Dissertations / Theses on the topic 'Fuel cells'

To see the other types of publications on this topic, follow the link: Fuel cells.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Fuel cells.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Joseph, Krishna Sathyamurthy. "Hybrid direct methanol fuel cells." Thesis, Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44777.

Full text
Abstract:
A new type of fuel cell that combines the advantages of a proton exchange membrane fuel cells and anion exchange membrane fuel cells operated with methanol is demonstrated. Two configurations: one with a high pH anode and low pH cathode (anode hybrid fuel cell (AHFC)),and another with a high pH cathode and a low pH anode (cathode hybrid fuel cell (CHFC)) have been studied in this work. The principle of operation of the hybrid fuel cells were explained. The two different hybrid cell configurations were used in order to study the effect of the electrode fabrication on fuel cell performance. Further, the ionomer content and properties such as the ion exchange capacity and molecular weight were optimized for the best performance. A comparison of the different ionomers with similar properties is carried out in order to obtain the best possible ionomer for the fuel cell. An initial voltage drop was observed at low current density in the AHFC, this was attributed to the alkaline anode and the effect of the ionomers with the new cationic groups were studied on this voltage drop was studied. These ionomers with the different cationic groups were studied in the CHFC design as well. Finally, the use of non platinum catalyst cathode with the CHFC design was also demonstrated for the first time.
APA, Harvard, Vancouver, ISO, and other styles
2

Murray, K. D. "Biochemical fuel cells." Thesis, University of Bath, 1988. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Preece, John Christopher. "Oxygenated hydrocarbon fuels for solid oxide fuel cells." Thesis, University of Birmingham, 2006. http://etheses.bham.ac.uk//id/eprint/117/.

Full text
Abstract:
In order to mitigate the effects of climate change and reduce dependence on fossil fuels, carbon-neutral methods of electricity generation are required. Solid oxide fuel cells (SOFCs) have the potential to operate at high efficiencies, while liquid hydrocarbon fuels require little or no new infrastructure and can be manufactured sustainably. Using hydrocarbons in SOFCs introduces the problem of carbon deposition, which can be reduced or eliminated by judicious choice of the SOFC materials, the operating conditions or the fuel itself. The aim of this project was to investigate the relationships between fuel composition and SOFC performance, and thus to formulate fuels which would perform well independent of catalyst or operating conditions. Three principal hypotheses were studied. Any SOFC fuel has to be oxidised, and for hydrocarbons both carbon-oxygen and hydrogen-oxygen bonds have to be formed. Oxygenated fuels contain these bonds already (for example, alcohols and carboxylic acids), and so may react more easily. Higher hydrocarbons are known to deposit carbon readily, which may be due to a tendency to decompose through the breaking of a C-C bond. Removing C-C bonds from a molecule (for example, ethers and amides) may reduce this tendency. Fuels are typically diluted with water, which improves reforming but reduces the energy density. If an oxidising agent could also act as a fuel, then overall efficiency would improve. Various fuels, with carbon content ranging from one to four atoms per molecule, were used in microtubular SOFCs. To investigate the effect of oxygenation level, alcohols and and carboxylic acids were compared. The equivalent ethers, esters and amides were also tested to eliminate carbon-carbon bonding. Some fuels were then mixed with methanoic acid to improve energy density. Exhaust gases were analysed with mass spectrometry, electrical performance with a datalogging potentiostat and carbon deposition rates with temperature-programmed oxidation. It was found that oxygenating a fuel improves reforming and reduces the rate of carbon deposition through a favourable route to CO/CO2. Eliminating carbon-carbon bonds from a molecule also reduces carbon deposition. The principal advantage of blending with methanoic acid was the ability to formulate a single phase fuel with molecules previously immiscible with water.
APA, Harvard, Vancouver, ISO, and other styles
4

Saxe, Maria. "Bringing fuel cells to reality and reality to fuel cells : A systems perspective on the use of fuel cells." Doctoral thesis, KTH, Energiprocesser, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-9192.

Full text
Abstract:
With growing awareness of global warming and fear of political instability caused by oil depletion, the need for a society with a sustainable energy system has been brought to the fore. A promising technology often mentioned as a key component in such a system is the fuel cell technology, i.e. the energy conversion technology in focus in this thesis. The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When reliability and durability are achieved fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost.
QC 20100909
Energy Systems Programme
Clean Urban Transport for Europe
GlashusEtt
APA, Harvard, Vancouver, ISO, and other styles
5

Sultan, Jassim. "Direct methanol fuel cells /." Internet access available to MUN users only, 2003. http://collections.mun.ca/u?/theses,162066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zenith, Federico. "Control of Fuel Cells." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1537.

Full text
Abstract:

This thesis deals with control of fuel cells, focusing on high-temperature proton-exchange-membrane fuel cells.

Fuel cells are devices that convert the chemical energy of hydrogen, methanol or other chemical compounds directly into electricity, without combustion or thermal cycles. They are efficient, scalable and silent devices that can provide power to a wide variety of utilities, from portable electronics to vehicles, to nation-wide electric grids.

Whereas studies about the design of fuel cell systems and the electrochemical properties of their components abound in the open literature, there has been only a minor interest, albeit growing, in dynamics and control of fuel cells.

In the relatively small body of available literature, there are some apparently contradictory statements: sometimes the slow dynamics of fuel cells is claimed to present a control problem, whereas in other articles fuel cells are claimed to be easy to control and able to follow references that change very rapidly. These contradictions are mainly caused by differences in the sets of phenomena and dynamics that the authors decided to investigate, and also by how they formulated the control problem. For instance, there is little doubt that the temperature dynamics of a fuel cell can be slow, but users are not concerned with the cell’s temperature: power output is a much more important measure of performance.

Fuel cells are very multidisciplinary systems, where electrical engineering, electrochemistry, chemical engineering and materials science are all involved at various levels; it is therefore unsurprising that few researchers can master all of these branches, and that most of them will neglect or misinterpret phenomena they are unfamiliar with.

The ambition of this thesis is to consider the main phenomena influencing the dynamics of fuel cells, to properly define the control problem and suggest possible approaches and solutions to it.

This thesis will focus on a particular type of fuel cell, a variation of proton-exchange-membrane fuel cells with a membrane of polybenzimidazole instead of the usual, commercially available Nafion. The advantages of this particular type of fuel cells for control are particularly interesting, and stem from their operation at temperatures higher than those typical of Nafion-based cells: these new cells do not have any water-management issues, can remove more heat with their exhaust gases, and have better tolerance to poisons such as carbon monoxide.

The first part of this thesis will be concerned with defining and modelling the dynamic phenomena of interest. Indeed, a common mistake is to assume that fuel cells have a single dynamics: instead, many phenomena with radically different time scales concur to define a fuel-cell stack’s overall behaviour. The dynamics of interest are those of chemical engineering (heat and mass balances), of electrochemistry (diffusion in electrodes, electrochemical catalysis) and of electrical engineering (converters, inverters and electric motors). The first part of the thesis will first present some experimental results of importance for the electrochemical transient, and will then develop the equations required to model the four dynamic modes chosen to represent a fuel-cell system running on hydrogen and air at atmospheric pressure: cathodic overvoltage, hydrogen pressure in the anode, oxygen fraction in the cathode and stack temperature.

The second part will explore some of the possible approaches to control the power output from a fuel-cell stack. It has been attempted to produce a modularised set of controllers, one for each dynamics to control. It is a major point of the thesis, however, that the task of controlling a fuel cell is to be judged exclusively by its final result, that is power delivery: all other control loops, however independent, will have to be designed bearing that goal in mind.

The overvoltage, which corresponds nonlinearly to the rate of reaction, is controlled by operating a buck-boost DC/DC converter, which in turn is modelled and controlled with switching rules. Hydrogen pressure, being described by an unstable dynamic equation, requires feedback to be controlled. A controller with PI feedback and a feedforward part to improve performance is suggested. The oxygen fraction in the cathodic stream cannot be easily measured with a satisfactory bandwidth, but its dynamics is stable and disturbances can be measured quite precisely: it is therefore suggested to use a feedforward controller. Contrary to the most common approach for Nafion-based fuel cells, temperature is not controlled with a separate cooling loop: instead, the air flow is used to cool the fuel-cell stack. This significantly simplifies the stack design, operation and production cost. To control temperature, it is suggested to use a P controller, possibly with a feedforward component. Simulations show that this approach to stack cooling is feasible and poses no or few additional requirements on the air flow actuator that is necessary to control air composition in the cathode.

APA, Harvard, Vancouver, ISO, and other styles
7

Hedström, Lars. "Fuel Cells and Biogas." Doctoral thesis, KTH, Energiprocesser, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-13219.

Full text
Abstract:
This thesis concerns biogas-operated fuel cells. Fuel cell technology may contribute to more efficient energy use, reduce emissions and also perhaps revolutionize current energy systems. The technology is, however, still immature and has not yet been implemented as dominant in any application or niche market. Research and development is currently being carried out to investigate whether fuel cells can live up to their full potential and to further advance the technology. The research of thesis contributes by exploring the potential of using fuel cells as energy converters of biogas to electricity. The work includes results from four different experimental test facilities and concerns experiments performed at cell, stack and fuel cell system levels. The studies on cell and stack level have focused on the influence of CO, CO2 and air bleed on the current distribution during transient operation. The dynamic response has been evaluated on a single cell, a segmented cell and at stack level. Two fuel cell systems, a 4 kW PEFC system and a 5 kW SOFC system have been operated on upgraded biogas. A significant outcome is that the possibility of operating both PEFCs and SOFCs on biogas has been established. No interruptions or rapid performance loss could be associated with the upgraded biogas during operation. From the studies at cell and stack level, it is clear that CO causes significant changes in the current distribution in a PEFC; air bleed may recover the uneven current distribution and also the drop in cell voltage due to CO and CO2 poisoning. The recovery of cell performance during air bleed occurs evenly over the electrode surface even when the O2 partial pressure is far too low to fully recover the CO poisoning. The O2 supplied to the anode reacts on the anode catalyst and no O2 was measured at the cell outlet for air bleed levels up to 5 %. Reformed biogas and other gases with high CO2 content are thus, from dilution and CO-poisoning perspectives, suitable for PEFC systems. The present work has enhanced our understanding of biogas-operated fuel cells and will serve as basis for future studies.
QC20100708
APA, Harvard, Vancouver, ISO, and other styles
8

Schneider, Kenneth. "Photo-microbial fuel cells." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.675704.

Full text
Abstract:
Fundamental studies for the improvement of photo-microbial fuel cells (pMFCs) within this work comprised investigations into ceramic electrodes, toxicity of metal-organic frameworks (MOFs) and hot-pressing of air-cathode materials. A novel type of macroporous electrode was fabricated from the conductive ceramic Ti2AlC. Reticulated electrode shapes were achieved by employing the replica ceramic processing method on polyurethane foam templates. Cyclic voltammetry of these ceramics indicated that the application of potentials larger than 0.5 V with regard to a Ag/AgCl reference electrode results in the surface passivation of the electrode. Ti2AlC remained conductive and sensitive to redox processes even after electrochemical maximisation of the surface passivation, which was shown electrochemically and with four terminal sensing. Application of macroporous Ti2AlC ceramic electrodes in pMFCs with green algae and cyanobacteria resulted in higher power densities than achieved with conventional pMFC electrode materials, despite the larger surface area of the Ti2AlC ceramic. The effect of electrode surface roughness and hydrophobicity on pMFC power generation and on cell adhesion was examined using atomic force and confocal microscopy, contact angle measurements and long-term pMFC experiments. The high surface roughness and fractured structure of Ti2AlC ceramic was beneficial for cell adhesion and resulted in higher pMFC power densities than achieved with materials such as reticulated vitrified carbon foam, fluorine doped tin oxide coated glass or indium tin oxide coated plastic. Toxicity of the MOF MIL101 and its amine-modified version MIL-101(Cr)-NH2 on green algae and cyanobacteria was assessed on the basis of both growth in liquid culture and by exclusion zones of agar colonies around MOF pellets. MOF MIL101 was found harmless in concentrations up to 480 mg L-1 and MIL-101(Cr)-NH2 did not exhibit toxic effects at a concentration of 167 mg L-1. Air-cathodes were produced from a range of carbon materials and ion-exchange membranes. Hot-pressing of Zorflex Activated Carbon Cloth FM10 with the proton-selective Nafion® 115 membrane provided the best bonding quality and pMFC performance.
APA, Harvard, Vancouver, ISO, and other styles
9

Henson, Luke John. "Solid oxide fuel cells." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pramuanjaroenkij, Anchasa. "Mathematical Analysis of Planar Solid Oxide Fuel Cells." Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/234.

Full text
Abstract:
The mathematical analysis has been developed by using finite volume method, experimental data from literatures, and solving numerically to predict solid oxide fuel cell performances with different operating conditions and different material properties. The in-house program presents flow fields, temperature distributions, and performance predictions of typical solid oxide fuel cells operating at different temperatures, 1000 C, 800 C, 600 C, and 500 C, and different electrolyte materials, Yttria-Stabilized zirconia (YSZ) and Gadolinia-doped ceria (CGO). From performance predictions show that the performance of an anode-supported planar SOFC is better than that of an electrolyte-supported planar SOFC for the same material used, same electrode electrochemical considerations, and same operating conditions. The anode-supported solid oxide fuel cells can be used to give the high power density in the higher current density range than the electrolyte-supported solid oxide fuel cells. Even though the electrolyte-supported solid oxide fuel cells give the lower power density and can operate in the lower current density range but they can be used as a small power generator which is portable and provide low power. Furthermore, it is shown that the effect of the electrolyte materials plays important roles to the performance predictions. This should be noted that performance comparisons are obtained by using the same electrode materials. The YSZ-electrolyte solid oxide fuel cells in this work show higher performance than the CGO-electrolyte solid oxide fuel cells when SOFCs operate above 756 C. On the other hand, when CGO based SOFCs operate under 756 C, they shows higher performance than YSZ based SOFCs because the conductivity values of CGO are higher than that of YSZ temperatures lower than 756 C. Since the CGO conductivity in this work is high and the effects of different electrode materials, they can be implied that conductivity values of electrolyte and electrode materials have to be improved.
APA, Harvard, Vancouver, ISO, and other styles
11

Hacquard, Alexandre. "Improving and Understanding Direct Methanol Fuel Cell (DMFC) Performance." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-050505-151501/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Hung, Tak Cheong. "Fuel reforming for fuel cell application /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CENG%202006%20HUNG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Lively, Treise. "Ethanol fuel cell electrocatalysis : novel catalyst preparation, characterization and performance towards ethanol electrooxidation." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.602560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Matter, Paul H. "Electrocatalytic and fuel processing studies for portable fuel cells." Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149037376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MONTEVERDE, VIDELA ALESSANDRO HUGO. "Non-Noble Metal Cathodic Electrocatalysts for PEM Fuel Cells and Direct Methanol Fuel Cells." Doctoral thesis, Politecnico di Torino, 2013. http://hdl.handle.net/11583/2506285.

Full text
Abstract:
The main problem of PEMFCs and DMFCs, is linked with the high price of Pt-based electrocatalysts, on one side, and durability issues, on the other side. In this work electrocatalysts for oxygen reduction reaction (ORR) were developed, synthesized and tested for the fuel cell systems based on hydrogen or methanol. Moreover, tests under sub-freezing conditions at temperatures below 0°C, were conducted to assess the performance of FCs systems in harsh environmental conditions. Specifically, the electrochemical performance of three types of electrocatalysts for the oxygen reduction reaction, based respectively on a hollow core mesoporous shell carbon (HCMSC), an ultrasonic spray pyrolysis mesoporous carbon (USPMC) and a graphene reduced oxide (GRO) were compared. These catalysts were then evaluated electrochemically in a three-electrode one-compartment cell, using a 0.5 M H2SO4 solution as electrolyte, an auxiliary electrode and a reversible hydrogen electrode (RHE), as counter and reference electrodes, respectively. X-ray photoelectron spectroscopy (XPS), X-ray scattering (XRD), Brunauer-Emmett-Teller (BET) and Transmission electron microscopy (TEM) were carried out in order to understand chemical-physical phenomenon, and electrochemical tests were conducted via linear sweet voltammetry (LSV) and cyclic voltammetry (CV). On the other hand, the effects of methanol concentration, temperature, freezing/thawing (F/T) tests and cell purging time, evaluating the performance of a single direct methanol fuel cell (DMFC), were investigated. Specific purging conditions were optimized to increase the durability of MEAs. SEM analysis of MEAs after F/T cycles showed that a significant MEA degradation occurred when the produced water is not removed. Such a degradation affected the subsequent cell performance and durability, which depend of the purging procedure, purging time, and purge flow. By opportunely modifications of the purging procedure, the performance of single DMFCs remained almost constant after 25 F/Ts.
APA, Harvard, Vancouver, ISO, and other styles
16

Lee, Won Yong Ph D. Massachusetts Institute of Technology. "Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74906.

Full text
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face several challenges, the most significant being performance degradation due to carbon deposition and the need of external reforming when using heavier HC. Modeling these devices faces these as well as other complexities such as the presence of multiple electrochemistry pathways including those of H2 and CO. The goals of this thesis are to: (1) improve the thermodynamic analysis of carbon deposition, (2) develop a multistep CO electrochemistry mechanism, and (3) apply the CO along with the H2 electrochemistry mechanisms to predict the cell performance when using syngas. Two carbon deposition mechanisms have been identified: homogeneously formed soot and catalytically grown carbon fiber. All previous thermodynamic analyses have used graphite to represent the properties of the deposited carbon regardless of the formation mechanism. However, the energetic and entropic properties of these two types of carbon are different from those of graphite. A new thermodynamic analysis is proposed that: (1) uses experimentally measured data for carbon fiber if the anode includes Ni catalyst; and (2) uses soot precursors such as CH3 and C2H2 to predict soot formation. The new approach improves the prediction of the onset of carbon deposition where previous analyses failed. A new multi-step CO electrochemistry model is proposed in which CO is directly involved in the charge-transfer steps. The model structure, with a single set of kinetic parameters at each temperature, succeeds in reproducing the characteristics of the EIS data of patterned anodes including the inductive loop at high activation overpotential. The model successfully predicts the steady-state Tafel plots, and explains the positive dependence of the exchange current density on Pco2 - Finally, a membrane-electrode-assembly (MEA) model is developed incorporating multispecies transport through the porous structure, detailed elementary heterogeneous reactions on the Ni surface, and for the first time, detailed electrochemistry models for H2 and CO. The model successfully reproduces the performance of SOFCs using pure H2 or CO. The MEA model can isolate/distinguish between the roles/contributions of the reforming chemistry and CO electrochemistry in SOFCs using syngas. Adding reforming thermochemistry improves the agreement with experiments at lower current densities, and raises the limiting current density by providing more H2 via the water-gas shift reaction. Adding CO electrochemistry improves the prediction at high current densities by the additional current generated by the CO electrochemical oxidation. The current from CO becomes comparable to that from H2 as the CO content at the TPB increases.
by Won Yong Lee.
Ph.D.
APA, Harvard, Vancouver, ISO, and other styles
17

Thorne, Rebecca. "Bio-photo-voltaic cells (photosynthetic-microbial fuel cells)." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.548097.

Full text
Abstract:
Photosynthetic Microbial Fuel Cell (p-MFC) research aims to develop devices containing photosynthetic micro-organisms to produce electricity. Micro-organisms within the device photosynthesise carbohydrates under illumination, and produce reductive equivalents (excess electrons) from both carbohydrate production and the subsequent carbohydrate break down. Redox mediators are utilised to shuttle electrons between the organism and the electrode. The mediator is reduced by the micro-organism and subsequently re-oxidised at the electrode. However this technology is in its early stages and extensive research is required for p-MFC devices to become economically viable. A basic p-MFC device containing a potassium ferricyanide mediator and the algae Chlorella vulgaris was assembled and tested. From these initial experiments it was realised that much more work was required to characterise cell and redox mediator activities occurring within the device. There is very little p-MFC literature dealing with cellular interaction with redox mediators, but without this knowledge the output of complete p-MFC devices can not be fully understood. This thesis presents research into the reduction of redox mediators by the micro-organisms, including rates of mediator reduction and factors affecting the rate. Both electrochemical and non-electrochemical techniques are used and results compared. Additionally, cellular effects relating to the presence of the mediator are studied; crucial to provide limits within which p-MFCs must be used. After basic characterisation, this thesis presents work into the optimisation of the basic p-MFC. Different redox mediators, photosynthetic species and anodic materials are investigated. Importantly, it is only through fundamental characterization to improve understanding that p-MFCs can be optimised.
APA, Harvard, Vancouver, ISO, and other styles
18

de, la Torre Jorge. "FUEL CELLS: HYPE OR REALITY? OVERVIEW OF FUEL CELL TECHNOLOGIES FEASIBILITY STATUS WITH AN EMPHASIS ON AUTOMOTIVE AND RESIDENTIAL PROTON EXCHANGE MEMBRANE FUEL CELLS (PEMFCs)." Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1309540374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Weydahl, Helge. "Dynamic behaviour of fuel cells." Doctoral thesis, Norwegian University of Science and Technology, Department of Materials Technology, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1720.

Full text
Abstract:

This thesis addresses the dynamic behaviour of proton exchange membrane fuel cells (PEMFCs) and alkaline fuel cells (AFCs). For successful implementation in automotive vehicles and other applications with rapidly varying power demands, the dynamic behaviour of the fuel cell is critical. Knowledge of the load variation requirements as well as the response time of the cell at load change is essential for identifying the need for and design of a buffer system.

The transient response of a PEMFC supplied with pure hydrogen and oxygen was investigated by load step measurements assisted by electrochemical impedance spectroscopy and chronoamperometry. Using an in-house designed resistance board, the uncontrolled response in both cell voltage and current upon step changes in a resistive load was observed. The PEMFC was found to respond quickly and reproducibly to load changes. Two transient processes limiting the fuel cell response were identified: i) A cathodic charge transfer process with a potential dependent response time and ii) a diffusion process with a constant response time. The diffusion transient only appeared at high current densities and was offset from the charge transfer transient by a temporarily stable plateau. Transient paths were plotted in the V-i diagram, matching a predicted pattern with overshooting cell voltage and current during a load step.

The transient response of a PEMFC was measured for various cathode gas compositions and gas utilisations (fraction of supplied reactant gas which is consumed in the fuel cell reaction). For a PEMFC operated on pure hydrogen and oxygen, the cell voltage response to current steps was fast, with response times in the range 0.01-1 s, depending on the applied current. For a PEMFC supplied with air as cathode gas, an additional relaxation process related to oxygen transport caused a slower response (appr. 0.1-2 s depending on the applied current). Response curves up to appr. 0.01 s were apparently unaffected by gas composition and utilisation and were most likely dominated by capacitive discharge of the double layer and reaction with surplus oxygen residing in the cathode. The utilisation of hydrogen had only a minor effect on the response curves, while the utilisation of air severely influenced the transient PEMFC response. Results suggested that air flow rates should be high to obtain rapid PEMFC response.

The load-following capability of a single PEMFC was studied by measuring the cell voltage response to a sinusoidal current load with large amplitudes. Effects on the cell voltage response when varying the DC value, amplitude and frequency of the current load were recorded. The load-following capability of the PEMFC was excellent in the operating range where changes in cell voltage were dominated by ohmic losses. No hysteresis in the cell voltage response was observed in this range for frequencies up to 1-10 Hz. In the operating range where changes in cell voltage were dominated by activation losses, hysteresis appeared at lower frequencies (>0.1 Hz) due to sluggish response in the voltage range near open circuit voltage. The increased mass transport limitation imposed when supplying the PEMFC with air caused hysteresis to appear at lower frequencies than for oxygen (above 0.1 Hz, compared to 1-10 Hz for oxygen).

The dynamic behaviour of an AFC supplied with pure oxygen and hydrogen was investigated by load step measurements assisted by electrochemical impedance spectroscopy (EIS). Load step measurements were carried out using an in-house designed resistance board which gave step changes in a purely resistive load. Resistive load steps between various operating points along the polarisation curve were carried out and the corresponding transient response in cell voltage and current was measured. The transient cell response consisted of an initial ohmic drop followed by a relaxation towards the new steady state. The observed response was slower at higher cell voltages. Measured response times varied on a time scale of appr. 10 ms to 10 s, depending on the initial and final voltages. Results from EIS measurements suggested that the potential dependent response time stemmed from the charge transfer reaction at the cathode. Transient response curves were plotted in the V-i diagram and shown to follow a pattern determined by the load resistance and ohmic resistance of the AFC. Results showed that when supplied with pure oxygen and hydrogen, the AFC responded sufficiently fast for automotive applications.

An iso-thermal, one-dimensional, transient model of an AFC cathode was developed, based on mass balances for oxygen and ionic species and floodedagglomerate theory. Model results show the coupled effects of oxygen diffusion, ion transport and propagation of local electrode potential on the response in current density to a cathodic step in electrode potential. For a set of base case parameters, oxygen diffusion and potential propagation, with characteristic time constants of 0.30 and 0.11 ms, respectively, dominated the current response up to appr. 1 ms, while the slower ion diffusion with time constant 5.0 s controlled the final relaxation towards steady state at appr. 60 s. A smaller agglomerate radius and electrode thickness and a smaller double layer capacitance gave faster electrode response. For a cathodic step in electrode potential, an overshoot in faradaic current appeared around 0.5 ms. This overshoot was related to an initially higher oxygen concentration in the agglomerates, but was masked by capacitive current for base case parameters. Simulated response in oxygen concentration profiles suggested that the potential dependent response time found in previous studies can be related to consumption of surplus oxygen in the catalyst layer.

APA, Harvard, Vancouver, ISO, and other styles
20

Baird, Scott. "Computational modelling of fuel cells." Thesis, Loughborough University, 2001. https://dspace.lboro.ac.uk/2134/10917.

Full text
Abstract:
Industrial applications of fuel cell technologies offer a major research opportunity. To realise the goal of practical commercial applications of this developing technology will involve the integration of the latest developments in electrical, fluid and chemical engineering systems. Although each field is well developed in its own right, the novel concept of combining these technologies within computational models offers the potential for new understanding and design procedures to be created. This multi-disciplinary approach would offer new insights into the fundamental physical phenomena, as well as creating tools that can be used for designing fuel cells and is the major focus of the research described in this thesis. Power storage fuel cells are the subject of this research. This particular fuel cell is a bipolar stack with two, single phase, liquid electrolytes. A review of the current techniques highlighted the need to address the study of the loss mechanisms present in the fuel cell. The prediction of short circuits created by the electrically conductive fluids required an electrical model. The power consumed driving the fluid system compelled a fluid dynamics model. These were combined within this work, to optimise the geometrical properties of this type of fuel cell based on general chemical kinetic and operating parameters. In order to satisfy the operating requirement of even distribution of reactants to the active areas, a finite-volume technique based on a computational fluid dynamics (CFD) code was developed. This enabled the prediction of the transport processes for fluid flow, electrical energy transfer and chemical species conversion throughout the fuel cell. The complexity of the multi-disciplinary CFD method required the use of parallel computers to reduce the lead times. The CFD approach is employed best studying small sections of the fuel cell system highlighting important phenomena. This research has already influenced design variations and has guided the direction of additional research, namely ways of electrically isolating the fluid without interrupting the flow. This work has successfully demonstrated that computational modelling can predict fuel cell electrochemical phenomena in a fraction of the time and cost of experimental procedures. This research is being used to benefit the design process and further the exploitation of fuel cell technologies. Finally, by extending the research into porous media and two phase flow these techniques could be applied to all types of fuel cell.
APA, Harvard, Vancouver, ISO, and other styles
21

Muntyan, A. "Fuel cells: evolution in design." Thesis, Вид-во СумДУ, 2006. http://essuir.sumdu.edu.ua/handle/123456789/11879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Kwan, Siu Ming. "Zeolite-based micro fuel cells /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CBME%202008%20KWAN.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Xu, Xiaoxiang. "Development of new proton conducting materials for intermediate temperature fuel cells /." St Andrews, 2010. http://hdl.handle.net/10023/887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Shaffer, Christian Edward. "Flow system modeling with applications to fuel cell systems." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4198.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains xii, 111 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 100-102).
APA, Harvard, Vancouver, ISO, and other styles
25

Liu, Hong. "Optimization for Fuel Cells/Fuel Cell Stacks Using Combined Methods---CFD Modeling Analysis, and Experiments." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/297027.

Full text
Abstract:
Fuel cells are one of most environmental friendly energy sources; they have many advantages and may be used in many applications from portable electronic devices to automotive components. Proton exchange membrane (PEM) fuel cells are one of most reliable fuel cells and have advantage such as rapid-startup and ease of operation. This dissertation focuses on PEM fuel cell stack optimization based on operation experimental research and numerical modeling study. This dissertation presents three major research activities and the obtained results by the Ph.D candidate. A novel stack architecture design is introduced in order to decrease mal-distribution and non-uniform output performance between individual cells in order to improve the stack performance. Novel stack architecture includes a novel external bifurcation flow distribution delivery system. One major issue of uniform distribution of reactants inside individual fuel cells and between fuel cells in a fuel cell stack is solved by the novel stack architecture design. A novel method for uniform flow distribution was proposed, in which multiple levels of flow channel bifurcations were considered to uniformly distribute a flow into 2ⁿ flow channels at the final stage, after n levels of bifurcation. Some detailed parameters such as the flow channel length and width at each level of bifurcation as well as the curvature of the turning area of flow channels were particularly investigated. Computational fluid dynamics (CFD) based analysis and experimental tests were conducted to study the effect of the flow channel bifurcation structure and dimensions on the flow distribution uniformity. Optimization design and factors influential to the flow distribution uniformity were also delineated through the study. The flow field with the novel flow distribution was then considered to be used in a cooling plate for large fuel cell stacks and a possible method for cooling electronic devices. Details of the heat transfer performance, particularly the temperature distributions, on the heating surface as well as the pressure losses in the operation were obtained. In the second part of the research, experimental testing, analytical modeling, and CFD methods were employed for the study and optimization of flow fields and flow channel geometry in order to improve fuel cell performance. Based on the experimental results, a serpentine flow field is chosen for CFD and modeling analysis. Serpentine flow channel optimization is based on the parametrical study of many combinations of total channel width and rib ratio. Modeling analysis and in-house made computational code was used to optimize the dimensions of flow channels and channel walls. It is recommended that cell channel design should use a small total channel width and rib ratio. Proton exchange membrane fuel cells were fabricated based on the optimization results. Experimental tests were conducted and the results coincided with the numerical analysis; therefore, small total width and rib ratio design could significantly improve the fuel cell performance. Three dimensional (3D) CFD simulations for various PEM fuel cells were conducted to investigate information such as water and reactants distribution. The direct simulation results of current density distribution proclaim how the channel design influences the performance. The final section of research is stack bipolar plate flow field optimization. Optimized channel geometries are applied to the serpentine channel design for the stack. This serpentine channel design evolved to parallel-serpentine channel and symmetric serpentine channel design. Experimental tests of the stacks using the above flow fields are compared to one another and the results recommend use of the novel symmetric serpentine flow channel for stack bipolar design to achieve best performance.
APA, Harvard, Vancouver, ISO, and other styles
26

Bradley, Thomas Heenan. "Modeling, design and energy management of fuel cell systems for aircraft." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26592.

Full text
Abstract:
Thesis (Ph.D)--Mechanical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Parekh, David; Committee Member: Fuller, Thomas; Committee Member: Joshi, Yogendra; Committee Member: Mavris, Dimitri; Committee Member: Wepfer, William. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
27

Mirzababaei, Jelvehnaz. "Solid Oxide Fuel Cells with Methane and Fe/Ti Oxide Fuels." University of Akron / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=akron1415461807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Lim, Keng Guan. "Microfluidic fuel cell." View abstract/electronic edition; access limited to Brown University users, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3319104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Naidoo, Sivapregasen. "Cesium hydrogen sulphate and cesium dihydrogen phosphate based solid composite electrolyte for fuel cell application." Thesis, University of the Western Cape, 2004. http://etd.uwc.ac.za/index.php?module=etd&amp.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Gallagher, Kevin Gregory. "Challenges in low-temperature fuel cells." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/37264.

Full text
Abstract:
Low-temperature fuel cells (LTFC) such as phosphoric acid fuel cells (PAFC) and proton exchange membrane fuel cells (PEMFC) are a promising electrochemical energy system for the conversion of hydrogen to electricity. Many challenges must be overcome before commercialization is possible. This dissertation focuses on the degradation of carbon catalyst supports and PEMFC water management. Kinetic studies are presented on the structure-reactivity relationship including an in-depth study of commercially available and model carbons. A mechanism and numerical model of the electrochemical oxidation of graphene-based carbon is proposed to explain longstanding questions. Three mechanisms are concluded to contribute to the current decay commonly observed during electrochemical oxidation: mass loss, reversible passive oxide formation, and irreversible oxide formation. Water uptake and electro-osmosis are investigated to improve the understanding and aid modeling of water transport in PEMFCs below 0 °C. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton transport mechanisms. Capillary pressure saturation relations are presented for carbon fiber paper which can both be used as gas-diffusion layers in PEMFCs. Boundary and scanning curves for imbibition and drainage are measured to further understanding of the hysteresis observed during PEMFC operation.
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Hyea. "High energy density direct methanol fuel cells." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37106.

Full text
Abstract:
The goal of this dissertation was to create a new class of DMFC targeted at high energy density and low loss for small electronic devices. In order for the DMFC to efficiently use all its fuel, with a minimum of balance of plant, a low-loss proton exchange membrane was required. Moderate conductivity and ultra low methanol permeability were needed. Fuel loss is the dominant loss mechanism for low power systems. By replacing the polymer membrane with an inorganic glass membrane, the methanol permeability was reduced, leading to low fuel loss. In order to achieve steady state performance, a compliant, chemically stable electrode structure was investigated. An anode electrode structure to minimize the fuel loss was studied, so as to further increase the fuel cell efficiency. Inorganic proton conducting membranes and electrodes have been made through a sol-gel process. To achieve higher voltage and power, multiple fuel cells can be connected in series in a stack. For the limited volume allowed for the small electronic devices, a noble, compact DMFC stack was designed. Using an ADMFC with a traditional DMFC including PEM, twice higher voltage was achieved by sharing one methanol fuel tank. Since the current ADMFC technology is not as mature as the traditional DMFCs with PEM, the improvement was accomplished to achieve higher performance from ADMFC. The ultimate goal of this study was to develop a DMFC system with high energy density, high energy efficiency, longer-life and lower-cost for low power systems.
APA, Harvard, Vancouver, ISO, and other styles
32

Shantaram, Avinash. "Power Management for Microbial Fuel Cells." Thesis, Montana State University, 2005. http://etd.lib.montana.edu/etd/2005/shantaram/ShantaramA0505.pdf.

Full text
Abstract:
Monitoring parameters characterizing water quality, such as temperature, pH and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and have to be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, we have designed and tested a self-renewable power source, a microbial fuel cell, which has the potential to eliminate the need for batteries to power electrochemical sensors used to monitor water quality and small telemetry systems used to transmit the data acquired by these sensors. To demonstrate the utility of the microbial fuel cell, we have combined it with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in an ultracapacitor and used in short bursts when needed. Since powering commercial components of electronic circuits requires 5 Volts, and our cell was able to deliver a maximum of 2.1 V, we used a DC-DC converter to increase the potential. The DC-DC converter powered the transmitter, which gathered the data from the sensor and transmitted them to a receiver. To demonstrate the utility of the system, we initially measured temporal variations in temperature followed by the implementation of a chemical sensor to measure copper and lead concentrations in water; this data was then wirelessly transmitted to a remote receiver.
APA, Harvard, Vancouver, ISO, and other styles
33

Wilkinson, Mark. "Microbial fuel cells : electricity from waste?" Thesis, University of Liverpool, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.540039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Redmond, Erin Leigh. "Cathode durability in PEM fuel cells." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50330.

Full text
Abstract:
Proton exchange membrane (PEM) fuel cells are competitive with other emerging technologies that are being considered for automotive transportation. Commercialization of PEM fuel cells would decrease emissions of criteria pollutants and greenhouse gases and reduce US dependence on foreign oil. However, many challenges exist that prevent this technology from being realized, including power requirements, durability, on-board fuel storage, fuel distribution, and cost. This dissertation focuses on fuel-cell durability, or more specifically catalyst stability. New techniques to comprehensively observe and pin-point degradation mechanisms are needed to identify stable catalysts. In this text, an in operando method to measure changes in catalyst particle size at the cathode of a PEM fuel cell is demonstrated. The pair distribution function analysis of X-ray diffraction patterns, generated from an operating fuel cell exposed to accelerated degradation conditions, was used to observe the growth of catalyst particles. The stability of Pt/C and PtCo/C electrodes, with different initial particle sizes, was monitored over 3000 potential cycles. The increase in particle size was fit to a linear trend as a function of cycle number for symmetric linear sweeps of potential. The most stable electrocatalyst was found to be alloyed PtCo with a larger initial particle size. A better understanding of oxide growth kinetics and its role in platinum dissolution is needed to develop a comprehensive fuel-cell performance model. There is an ongoing debate present in the current literature regarding which oxide species are involved in the oxide growth mechanism. This dissertation discusses the results of in operando X-ray absorption spectroscopy studies, where it was found that PtO2 is present at longer hold times. A new method to quantify EXAFS data is presented, and the extent of oxidation is directly compared to electrochemical data. This comparison indicated that PtO2 was formed at the expense of an initial oxide species, and these steps were included in a proposed mechanism for platinum oxidation. Simulations of platinum oxidation in literature have yet to fully replicate an experimental cyclic voltammogram. A modified Butler-Volmer rate equation is presented in this thesis. The effect of including an extra parameter, χ, in the rate equations was explored. It was found that while the χ-parameter allowed the cathodic peak width to be decoupled from the Tafel slope for the platinum-oxide reduction, its inclusion could not address all observed experimental characteristics. Exploration of this concept concluded that current is not a function of only potential and coverage. To that end, a heterogeneous oxide layer was introduced. In this model, place-exchanged PtO2 structures of varying energy states are formed through a single transition state. This treatment allowed, for the first time, the simulation of the correct current-potential behavior under varying scan rates and upper potential limits. Particle size plays a critical role in catalysts stability. The properties of nanoparticles can differ significantly from bulk values, yet few tools exist to measure these values at the nanoscale. Surface stress and surface energy are diagnostic criterion that can be used to differentiate nano from bulk properties. The pair distribution function technique was used to measure lattice strain and particle size of platinum nanoparticles supported on carbon. The effect of adsorbates on surface stress was examined and compared to previous literature studies. Furthermore, a methodology for measuring the surface energy of supported platinum nanoparticles has been developed. While the results of this work are significant, many more challenges need to be addressed before fuel-cell vehicles are marketed. Recommendations for future work in the field of catalyst durability are addressed.
APA, Harvard, Vancouver, ISO, and other styles
35

Nicolas, Degrenne. "Power Management for Microbial Fuel Cells." Phd thesis, Ecole Centrale de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-01064521.

Full text
Abstract:
Les Piles à Combustible Microbiennes (PCMs) mettent en oeuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l'énergie électrique. Les applications potentielles incluent le traitement d'eau usée autonome en énergie, les bio-batteries, et le grappillage d'énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l'énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l'énergie électrique de façon efficace. La tension à laquelle l'énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs ont été testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L, construites de façon similaire. Bien que d'autres choix structurels et opératoires peuvent permettre d'améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d'énergie de point de puissance maximal et les PCMs ont été testées avec des conditions de récupération d'énergie réalistes. Récupérer un maximum d'énergie des PCMs est la ligne directrice de ce rapport. Cela est rendu possible par des circuits dédiés de gestion de l'énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L'oscillateur d'Armstrong, composé d'inductances couplées à fort rapport d'enroulement et d'un interrupteur normalement-fermé permet d'élever des tensions de façon autonome à partir de sources basse-tension continues comme les PCMs. Ce circuit a été associé à des convertisseurs d'électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l'énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1 mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en oeuvre une commande qui recherche le point de puissance maximal du générateur. Une seconde application d'intérêt concerne le cas où de l'énergie est récupérée depuis plusieurs PCMs. L'association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d'équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit " complete disconnection " déconnecte une cellule défectueuse de l'association pour s'assurer qu'elle ne diminue pas le rendement global. Le circuit " switched-capacitor " transfère de l'énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l'association. Le circuit " switched-MFCs " connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en oeuvre à bas prix et à haut rendement, la plus efficace étant la " switched-capacitor " qui permet de récupérer plus de 85 % de la puissance maximum idéale d'une association très largement non uniforme
APA, Harvard, Vancouver, ISO, and other styles
36

Rexed, Ivan. "Applications for Molten Carbonate Fuel Cells." Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-154585.

Full text
Abstract:
Molten Carbonate Fuel cells are high temperature fuel cells suitable for distributed generation and combined heat and power, and are today being installed on commercial basis in sizes from 100kW to several MW. Novel applications for MCFC which have attracted interest lately are MCFC used for CO2 separation from combustion flue gas, and high temperature electrolysis with reversible fuel cells. In the first application, the intrinsic capability of the MCFC to concentrate CO2 from the cathode to the anode side through the cell reaction is utilized. In the second application, the high operating temperature and relatively simple design of the MCFC is utilized in electrolysis, with the aim to produce a syngas mix which can be further processed into hydrogen of synthetic fuels. In this thesis, the effect on fuel cell performance of operating a small lab-scale molten carbonate fuel cell in conditions which simulate those that would apply if the fuel cell was used for CO2 separation in combustion flue gas was studied. Such operating conditions are characterized especially by a low CO2 concentration at the cathode compared to normal operating conditions. Sulfur contaminants in fuel gas, especially H2S, are known poisoning agents which cause premature degradation of the MCFC. Furthermore, combustion flue gas often contains sulfur dioxide which, if entering the cathode, causes performance degradation by corrosion and by poisoning of the fuel cell. This makes poisoning by sulfur contaminants of great concern for MCFC development. In this thesis, the effect of sulfur contaminants at both anode and cathode on fuel cell degradation was evaluated in both normal and in low CO2 simulated flue gas conditions.      The results suggested that the poisoning effect of SO2 at the cathode is similar to that of H2S at the anode, and that it is possibly due to a transfer of sulfur from cathode to anode. Furthermore, in combination with low CO2 conditions at the cathode, SO2 contaminants cause fuel cell poisoning and electrolyte degradation, causing high internal resistance. By using a small lab-scale MCFC with commercial materials and standard fuel cell operating conditions, the reversible MCFC was demonstrated to be feasible. The electrochemical performance was investigated in both fuel cell (MCFC) and electrolysis cell (MCEC) modes. The separate electrodes were studied in fuel cell and electrolysis modes under different operating conditions. It was shown that the fuel cell exhibited lower polarization in MCEC mode than in MCFC mode, and a high CO2 concentration at the fuel cell anode reduced the polarization in electrolysis mode, which suggested that CO2 is reduced to produce CO or carbonate.
Smältkarbonatbränsleceller (MCFC) är en typ av högtemperaturbränsleceller som är anpassade för kombinerad el- och värmeproduktion i mellan-till stor skala. Idag installeras MCFC på kommersiell basis i storlekar mellan 100kW och flera MW. En ny typ av tillämpning för MCFC som har väckt intresse på senare tid är användandet av MCFC för CO2-avskiljning i kombination med konventionell elproduktion genom förbränning. En annan ny tillämpning är högtemperaturelektrolys genom användandet av reversibla bränsleceller. I det första fallet utnyttjas att CO2 kan koncentreras från katod- till anodsidan, vilket sker genom cellreaktionen för MCFC. I det andra fallet utnyttjas den höga arbetstemperaturen och den relativt enkla cell-designen för att använda reversibla MCFC till elektrolys, med syfte att producera en syngas-blandning som kan förädlas till vätgas eller till syntetiskt bränsle. I denna avhandling studeras effekten på bränslecellens prestanda genom att operera en MCFC i lab-skala med driftförhållanden som simulerar de som förväntas uppkomma om bränslecellen användes för CO2-avskiljning ur rökgaser från förbränning. Dessa driftförhållanden karaktäriseras av låg CO2-koncentration på katodsidan jämfört med normal drift. Svavelföroreningar i bränsle, speciellt H2S, är kända för att orsaka förgiftning av anoden, vilket i sin tur försämrar bränslecellens prestanda. Dessutom innehåller rökgaser ofta SO2, vilket antas orsaka korrosion och förgiftning av katoden. Detta gör effekten av svavelföroreningar till ett prioriterat ämne för utvecklingen av MCFC. I denna avhandling undersöks effekten av svavelföroreningar på både anod- och katodsidan, i normala driftförhållanden och i förhållanden med låg CO2 som simulerar användandet av rökgaser för CO2-avskiljning. Resultaten tyder på att effekten av förgiftning med SO2 på katoden liknar den med H2S på anoden, och att detta kan vara orsakat av en transport av svavel från katod till anod. Vidare, i kombination med låg CO2 koncentration på katoden så orsakar SO2-föroreningar elektrolytdegradering, vilket orsakar hög inre resistans. Genom att använda en liten MCFC i lab-skala med kommersiella material och standardförhållanden för MCFC påvisades att reversibla smältkarbonatbränsleceller kan vara ett lovande koncept. Den elektrokemiska prestandan av både cell och separata elektroder undersöktes både som bränslecell (MCFC)och vid elektrolys (MCEC). Resultaten visade att cellen uppvisade lägre polarisation vid elektrolys än som bränslecell, och att ten hög CO2-koncentration på det som är bränslecellens anodsida gav upphov till en minskad elektrodpolarisation, vilket indikerar att CO2 reduceras för att producera CO eller karbonat.

QC 20141028

APA, Harvard, Vancouver, ISO, and other styles
37

Vassallo, Joseph. "Multilevel converters for regenerative fuel-cells." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420375.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Lee, Won Yong S. M. Massachusetts Institute of Technology. "Modeling of solid oxide fuel cells." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38564.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.
Includes bibliographical references (p. 107-110).
A comprehensive membrane-electrode assembly (MEA) model of Solid Oxide Fuel Cell (SOFC)s is developed to investigate the effect of various design and operating conditions on the cell performance and to examine the underlying mechanisms that govern their performance. We review and compare the current modeling methodologies, and develop an one-dimensional MEA model based on a comprehensive approach that include the dusty-gas model (DGM) for gas transport in the porous electrodes, the detailed heterogeneous elementary reaction kinetics for the thermo-chemistry in the anode, and the detailed electrode kinetics for the electrochemistry at the triple-phase boundary. With regard to the DGM, we corrected the Knudsen diffusion coefficient in the previous model developed by Multidisciplinary University Research Initiative. Further, we formulate the conservation equations in the unsteady form, allowing for analyzing the response of the MEA to imposed dynamics. As for the electrochemistry model, we additionally analyzed all the possibilities of the rate-limiting reaction and proposed rate-limiting switched mechanism. Our model prediction agrees with experimental results significantly better than previous models, especially at high current density.
by Won Yong Lee.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
39

Mølmen, Live. "Materials Reliability in PEM Fuel Cells." Licentiate thesis, Jönköping University, JTH, Material och tillverkning, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-52424.

Full text
Abstract:
As part of the global work towards reducing CO2 emissions, all vehicles needs to be electrified, or fueled by green fuels. Batteries have already revolutionised the car market, but fuel cells are believed to be a key energy conversion system to be able to electrify also heavy duty vehicles. The type of fuel cell commercially available for vehicles today is the polymer electrolyte membrane fuel cell (PEMFC), but for it to be able to take a larger market share, the cost must be reduced while sufficient lifetime is ensured. The PEMFC is a system containing several components, made of different materials including the polymer membrane, noble metal catalyst particles, and metallic bipolar plate. The combination of different materials exposed to elevated temperature, high humidity and low pH make the PEMFC components susceptible to corrosion and degradation. The noble metal catalyst is one of the major contributors to the high cost. In this work, the latest research on new catalyst materials for PEMFCs are overviewed. Furthermore, electrodeposition as a simple synthesis route to test different Pt-alloys for the cathode catalyst in the fuel cell is explored by synthesis of PtNi and PtNiMo. The gas diffusion layer of the PEMFC is used as substrate to reduce the number of steps to form the membrane electrode assembly. In addition to cheaper and more durable materials, understanding of how the materials degrade, and how the degradation affects the other components is crucial to ensure a long lifetime. Finding reliable test methods to validate the lifetime of the final system is necessary to make fuel cell a trusted technology for vehicles, with predictable performance. In this work, commercial flow plates are studied, to see the effect of different load cycles and relative humidities on the corrosion of the plate. Defects originating from production is observed, and the effect of these defects on the corrosion is further analysed. Suggestions are given on how the design and production of bipolar plates should be made to reduce the risk of corrosion in the PEMFC.
Som en del av det globala arbetet med at reducera utsläppen av koldioxid måste alla fordon elektrifieras eller tankas med förnybart bränsle. Batterier har redan revolutionerat bilmarknaden, men bränsleceller är en viktig pusselbit för att också elektrifiera tunga fordon. Den typen av bränsleceller för fordon som finns tillgänglig på den kommersiella marknaden i dag är polymerelektrolytbränslecellen (PEMFC). För att PEMFC skall ta en större marknadsandel måste kostnaderna minskas och livslängden förlängas. PEMFC består av ett antal komponenter gjorda av olika material, bland annat polymer membran, ädelmetallkatalysator, och metalliska bipolära plattor. Kombinationen av olika material i tillägg till den höga temperaturen, hög fuktighet och låg pH gör att materialen i bränslecellen är utsatta för korrosion. Ädelmetallkatalysatorn är en av de kostdrivande komponenterna i bränslecellen. I denna studien presenteras en översikt över framstegen inom katalysatormaterial för PEM bränsleceller de senaste två åren. Sedan studeras elektroplätering som en enkel produktionsmetod för nanopartiklar av platina legeringar. Möjligheten att simultant plätera fler metaller, och att använda gasdiffutions-skiktet från bränslecellen som substrat för att reducera antal produktionsteg och därmed reducera kostnader, undersöks. Det möjliggör också snabb testning av olika legeringar för att identifiera den optimala sammansättningen med hög prestanda, lång livslängd och lite platina. I tillägg till att ta fram billigare och tåliga material är det viktigt att förstå hur materialen degraderar och hur degraderingen av ett material påverkar de andra komponenterna. Med den kunskapen kan man utveckla accelererade testmetoder för att bedöma livslängden av hela bränslecellen. Validerade testmetoder är viktigt för att styrka förtroendet till nya teknologier. I denna studien fokuseras det också på korrosion av bipolära plattor, och hur olika lastcykler och fuktnivåer som kan bli applicerad vid accelererad testning påverkar korrosionen. Också effekten av defekter från tillverkningen i den skyddande beläggningen analyseras med hänsyn till korrosion, för att ge mer insikt i hur bipolära plattor kan designas och produceras för att minska korrosionen.
APA, Harvard, Vancouver, ISO, and other styles
40

Hayes, Patrick. "Advances in catalysis for fuel cells." Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/8464.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Fournier, Guillaume. "Experimental study of ammonia fuel cells." Thesis, Loughborough University, 2006. https://dspace.lboro.ac.uk/2134/8007.

Full text
Abstract:
The purpose of this thesis was to carry out the experimental study of direct ammonia fuel cells. The use of hydrogen in fuel cells poses a lot of problems. There is a lot of safety, technical and economic issues to be overcome to make its use as a fuel widespread. Ammonia is being considered as a very promising source of hydrogen for fuel cells. However, until now its use in fuel cells has received very little attention. Ammonia presents many advantages over hydrogen and other potential sources of hydrogen such as an easy storage and a world-wide distribution network. Ammonia is a suitable hydrogen carrier and can be easily cracked at high temperatures such as those used in solid oxide fuel cells. The present study was conducting using ammonia as fuel and argon as carrier gas in different solid oxide fuel cell systems: an annular design, a planar design and a micro laminated reactor. The electrolyte materials were calcia stabilized zirconia and yttria stabilized zirconia. As far as the electrodes are concerned, silver, platinum and nickel cermet were used as anode/materials and silver was employed as cathode material. The cell yoltage was measured as function of reactor configuration, space time, ammonia flow rate and ammonia concentration. The results demonstrate the high potential of ammonia over hydrogen when nickel is used as anode material. Solid proton conducting fuel cells operating on ammonia fuel were also studied. The electrolyte materials were fabricated from neodymium and gadolinium doped barium and strontium cerates. The dopant fraction ranged from 1 to 20 wt%. Silver was employed as cathode and anode material and was spray deposited. The application of proton conducting electrolytes results in higher current densities for a given voltage than the using typical oxide ion conductors such as 8mol % yttria stabilized zirconia. The potential of the proton conducting materials for application in ammonia synthesis at atmospheric pressure was also studied. They demonstrated promising results and could prove to be an alternative to the common ammonia synthesis processes.
APA, Harvard, Vancouver, ISO, and other styles
42

Soares, Helena Sofia Marques Pinto. "Electrolytes for ceramic oxide fuel cells." Doctoral thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15883.

Full text
Abstract:
Doutoramento em Nanociências e Nanotecnologia
The main objective of this dissertation is the development and processing of novel ionic conducting ceramic materials for use as electrolytes in proton or oxide-ion conducting solid oxide fuel cells. The research aims to develop new processing routes and/or materials offering superior electrochemical behavior, based on nanometric ceramic oxide powders prepared by mechanochemical processes. Protonic ceramic fuel cells (PCFCs) require electrolyte materials with high proton conductivity at intermediate temperatures, 500-700ºC, such as reported for perovskite zirconate oxides containing alkaline earth metal cations. In the current work, BaZrO3 containing 15 mol% of Y (BZY) was chosen as the base material for further study. Despite offering high bulk proton conductivity the widespread application of this material is limited by its poor sinterability and grain growth. Thus, minor additions of oxides of zinc, phosphorous and boron were studied as possible sintering additives. The introduction of ZnO can produce substantially enhanced densification, compared to the un-doped material, lowering the sintering temperature from 1600ºC to 1300ºC. Thus, the current work discusses the best solid solution mechanism to accommodate this sintering additive. Maximum proton conductivity was shown to be obtained in materials where the Zn additive is intentionally adopted into the base perovskite composition. P2O5 additions were shown to be less effective as a sintering additive. The presence of P2O5 was shown to impair grain growth, despite improving densification of BZY for intermediate concentrations in the range 4 – 8 mol%. Interreaction of BZY with P was also shown to have a highly detrimental effect on its electrical transport properties, decreasing both bulk and grain boundary conductivities. The densification behavior of H3BO3 added BaZrO3 (BZO) shows boron to be a very effective sintering aid. Nonetheless, in the yttrium containing analogue, BaZr0.85Y0.15O3- (BZY) the densification behavior with boron additives was shown to be less successful, yielding impaired levels of densification compared to the plain BZY. This phenomenon was shown to be related to the undesirable formation of barium borate compositions of high melting temperatures. In the last section of the work, the emerging oxide-ion conducting materials, (Ba,Sr)GeO3 doped with K, were studied. Work assessed if these materials could be formed by mechanochemical process and the role of the ionic radius of the alkaline earth metal cation on the crystallographic structure, compositional homogeneity and ionic transport. An abrupt jump in oxide-ion conductivity was shown on increasing operation temperature in both the Sr and Ba analogues.
O principal objetivo deste trabalho é o desenvolvimento e processamento de novos materiais cerâmicos protónicos e iónicos para utilizar como eletrólito das células de combustível de óxidos sólidos (PCFCs e SOFCs, respetivamente). Com este estudo pretende-se, então, desenvolver novas formas de processamento e/ou materiais que apresentem características eletroquímicas atrativas, à base de óxidos cerâmicos nanométricos de pós preparados por processos mecanoquímicos. Existem alguns requisitos que devem ser tidos em conta de forma a garantir a máxima eficiência das PCFCs, destacando-se a elevada condutividade protónica do eletrólito aquando da operação numa gama de temperaturas intermédias, 500-700ºC. Os materiais do tipo “perovskite” foram apresentados como potenciais candidatos a incorporar o eletrólito das PCFCs, sendo o BaZrO3 dopado com 15 mol% de ítrio (BZY) o material base escolhido neste trabalho. Apesar da sua conhecida elevada condutividade protónica, estes materiais apresentam algumas limitações, tais como a fraca sinterabilidade e crescimento de grão. De forma a ultrapassar esta dificuldade, foram adicionadas pequenas quantidades de óxidos de zinco, fósforo e boro que foram estudados como possíveis aditivos de sinterização. A adição de ZnO mostrou melhorias significativas na densificação quando comparado com o material não modificado (BZY), permitindo ainda reduzir a temperatura de sinterização de 1600ºC para 1300ºC. Neste trabalho estudou-se, também, qual o melhor mecanismo de solução sólida para a adição deste aditivo, tendo-se obtido a máxima condutividade protónica nos materiais em que o Zn é intencionalmente introduzido na composição de base de “perovskite”. O P2O5 mostrou ser menos efetivo como aditivo de sinterização. A sua presença foi bastante prejudicial no crescimento de grão, apesar dos elevados níveis de densificação obtidos quando adicionado em quantidades entre 4 e 8 mol%. Porém, a utilização de fósforo mostrou também ser dramática no transporte elétrico, diminuindo a condutividade não só no interior do grão (“bulk”) como nas suas fronteiras. Já a adição de H3BO3 ao BaZrO3 (BZO) mostrou-se muito efetiva para a sinterização deste componente. Contudo, quando adicionado ao sistema dopado com ítria (BaZr0.85Y0.15O3-, BZY), o comportamento é diferente, produzindo níveis deficientes de densificação quando comparado com o BZY puro. Este fenómeno ocorre devido à formação de fases secundárias de borato de bário, cujas temperaturas de fusão são bastante elevadas. Na última parte deste trabalho foi estudado um novo material com condutividade iónica de iões óxido, o (Ba,Sr)GeO3 dopado com K. Neste estudo pretendia-se, não só avaliar a possibilidade de preparar estes pós com recurso a processos mecanoquímicos, como também estudar o papel da variação do raio iónico do catião metálico alcalino-terroso no transporte iónico, homogeneidade composicional e estrutura cristalina. Verificou-se que este material apresenta uma alteração significativa na condutividade iónica com o aumento da temperatura de operação em ambas as composições (Ba e Sr).
APA, Harvard, Vancouver, ISO, and other styles
43

Ospina, Alvarado Angelica Maria. "Holistic Analysis of Fuel Cells for Residential Application." Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19746.

Full text
Abstract:
The development of an index to compare different sources of energy is presented; the index address the appraisal of the source of energy from its sustainable performance and also using the factors that influence the user's decision making process of adopting an alternative energy. The index is used to compare the fuel cell system and the traditional grid system powered by coal fired power plants, for a typical residential unit located in the rural Appalachian region in Ohio.
APA, Harvard, Vancouver, ISO, and other styles
44

Prakash, Shruti. "The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28279.

Full text
Abstract:
Thesis (M. S.)--Chemical Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Kohl, Paul; Committee Member: Fuller, Tom; Committee Member: Gray, Gary; Committee Member: Liu, Meilin; Committee Member: Meredith, Carson; Committee Member: Rincon-Mora, Gabriel.
APA, Harvard, Vancouver, ISO, and other styles
45

Ye, Qiang. "Spontaneous hydrogen evolution in direct methanol fuel cells /." View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?MECH%202005%20YEQ.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Clarke, Adrian James. "The conceptual design of novel future UAV's incorporating advanced technology research components." Thesis, Cranfield University, 2011. http://dspace.lib.cranfield.ac.uk/handle/1826/7163.

Full text
Abstract:
There is at present some uncertainty as to what the roles and requirements of the next generation of UAVs might be and the configurations that might be adopted. The incorporation of technological features on these designs is also a significant driving force in their configuration, efficiency, performance abilities and operational requirements. The objective of this project is thus to provide some insight into what the next generation of technologies might be and what their impact would be on the rest of the aircraft. This work involved the conceptual designs of two new relevant full-scale UAVs which were used to integrate a select number of these advanced technologies. The project was a CASE award which was linked to the Flaviir research programme for advanced UAV technologies. Thus, the technologies investigated during this study were selected with respect to the objectives of the Flaviir project. These were either relative to those already being developed as course of the Flaviir project or others from elsewhere. As course of this project, two technologies have been identified and evaluated which fit this criterion and show potential for use on future aircraft. Thus we have been able to make a contirubtion knowledge in two gaps in current aerospace technology. The first of these studies was to investigate the feasibility of using a low cost mechanical thrust vectoring system as used on the X-31, to replace conventional control surfaces. This is an alternative to the fluidic thrust vectoring devices being proposed by the Flaviir project for this task. The second study is to investigate the use of fuel reformer based fuel cell system to supply power to an all-electric power train which will be a means of primary propulsion. A number of different fuels were investigated for such a system with methanol showing the greatest promise and has been shown to have a number of distinct advantages over the traditional fuel for fuel cells (hydrogen). Each of these technologies was integrated onto the baseline conceptual design which was identified as that most suitable to each technology. A UCAV configuration was selected for the thrust vectoring system while a MALE configuration was selected for the fuel cell propulsion system. Each aircraft was a new design which was developed specifically for the needs of this project. Analysis of these baseline configurations with and without the technologies allowed an assessment to be made of the viability of these technologies. The benefits of the thrust vectoring system were evaluated at take-off, cruise and landing. It showed no benefit at take-off and landing which was due to its location on the very aft of the airframe. At cruise, its performance and efficiency was shown to be comparable to that of a conventional configuration utilizing elevons and expected to be comparable to the fluidic devices developed by the Flaviir project. This system does however offer a number of benefits over many other nozzle configurations of improved stealth due to significant exhaust nozzle shielding.The fuel reformer based fuel cell system was evaluated in both all-electric and hybrid configurations. In the ell-electric configuration, the conventional turboprop engine was completely replaced with an all-electric powertrain. This system was shown to have an inferior fuel consumption compared to a turboprop engine and thus the hybrid system was conceived. In this system, the fuel cell is only used at loiter with the turboprop engine being retained for all other flight phases. For the same quantity of fuel, a reduction in loiter time of 24% was experienced (compared to the baseline turboprop) but such a system does have benefits of reduced emissions and IR signature. With further refinement, it is possible that the performance and efficiency of such a system could be further improved. In this project, two potential technologies were identified and thoroughly analysed. We are therefore able to say that the project objectives have been met and the project has proven worthwhile to the advancement of aerospace technology. Although these systems did not provide the desired results at this stage, they have shown the potential for improvement with further development.
APA, Harvard, Vancouver, ISO, and other styles
47

Coignet, Philippe. "Transport-reaction modeling of the impedance response of a fuel cell." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0526104-151500/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Compson, Charles E. "Design, Fabrication and Characterization of Novel Planar Solid Oxide Fuel Cells." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14477.

Full text
Abstract:
Planar solid oxide fuel cells (SOFCs) were designed, fabricated and characterized in order to develop a (1) cost-effective method for fabrication of thin electrolyte layers, (2) hermetic sealing and (3) stable interconnects. Electrophoretic deposition (EPD) was discovered to be an excellent method for fabricating dense electrolyte layers of about 5m thick on porous non-conducting substrates. The EPD process was thoroughly studied from proof-of-concept to statistical reproducibility, deposition mechanism, modeling and process optimization. Deposition on non-conducting substrates was found to follow many of the same fundamental trends as that on conductive substrates except for the voltage efficiency and detailed charge transfer mechanism. Eventually, the process was optimized such that an SOFC was fabricated that achieved 1.1W/cm2 at 850C. Further, a novel sealless planar SOFC was designed that incorporates a hermetic interface between the electrolyte and interconnect similar to tubular and honeycomb designs. The hermetic interface successfully acted as a blocking electrode under DC polarization, indicating its potential to act as a sealant. Leakage rates across the interface were 0.027sccm at 750c, similar to polycrystalline mica seals. Through a process of tape casting and lamination, a two-cell stack without sealant was fabricated and achieved a power density of 75mW/cm2 at 750C. Finally, the degradation rate of silver and silver-based interconnects was studied under static and dual-atmosphere conditions. Corrosion of silver grain boundaries along with sublimation losses results in the formation of large pores, resulting in up to 30 of anode oxidation after 8hrs testing at 750c. Further stability studies indicated that silver-based interconnects would be better suited for applications at operating temperatures less than 650C.
APA, Harvard, Vancouver, ISO, and other styles
49

Sheikhansari, Abdolkarim. "Evaluation of solid oxide fuel cells operating on hydrogen sulfide contaminated fuel." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17699/.

Full text
Abstract:
This research was conducted to investigate the effect of hydrogen sulfide on the performance of single solid oxide fuel cells. A test rig was designed and commissioned to test 5x5 cm2 cells (active area: 4x4 cm2). The test rig consists of a gas blender, a humidifier, a high temperature furnace, fuel and air manifolds and a control/data logging system. The characterisation techniques used in this project, include v-i measurement, EIS and SEM/EDX analysis. The first series of experiments were carried out to investigate the effect of time, hydrogen partial pressure and temperature on the performance of the cells operating on clean fuel. The results showed that the current of lowest resistance is independent of the operating temperature, however, depends on partial pressure of H2 and tends to increase as PH2 rises. The lowest resistance of the cell occurs at almost constant fuel utilization which was equal to 17 % in this research. In the second series of tests, the cells were exposed to a range of H2S concentrations i.e. 50, 100, 150 and 200 ppm. The composition of the fuel mixture was 0.1 nl/min (14.5 %) of H2, 0.567 nl/min (82.5 %) of N2 and 0.020 nl/min (3 %) of H2O (steam). All the contamination tests were carried out at 700 ˚C. The cells were exposed to H2S for 12 hours followed by a recovery period for 24 hours. The results revealed that the voltage drop at the end of the exposure period was similar for all degrees of poisoning. However, the performance at the end of the recovery, was different. The degree of recovery tended to decrease as the concentration of H2S increased. The SEM analysis of samples showed that H2S has caused the anode structure to change. This change occurred at the interface of anode functioning and support layers and was more severe at higher concentrations of H2S. In addition, two contamination models were developed based on the H2S degradation mechanism. The models considered the effects of time and H2S concentration. However, they could not predict the performance of the poisoned cells as the voltage drop at the end of exposure time was independent of the H2S concentration for the tested range.
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Cheng. "Membrane degradation studies in PEMFCs." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29712.

Full text
Abstract:
Thesis (Ph.D)--Chemical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Fuller, Thomas; Committee Member: Beckham, Haskell; Committee Member: Hess, Dennis; Committee Member: Koros, William; Committee Member: Meredith, Carson. Part of the SMARTech Electronic Thesis and Dissertation Collection.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography