Parameters on Performance and Emissions for High Efficiency Engines." In ASME 2019 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icef2019-7221.

Full text
Abstract:
Abstract Future diesel engine legislations are focused on further improvements in green-house gas emissions, such as carbon dioxide while additionally pushing for lower NOx emissions levels. These are being achieved with a combination of base-engine, fuel-injection system, air-system and after-treatment system improvements. In this paper, the effect of one injection system characteristics, namely injector flow-rate was investigated on engine performance and emissions using both numerical and experimental techniques. The phenomenon of increasing injector flow was first numerically investigated using commercial code Converge. Two approaches to increasing injector flow-rate were investigated. The first approach was by increasing the injector nozzle hole size while keeping the number of holes constant. The second approach was to change the number of the holes while keeping the injector nozzle size fixed. These simulations led to procurement of injectors to validate the simulation trends. Engine tests were performed with Navistar’s 12.4 L multi-cylinder heavy-duty diesel engine. The identified nozzle flow rates included a 66% increase from that of the baseline case. All the engine tests were performed at the typical cruising condition for this engine, at a series of injection timing and injection pressure values. It was observed that the crank angle for 50% of the integrated total calculated heat release (CA50) for the fuel burned was the most important factor that influenced the brake-thermal efficiency (BTE) and different injectors had similar BTE at constant CA50. With regards to emission, at higher nozzle flow rates, the combustion showed a slightly higher propensity for soot and increased levels of carbon monoxide.
APA, Harvard, Vancouver, ISO, and other styles
9

Sanada, Kazushi. "Control of Fuel Injection Rate for Marine Diesel Engines Using a Direct Drive Volume Control System." In ASME/BATH 2015 Symposium on Fluid Power and Motion Control. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/fpmc2015-9522.

Full text
Abstract:
A direct drive volume control (DDVC) is applied to fuel injection control for marine diesel engine. The DDVC consists of an AC servomotor, a fixed-displacement hydraulic pump, and a hydraulic cylinder. The hydraulic cylinder pushes a plunger pump and fuel is pressurized. When the fuel pressure becomes greater than injection pressure, fuel is injected to a combustion chamber. A brief introduction of the DDVC is described first in this paper referring to conventional fuel injection systems including a cam mechanism and a common rail system. A mathematical model of the DDVC for simulation is summarized. Experiments of fuel injection shows the control function of the DDVC fuel injection system. The topic of this paper is feedback control of the quantity of fuel injection (fuel mass per injection) of the DDVC. The feedback control system is simulated using the above mathematical model. Fuel injection is stopped by switching a drive signal of the AC servomotor and retracting a piston of the hydraulic cylinder. The timing to stop injection is adjusted based on crank angle. An algorithm of updating the crank angle to stop injection is proposed so that the quantity of fuel injection follows the target value. Simulation study shows that the update algorithm works successfully.
APA, Harvard, Vancouver, ISO, and other styles
10

Dempsey, Adam, Scott Curran, Robert Wagner, and William Cannella. "Effect of Premixed Fuel Preparation for Partially Premixed Combustion With a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine." In ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5561.

Full text
Abstract:
Gasoline compression ignition concepts with the majority of the fuel being introduced early in the cycle are known as partially premixed combustion (PPC). Previous research on single- and multi-cylinder engines has shown that PPC has the potential for high thermal efficiency with low NOx and soot emissions. A variety of fuel injection strategies has been proposed in the literature. These injection strategies aim to create a partially stratified charge to simultaneously reduce NOx and soot emissions while maintaining some level of control over the combustion process through the fuel delivery system. The impact of the direct injection strategy to create a premixed charge of fuel and air has not previously been explored, and its impact on engine efficiency and emissions is not well understood. This paper explores the effect of sweeping the direct injected pilot timing from −91° to −324° ATDC, which is just after the exhaust valve closes for the engine used in this study. During the sweep, the pilot injection consistently contained 65% of the total fuel (based on command duration ratio), and the main injection timing was adjusted slightly to maintain combustion phasing near top dead center. A modern four cylinder, 1.9 L diesel engine with a variable geometry turbocharger, high pressure common rail injection system, wide included angle injectors, and variable swirl actuation was used in this study. The pistons were modified to an open bowl configuration suitable for highly premixed combustion modes. The stock diesel injection system was unmodified, and the gasoline fuel was doped with a lubricity additive to protect the high pressure fuel pump and the injectors. The study was conducted at a fixed speed/load condition of 2000 rpm and 4.0 bar brake mean effective pressure (BMEP). The pilot injection timing sweep was conducted at different intake manifold pressures, swirl levels, and fuel injection pressures. The gasoline used in this study has relatively high fuel reactivity with a research octane number of 68. The results of this experimental campaign indicate that the highest brake thermal efficiency and lowest emissions are achieved simultaneously with the earliest pilot injection timings (i.e., during the intake stroke).
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Fuel injection timing angle"

1

Juttu, Simhachalam, S. Thipse, N. Marathe, and M. Gajendra Babu. Experimental and Visualization Study of Fuel Injection Pressure and Injection Timing on PCCI Combustion Characteristics and Emissions. Warrendale, PA: SAE International, September 2010. http://dx.doi.org/10.4271/2010-32-0099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baba, Naoki, Kiyomi Kawamura, Yoshiyuki Mandokoro, and Michio Nakano. Gasoline Two-Stroke HCCI Combustion Controlled by Residual Gas (Second Report)~Effect of Scavenging Pressure and Fuel Injection Timing. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet). Office of Scientific and Technical Information (OSTI), December 2012. http://dx.doi.org/10.2172/1059576.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography