Academic literature on the topic 'Fuego volcano'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fuego volcano.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Fuego volcano"

1

Aldeghi, Carn, Escobar-Wolf, and Groppelli. "Volcano Monitoring from Space Using High-Cadence Planet CubeSat Images Applied to Fuego Volcano, Guatemala." Remote Sensing 11, no. 18 (September 16, 2019): 2151. http://dx.doi.org/10.3390/rs11182151.

Full text
Abstract:
Fuego volcano (Guatemala) is one of the most active and hazardous volcanoes in the world. Its persistent activity generates lava flows, pyroclastic density currents (PDCs), and lahars that threaten the surrounding areas and produce frequent morphological change. Fuego’s eruption deposits are often rapidly eroded or remobilized by heavy rains and its constant activity and inaccessible terrain makes ground-based assessment of recent eruptive deposits very challenging. Earth-orbiting satellites can provide unique observations of volcanoes during eruptive activity, when ground-based techniques may be too hazardous, and also during inter-eruptive phases, but have typically been hindered by relatively low spatial and temporal resolution. Here, we use a new source of Earth observation data for volcano monitoring: high resolution (~3 m pixel size) images acquired from a constellation of over 150 CubeSats (‘Doves’) operated by Planet Labs Inc. The Planet Labs constellation provides high spatial resolution at high cadence (<1–72 h), permitting space-based tracking of volcanic activity with unprecedented detail. We show how PlanetScope images collected before, during, and after an eruption can be applied for mapping ash clouds, PDCs, lava flows, or the analysis of morphological change. We assess the utility of the PlanetScope data as a tool for volcano monitoring and rapid deposit mapping that could assist volcanic hazard mitigation efforts in Guatemala and other active volcanic regions.
APA, Harvard, Vancouver, ISO, and other styles
2

Roca, Amilcar, Edgar Roberto Mérida Boogher, Carla Maria Fernanda Chun Quinillo, Dulce María Esther González Domínguez, Gustavo Adolfo Chigna Marroquin, Francisco Javier Juárez Cacao, and Peter Darwin Argueta Ordoñez. "Volcano observatories and monitoring activities in Guatemala." Volcanica 4, S1 (November 1, 2021): 203–22. http://dx.doi.org/10.30909/vol.04.s1.203222.

Full text
Abstract:
The tectonic and volcanic environment in Guatemala is large and complex. Three major tectonic plates constantly interacting with each other, and a volcanic arc that extends from east to west in the southern part of the country, demand special attention in terms of monitoring and scientific studies. The Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) is the institute in charge of executing these actions at the national and civil level.In recent years, INSIVUMEH has formed a volcanology team consisting of multi-disciplinary personnel that conducts the main volcanological monitoring and research activities. These activities include: seismic and acoustic signal analysis, evaluation and analysis of the volcanic hazards, installation and maintenance of monitoring equipment, and the socialization and dissemination of volcanic knowledge. Of all the volcanic structures in Guatemala, three volcanoes (Fuego, Pacaya, and Santiaguito) are in constant eruption and require all of the available resources (economic and human). These volcanoes present a wide range of volcanic hazards (regarding type and magnitude) that make daily monitoring a great challenge. One of the greatest goals achieved by the volcanology team has been the recent development of a Relative Threat Ranking of Guatemala Volcanoes, taking into account different parameters that allow improved planning in the future, both in monitoring and research. El ambiente tectónico y volcánico de Guatemala es extenso y complejo. Tres grandes placas tectónicas, que interactúan constantemente entre sí, y un arco volcánico, que se extiende de este a oeste en la parte sur del país, exigen especial atención en términos de monitoreo y estudios científicos. El Instituto Nacional de Sismología, Vulcanología, Meteorología e Hidrología (INSIVUMEH) es el instituto encargado de ejecutar estas acciones a nivel nacional y civil. En los últimos años, INSIVUMEH ha formado un equipo de vulcanología conformado por personal multidisciplinario que realiza las principales actividades de seguimiento e investigación vulcanológica. Estas actividades incluyen: análisis de señales sísmicas y acústicas, evaluación y análisis de peligros volcánicos, instalación y mantenimiento de equipos de monitoreo, y socialización y difusión del conocimiento volcánico. De todas las estructuras volcánicas de Guatemala, tres volcanes (Fuego, Pacaya y Santiaguito) están en constante erupción y requieren todos los recursos disponibles (económicos y humanos). Estos volcanes presentan una amplia gama de peligros volcánicos (en cuanto a tipo y magnitud), haciendo que el monitoreo diario sea un gran desafío. Uno de los mayores logros del equipo de vulcanología ha sido el desarrollo reciente de un Ranking de Peligrosidad Relativa de los Volcanes de Guatemala, tomando en cuenta diferentes parámetros que permitan una mejor planificación en el futuro, tanto en el monitoreo como en la investigación.
APA, Harvard, Vancouver, ISO, and other styles
3

Castro Carcamo, Rodolfo Antonio, and Eduardo Gutiérrez. "Volcanic monitoring and hazard assessment in El Salvador." Volcanica 4, S1 (November 1, 2021): 183–201. http://dx.doi.org/10.30909/vol.04.s1.183201.

Full text
Abstract:
The Salvadorean volcanic range forms part of Central America Volcanic Arc and is located on the Pacific ring of fire. El Salvador is a country with at least twenty Holocene-active volcanic structures and where most of the population, including the metropolitan area of San Salvador, live near a volcanic complex. Currently, there are six active volcanoes that are continuously monitored by the Observatorio de Amenazas y Recursos Naturales, which is part of the Ministerio del Medio Ambiente y Recursos Naturales. Volcano monitoring involves seismic, geochemical, and visual monitoring techniques, among others. In addition to volcano monitoring and with the aim of early warning of future eruptions, volcanic hazard maps and networks of local observers have been developed. These initiatives together with the general directorate of civil protection, seek to meet the goal of reducing risk from volcanic activity in El Salvador. La cadena volcánica salvadoreña forma parte del Arco Volcánico de América Central y está localizada dentro de la zona conocida como cinturón de fuego del Pacífico. El Salvador es un país donde se encuentran al menos 20 estructuras volcánicas que han estado activas durante el Holoceno y donde la mayor parte de la población, incluyendo la ciudad capital San Salvador, está ubicada en las proximidades de algún complejo volcánico. Actualmente, seis volcanes activos son continuamente monitoreados por el Observatorio de Amenazas y Recursos Naturales, que es parte del Ministerio del Medio Ambiente y Recursos Naturales. El monitoreo volcánico se realiza mediante técnicas de monitoreo sísmicas, geoquímicas, visuales, entre otras. Como complemento del trabajo de monitoreo, se han desarrollado mapas de amenaza volcánica y redes de observadores locales constituyendo así sistemas de alerta temprana ante futuras erupciones. Estas iniciativas, en conjunto con la dirección general de la protección civil, persiguen el objetivo de reducir el riesgo por actividad volcánica en El Salvador.
APA, Harvard, Vancouver, ISO, and other styles
4

Flynn, Ian T. W., and Michael S. Ramsey. "Pyroclastic Density Current Hazard Assessment and Modeling Uncertainties for Fuego Volcano, Guatemala." Remote Sensing 12, no. 17 (August 27, 2020): 2790. http://dx.doi.org/10.3390/rs12172790.

Full text
Abstract:
On 3 June 2018, Fuego volcano experienced a VEI = 3 eruption, which produced a pyroclastic density current (PDC) that devastated the La Réunion resort and the community of Los Lotes, resulting in over 100 deaths. To evaluate the potential hazard to the population centers surrounding Fuego associated with future PDC emplacement, we used an integrated remote sensing and flow modeling-based approach. The predominate PDC travel direction over the past 15 years was investigated using thermal infrared (TIR) data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument validated with ground reports from the National Institute of Seismology, Volcanology, Meteorology, and Hydrology (INSIVUMEH), the government agency responsible for monitoring. Two different ASTER-derived digital elevation model (DEM) products with varying levels of noise were also used to assess the uncertainty in the VolcFlow model results. Our findings indicate that the recent historical PDC travel direction is dominantly toward the south and southwest. Population centers in this region of Fuego that are within ~2 km of one of the volcano’s radial barrancas are at the highest risk during future large eruptions that produce PDCs. The ASTER global DEM (GDEM) product has the least random noise and where used with the VolcFlow model, had a significant improvement on its accuracy. Results produced longer flow runout distances and therefore better conveys a more accurate perception of risk. Different PDC volumes were then modeled using the GDEM and VolcFlow to determine potential inundation areas in relation to local communities.
APA, Harvard, Vancouver, ISO, and other styles
5

Cando-Jácome, Marcelo, and Antonio Martínez-Graña. "Determination of Primary and Secondary Lahar Flow Paths of the Fuego Volcano (Guatemala) Using Morphometric Parameters." Remote Sensing 11, no. 6 (March 26, 2019): 727. http://dx.doi.org/10.3390/rs11060727.

Full text
Abstract:
On 3 June 2018, a strong eruption of the Fuego volcano in Guatemala produced a dense cloud of 10-km-high volcanic ash and destructive pyroclastic flows that caused nearly 200 deaths and huge economic losses in the region. Subsequently, due to heavy rains, destructive secondary lahars were produced, which were not plotted on the hazard maps using the LAHAR Z software. In this work we propose to complement the mapping of this type of lahars using remote-sensing (Differential Interferometry, DINSAR) in Sentinel images 1A and 2A, to locate areas of deformation of the relief on the flanks of the volcano, areas that are possibly origin of these lahars. To determine the trajectory of the lahars, parameters and morphological indices were analyzed with the software System for Automated Geoscientific Analysis (SAGA). The parameters and morphological indices used were the accumulation of flow (FCC), the topographic wetness index (TWI), the length-magnitude factor of the slope (LS). Finally, a slope stability analysis was performed using the Shallow Landslide Susceptibility software (SHALSTAB) based on the Mohr–Coulomb theory and its parameters: internal soil saturation degree and effective precipitation, parameters required to destabilize a hillside. In this case, the application of this complementary methodology provided a more accurate response of the areas destroyed by primary and secondary lahars in the vicinity of the volcano.
APA, Harvard, Vancouver, ISO, and other styles
6

Robin, Claude, Guy Camus, and Alain Gourgaud. "Eruptive and magmatic cycles at Fuego de Colima volcano (Mexico)." Journal of Volcanology and Geothermal Research 45, no. 3-4 (April 1991): 209–25. http://dx.doi.org/10.1016/0377-0273(91)90060-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Trickl, T., H. Giehl, H. Jäger, and H. Vogelmann. "35 yr of stratospheric aerosol measurements at Garmisch-Partenkirchen: from Fuego to Eyjafjallajökull, and beyond." Atmospheric Chemistry and Physics 13, no. 10 (May 24, 2013): 5205–25. http://dx.doi.org/10.5194/acp-13-5205-2013.

Full text
Abstract:
Abstract. Lidar measurements at Garmisch-Partenkirchen (Germany) have almost continually delivered backscatter coefficients of stratospheric aerosol since 1976. The time series is dominated by signals from the particles injected into or formed in the stratosphere due to major volcanic eruptions, in particular those of El Chichon (Mexico, 1982) and Mt Pinatubo (Philippines, 1991). Here, we focus more on the long-lasting background period since the late 1990s and 2006, in view of processes maintaining a residual lower-stratospheric aerosol layer in absence of major eruptions, as well as the period of moderate volcanic impact afterwards. During the long background period the stratospheric backscatter coefficients reached a level even below that observed in the late 1970s. This suggests that the predicted potential influence of the strongly growing air traffic on the stratospheric aerosol loading is very low. Some correlation may be found with single strong forest-fire events, but the average influence of biomass burning seems to be quite limited. No positive trend in background aerosol can be resolved over a period as long as that observed by lidar at Mauna Loa. We conclude that the increase of our integrated backscatter coefficients starting in 2008 is mostly due to volcanic eruptions with explosivity index 4, penetrating strongly into the stratosphere. Most of them occurred in the mid-latitudes. A key observation for judging the role of eruptions just reaching the tropopause region was that of the plume from the Icelandic volcano Eyjafjallajökull above Garmisch-Partenkirchen (April 2010) due to the proximity of that source. The top altitude of the ash above the volcano was reported just as 9.3 km, but the lidar measurements revealed enhanced stratospheric aerosol up to 14.3 km. Our analysis suggests for two or three of the four measurement days the presence of a stratospheric contribution from Iceland related to quasi-horizontal transport, differing from the strong descent of the layers entering Central Europe at low altitudes. The backscatter coefficients within the first 2 km above the tropopause exceed the stratospheric background by a factor of four to five. In addition, Asian and Saharan dust layers were identified in the free troposphere, Asian dust most likely even in the stratosphere.
APA, Harvard, Vancouver, ISO, and other styles
8

Valade, Sébastien, Andreas Ley, Francesco Massimetti, Olivier D’Hondt, Marco Laiolo, Diego Coppola, David Loibl, Olaf Hellwich, and Thomas R. Walter. "Towards Global Volcano Monitoring Using Multisensor Sentinel Missions and Artificial Intelligence: The MOUNTS Monitoring System." Remote Sensing 11, no. 13 (June 27, 2019): 1528. http://dx.doi.org/10.3390/rs11131528.

Full text
Abstract:
Most of the world’s 1500 active volcanoes are not instrumentally monitored, resulting in deadly eruptions which can occur without observation of precursory activity. The new Sentinel missions are now providing freely available imagery with unprecedented spatial and temporal resolutions, with payloads allowing for a comprehensive monitoring of volcanic hazards. We here present the volcano monitoring platform MOUNTS (Monitoring Unrest from Space), which aims for global monitoring, using multisensor satellite-based imagery (Sentinel-1 Synthetic Aperture Radar SAR, Sentinel-2 Short-Wave InfraRed SWIR, Sentinel-5P TROPOMI), ground-based seismic data (GEOFON and USGS global earthquake catalogues), and artificial intelligence (AI) to assist monitoring tasks. It provides near-real-time access to surface deformation, heat anomalies, SO2 gas emissions, and local seismicity at a number of volcanoes around the globe, providing support to both scientific and operational communities for volcanic risk assessment. Results are visualized on an open-access website where both geocoded images and time series of relevant parameters are provided, allowing for a comprehensive understanding of the temporal evolution of volcanic activity and eruptive products. We further demonstrate that AI can play a key role in such monitoring frameworks. Here we design and train a Convolutional Neural Network (CNN) on synthetically generated interferograms, to operationally detect strong deformation (e.g., related to dyke intrusions), in the real interferograms produced by MOUNTS. The utility of this interdisciplinary approach is illustrated through a number of recent eruptions (Erta Ale 2017, Fuego 2018, Kilauea 2018, Anak Krakatau 2018, Ambrym 2018, and Piton de la Fournaise 2018–2019). We show how exploiting multiple sensors allows for assessment of a variety of volcanic processes in various climatic settings, ranging from subsurface magma intrusion, to surface eruptive deposit emplacement, pre/syn-eruptive morphological changes, and gas propagation into the atmosphere. The data processed by MOUNTS is providing insights into eruptive precursors and eruptive dynamics of these volcanoes, and is sharpening our understanding of how the integration of multiparametric datasets can help better monitor volcanic hazards.
APA, Harvard, Vancouver, ISO, and other styles
9

Lyons, John J., Gregory P. Waite, William I. Rose, and Gustavo Chigna. "Patterns in open vent, strombolian behavior at Fuego volcano, Guatemala, 2005–2007." Bulletin of Volcanology 72, no. 1 (July 7, 2009): 1–15. http://dx.doi.org/10.1007/s00445-009-0305-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brill, K. A., and G. P. Waite. "Characteristics of Repeating Long‐Period Seismic Events at Fuego Volcano, January 2012." Journal of Geophysical Research: Solid Earth 124, no. 8 (August 2019): 8644–59. http://dx.doi.org/10.1029/2019jb017902.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Fuego volcano"

1

Jiménez, Velázquez María del Carmen Gardenia. "Caracterización geomorfológica del Volcán de Fuego de Colima." Tesis de Licenciatura, Universidad Autónoma del Estado de México, 2018. http://hdl.handle.net/20.500.11799/95410.

Full text
Abstract:
El Volcán de Fuego de Colima está localizado al Norte del estado de Colima, en los límites con el estado de Jalisco, es un complejo volcánico que pertenece al eje volcánico trasversal mexicano. Se ha caracterizado por ser uno de los volcanes más activos del país, es por ello que debido a la constante actividad, el edificio volcánico muestra una morfología específica, misma que se analizó mediante métodos geográficos como el reconocimiento de sitio de estudio y la elaboración e interpretación de cartografía morfológica y morfométrica que permitió conocer el comportamiento de relieve en dicha zona. Los resultados obtenidos con el análisis geomorfológico del sitio de estudio, se determinó que debido a la constante actividad volcánica del complejo, la morfología del lugar está en constante cambio debido a la expulsión de material incandescente y arrastre fluvial debido a las laderas con pendiente pronunciada, muestra una importante demarcación hecha por el material piroclástico que ha ido erosionando el cono.
APA, Harvard, Vancouver, ISO, and other styles
2

Risica, Gilda, Fabio Speranza, Mauro Rosi, and Alessio Di Roberto. "The contribution of Palaeomagnetism in Volcanology for dating of Holocene eruptions and estimating the emplacement temperature of pyroclastic flows. Applications on Tenerife and El Hierro (Canary Islands) and on Volcán El Fuego (Guatemala)." Doctoral thesis, 2021. http://hdl.handle.net/2158/1242157.

Full text
Abstract:
In this work, palaeomagnetism has been applied to get fundamental information useful to evaluate volcanic hazard in two different volcanic contexts: 1) to date the Holocene volcanic eruptions at Tenerife and El Hierro Islands (Canary Islands); 2) to estimate the emplacement temperature and investigate the origin of the pyroclastic density flows that occurred on June 2018 at Volcán El Fuego (Guatemala). Recent years, palaeomagnetism has been increasingly used in volcanology because it can provide high-quality data to reconstruct the chronology of the recent volcanism, and to estimate the emplacement temperatures of pyroclastic flows, and therefore to better understand their nature and origin. Although the Holocene volcanism has been very intense in Tenerife and El Hierro islands, most of the eruptions have not been thoroughly studied or dated so far. Therefore, eighteen (nine for each island) poorly dated or undated volcanic eruptions have been studied: Boca Cangrejo, Montaña (Mña) Reventada, Mña Cascajo, Mña Bilma, Mña Botija, Abejera Alta, Pico Cabras and Roques Blancos eruptions in Tenerife island, and Lajal, Mña Chamuscada, Mña del Tesoro, Orchilla, Las Calcosas, Mña Negra, Cuchillo del Roque, Lomo Negro and Below Lomo Negro eruptions in El Hierro island. Palaeomagnetic dating of lava flows in Tenerife allowed reconstructing a detailed chronology of the Holocene volcanic eruptions, showing better accuracy than other isotopic methods. A good agreement between previous and new ages was found specifically for two already dated eruptions (Boca Cangrejo and Mña Reventada), with narrower palaeomagnetic age ranges than the ones obtained by the 14C technique. In another two cases (Abejera Alta and Roques Blancos eruptions) the palaeomagnetic ages are slightly different from the previous 14C, instead. For the undated eruptions, much narrower age ranges were found if compared with the only stratigraphic evidence. Finally, for the Mña Grande eruption, a very high accuracy palaeomagnetic age (789-723 BC) has been obtained, adding it for the first time in the list of the Holocene eruptions. This updated chronological framework confirms the occurrence of alternating period with different eruptive frequencies, which the last 3 ka are characterized by mainly basaltic eruptions along the NE and NW rift zones. On El Hierro island, palaeomagnetic dating, coupled with radiocarbon age determinations, showed different results: for the already dated eruption of Lomo Negro, the comparison between the new 14C and palaeomagnetic ages with the previous 14C dating showed a good agreement, whereas for Mña Chamuscada and Mña del Tesoro, the new ages agree with each other but they disagree with the previous 14C and K/Ar ages from literature. For the undated eruptions (Orchilla, Las Calcosas, Lajal, Below Lomo Negro, Cuchillo del Roque and Mña Negra eruptions), due to the lack of previous age constraints, it was possible to define many palaeomagnetic ages; however, older ages (older than 5000 BC) can be discarded based on geomorphological features and the fresh volcanic landforms. As a whole, palaeomagnetic dating carried out on El Hierro Island indicates the occurrence of several Holocene eruptions in different sectors of the three rifts, most of which occurred probably between 2000 BC and 1600 AD. Palaeomagnetism has been used also to estimate the emplacement temperature of pyroclastic deposits, helping to investigate the fundamental processes responsible for the generation of some type of pyroclastic density currents (PDCs). In this work, it has been applied to provide the emplacement temperature and to unravel the origin of the explosive eruption of 3rd June 2018, at El Fuego volcano. The eruption produced convective clouds of volcanic ash and PDCs, which funnelled in the Las Lajas gorge, reached unexpected distances and caused the death of nearly two hundred people. The palaeomagnetic analyses of hand-samples and cores showed a homogeneous emplacement temperature of 220–280 °C; however, a small number of clasts recorded a very high temperature (>500 °C), whereas several clasts indicate T between 200 and 500 °C. Some cores recorded different temperatures between the outer and inner part of the same specimen; in some cases, lower temperatures were documented in the inner core section, and vice versa in other clasts. The study revealed that clasts embedded in the deposit have different thermal history and origin: those with intermediate temperatures (200-500 °C) have been interpreted as related to the still hot pyroclasts accumulated in the upper part of Las Lajas gorge, while few samples with a higher temperature (>500 °C) have been considered as “juvenile” and linked directly to the eruption of 3rd June 2018. These data, coupled by other independent evidences (the temporal gap between the most energetic phase of the eruption and the beginning of the pyroclastic flows; the appearance of a large scar at the head of Las Lajas gorge after the eruption; unburnt vegetation) and field observations of the deposits, allow interpreting the deposit as a “block-and-ash flow”, produced by the gravitational collapse of nstable hot and cool volcanic materials (pyroclasts and lava flows) that were stacked on the upper segment of the Las Lajas gorge during the activity in the past years. The results achieved in this work proved that the application of palaeomagnetism in volcanology can provide crucial information for a correct evaluation of the volcanic risk. Its application as a dating tool allowed obtaining narrower age ranges than other isotopic methods, essential for a detailed reconstruction of the recent volcanic activity of a volcano. It also showed that the use of multiple dating techniques is highly desirable. Its application to the pyroclastic flows provided not only the estimate of the emplacement temperature of the deposits but also essential data to unravel their origin. Therefore, this work shows that a more frequent use of paleomagnetism ddressed to solve volcanological problems is desirable.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Fuego volcano"

1

ill, Sandin Joan, and Blanco Osvaldo, eds. La montaña de fuego. [New York, N.Y.]: Harper Arco Iris, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ordóñez, Evelyn. La mujer frente al Volcán de Fuego. Guatemala [City]: Magna Terra, 2021.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lión, Luis de. Poemas del volcán de fuego. [Guatemala]: Bancafe, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pique Esperanza: Volcán de fuego. Lima, Peru: Editorial San Marcos, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

I, Galindo, ed. Climatología del Volcán de Fuego de Colima. Colima, Col: Universidad de Colima, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zinni, Eduardo. En la boca del fuego: Aventuras en el volcán Lanín. [Buenos Aires, Argentina]: EUDEBA, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rangel, Víctor Rodríguez. Atl: Fuego, tierra y viento, sublime sensación. Ciudad de México: Instituto Nacional de Bellas Artes, INBA; Museo Nacional de Arte, 2019.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manuel, Macías Jesús, and Centro de Investigaciones y Estudios Superiores en Antropología Social (Mexico), eds. Riesgo volcánico y evacuación como respuesta social en el volcán de fuego de Colima, noviembre de 1998. México, D.F: CIESAS, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bretón, Mauricio. La actividad reciente del Volcán de Fuego de Colima en imágenes, 1998-2000. Colima, Colima, México: Universidad de Colima, Observatorio Vulcanológico, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vizcaíno, Juan S. 50 años de experiencias en el Volcán de Fuego el Colima: 1937-1987. Guadalajara, Jalisco, México: Gobierno de Jalisco, Secretaría General, Unidad Editorial, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Fuego volcano"

1

Biondi, Franco, and Ignacio Galindo Estrada. "Tree-Ring Evidence for the 1913 Eruption of Volcán de Fuego de Colima, Mexico." In Advances in Global Change Research, 453–64. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8736-2_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Erdem, Jemile E., and Gregory P. Waite. "Temporal changes in eruptive behavior identified with coda wave interferometry and seismo-acoustic observations at Fuego Volcano, Guatemala." In Understanding Open-Vent Volcanism and Related Hazards, 107–23. Geological Society of America, 2013. http://dx.doi.org/10.1130/2013.2498(07).

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"“EL CERRO LANZÓ VÍBORAS DE FUEGO”." In Microhistorias de los zoques bajo el volcán., 161–200. El Colegio de México, 2020. http://dx.doi.org/10.2307/j.ctv2z9g0f8.8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Alatorre-Ibargüengoitia, Miguel A., Hugo Delgado-Granados, and Isaac A. Farraz-Montes. "Hazard zoning for ballistic impact during volcanic explosions at Volcán de Fuego de Colima (México)." In Neogene-Quaternary Continental Margin Volcanism: A perspective from Me´xico. Geological Society of America, 2006. http://dx.doi.org/10.1130/2006.2402(09).

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Fuego volcano"

1

Schellenberg, Ben, Thomas S. Richardson, Robert J. Clarke, Matt Watson, Jim Freer, Alex McConville, and Gustavo Chigna. "BVLOS Operations of Fixed-Wing UAVs for the Collection of Volcanic Ash Above Fuego Volcano, Guatemala." In AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-2204.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baissac, Daiana M., M. Gabriela Nicora, Eldo E. Avila, and Gabriela A. Badi. "Lightning in the eruption of the Volcan de Fuego 2018 - Seeing from earth and space." In 2021 35th International Conference on Lightning Protection (ICLP) and XVI International Symposium on Lightning Protection (SIPDA). IEEE, 2021. http://dx.doi.org/10.1109/iclpandsipda54065.2021.9627363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hernandez, Lindsey, Jameson Scott, Kenneth Peterman, and Michael Barton. "PARTIAL PRESSURES OF CRYSTALLIZATION AND OXYGEN FUGACITIES FOR THE JUAN DE FUCA RIDGE, VOLCAN DE FUEGO AND VOLCAN DE PACAYA (GUATEMALA): A COMPARATIVE STUDY OF THE DEPTHS OF MAGMA STORAGE AND REDOX CONDITIONS FOR MID-OCEAN RIDGES AND ARC VOLCANOES." In GSA Annual Meeting in Phoenix, Arizona, USA - 2019. Geological Society of America, 2019. http://dx.doi.org/10.1130/abs/2019am-337888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mora-Villalobos, J. Aníbal, and Max Chavarría-Vargas. "Ambientes extremos como fuente de enzimas para aplicaciones industriales." In I Congreso Internacional de Ciencias Exactas y Naturales. Universidad Nacional, 2019. http://dx.doi.org/10.15359/cicen.1.82.

Full text
Abstract:
El uso biotecnológico de recursos renovables tiene un impacto económico creciente. Esto está fuertemente impulsado por la inevitable transición de una economía basada en el petróleo hacia una economía sustentable de base biológica (bioeconomía). El componente central de este cambio de paradigma es la llamada biotecnología industrial. La aplicación de enzimas derivadas de microorganismos extremófilos (extremozimas) ofrece muchos beneficios respecto al establecimiento e implementación de procesos biocatalíticos novedosos, como en las biorrefinerías integradas. Dado que las extremozimas de microorganismos (hiper-)termofílicos exhiben actividades y estabilidades significativamente mayores a temperaturas elevadas que las enzimas respectivas de organismos mesofílicos, son particularmente adecuadas para la aplicación en procesos biotecnológicos. El estudio de ambientes asociados a volcanes brinda una oportunidad única para la bioprospección de nuevas enzimas relativamente tolerantes a condiciones de estrés multifactorial (por ejemplo, temperatura, pH, condiciones de minerales enriquecidos como azufre, hierro, silicio, entre otros). La actividad volcánica ha sido decisiva para la formación de Costa Rica (Alvarado Induni G., 2011). Como parte del Anillo de Fuego del Pacífico, Costa Rica posee alrededor de 400 volcanes, de los cuales 20 tienen un tamaño significativo y 5 de ellos permanecen activos. Estos se encuentran en la parte norte y central del país (Cordillera Volcánica Central y Cordillera Volcánica de Guanacaste). Los habitantes de estos sitios extremos generalmente explican la composición química de sus hábitats, ya que los microorganismos pueden catalizar muchas reacciones químicas que transforman su propio ambiente. Por lo tanto, la capacidad catalítica de estos microorganismos es interesante no solo para los estudios de microbiología ambiental y ecología microbiana, sino también para la biotecnología aplicada, ya que muchos de los organismos, o enzimas que pueden obtenerse de estos, pueden conducir a bioprocesos industriales (Baker BJ & Banfield JF, 2003 y Guazzaroni ME et al., 2013). A la fecha, pocos estudios sobre comunidades microbianas o bioprospección enzimas de interés han utilizado métodos genéticos, dentro de la corriente de las "ómicas" los cuales permiten un análisis exhaustivo de muestras originales y enriquecidas para la detección eficaz de nuevos genes codificadores de microorganismos (hiper-)termofílicos. Otros métodos como expresión heteróloga, caracterizaciones y optimizaciones de enzimas pueden conducir al desarrollo de nuevos catalizadores relevante para la industria. Por lo tanto, el objetivo de la presente investigación es la identificar nuevas extremozimas en ambientes asociados a volcanes de Costa Rica.
APA, Harvard, Vancouver, ISO, and other styles
5

Mesías Sarasty, María Gabriela, and María Camila Martínez Bárcenas. "Chaitán." In Encuentro de investigación formativa en Diseño – Semilleros y Grupos de investigación RAD 2020. Bogotá, Colombia: Red Académica de Diseño - RAD, 2021. http://dx.doi.org/10.53972/rad.eifd.2020.3.15.

Full text
Abstract:
El Parque Natural Regional (PNR) Volcán Azufral Chaitán se encuentra localizado en el medio de la cordillera sur-occidental del departamento de Nariño, entre los municipios de Mallama, Santacruz, Sapuyes y Túquerres. Esta reserva contiene unos servicios ecosistémicos y paisajísticos que son de gran importancia para el departamento de Nariño ya que este ayuda a la regulación hídrica con sus paramos y activa ciertos sectores importantes de la economía para la región como lo es la agronomía y el turismo. Las comunidades que residen en Chaitán tienen una cosmovisión dentro del área de esta montaña de fuego, por lo cual es fundamental la preservación de este territorio. Es por esta razón que el fin del proyecto es la creación de un sistema de información en donde se evidencie estas cualidades culturales y ambientales para incentivar su reconocimiento como área protegida principalmente en la población joven del departamento. En primera instancia, el proyecto plantea una estrategia de información en la cual se pueden reconocer las características naturales y culturales de este lugar, contextualizando su valor ancestral, riqueza paisajística y misticismo que le permiten ser parte una área protegida del departamento de Nariño. Por otra parte, y con el propósito de establecer algunas pautas que fortalezcan a futuro el recorrido por el parque y su preservación se propone un sistema de señalética acorde a las características del ecosistema y la visión de las comunidades que circundan en él.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography