Journal articles on the topic 'Froth recovery'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Froth recovery.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Martinez, Jose, Miguel Maldonado, and Leopoldo Gutierrez. "A Method to Predict Water Recovery Rate in the Collection and Froth Zone of Flotation Systems." Minerals 10, no. 7 (July 16, 2020): 630. http://dx.doi.org/10.3390/min10070630.
Full textOstadrahimi, Mahdi, Saeed Farrokhpay, Khodakaram Gharibi, and Ali Dehghani. "Effects of Operating Parameters on the Froth and Collection Zone Recovery in Flotation: An Industrial Case Study in a 10 m3 Cell." Minerals 11, no. 5 (May 7, 2021): 494. http://dx.doi.org/10.3390/min11050494.
Full textYianatos, Juan, Paulina Vallejos, Luis Vinnett, and Sebastián Arriagada. "Semi-Continuous Froth Discharge to Reduce Entrainment of Fine Particles in Flotation Cells Subject to Low-Mineralized Froths." Minerals 10, no. 8 (August 5, 2020): 695. http://dx.doi.org/10.3390/min10080695.
Full textJera, Tawona Martin, and Clayton Bhondayi. "A Review on Froth Washing in Flotation." Minerals 12, no. 11 (November 19, 2022): 1462. http://dx.doi.org/10.3390/min12111462.
Full textJera, Tawona M., and Clayton Bhondayi. "A Review of Flotation Physical Froth Flow Modifiers." Minerals 11, no. 8 (August 10, 2021): 864. http://dx.doi.org/10.3390/min11080864.
Full textRuismäki, Ronja, Tommi Rinne, Anna Dańczak, Pekka Taskinen, Rodrigo Serna-Guerrero, and Ari Jokilaakso. "Integrating Flotation and Pyrometallurgy for Recovering Graphite and Valuable Metals from Battery Scrap." Metals 10, no. 5 (May 21, 2020): 680. http://dx.doi.org/10.3390/met10050680.
Full textDuoc, Tran Van, Nguyen Hoang Son, Nhu Thi Kim Dung, and Vu Thi Chinh. "Recovery of clean coal from blast furnace dusts by flotation column." Journal of Mining and Earth Sciences 61, no. 1 (February 28, 2020): 124–31. http://dx.doi.org/10.46326/jmes.2020.61(1).14.
Full textKhan, Shaihroz, Omar Bashir Wani, Mohammad Shoaib, John Forster, Rana N. Sodhi, Darryel Boucher, and Erin R. Bobicki. "Mineral carbonation for serpentine mitigation in nickel processing: a step towards industrial carbon capture and storage." Faraday Discussions 230 (2021): 172–86. http://dx.doi.org/10.1039/d1fd00006c.
Full textYianatos, J. B., M. H. Moys, F. Contreras, and A. Villanueva. "Froth recovery of industrial flotation cells." Minerals Engineering 21, no. 12-14 (November 2008): 817–25. http://dx.doi.org/10.1016/j.mineng.2007.12.012.
Full textNeethling, S. J. "Simple approximations for estimating froth recovery." International Journal of Mineral Processing 89, no. 1-4 (December 2008): 44–52. http://dx.doi.org/10.1016/j.minpro.2008.09.007.
Full textTaner, Hasan Ali, and Vildan Onen. "Study of chalcopyrite flotation in the presence of illite using a design of experiments approach." Clay Minerals 56, no. 3 (September 2021): 197–209. http://dx.doi.org/10.1180/clm.2021.35.
Full textÄMMÄLÄ, ARI, LIISA MÄKINEN, HENRIKKI LIIMATAINEN, and JOUKO NIINIMÄKI. "Effect of carboxymethylcellulose and starch depressants on recovery of filler and fines in tertiary flotation." March 2013 12, no. 3 (April 1, 2013): 43–50. http://dx.doi.org/10.32964/tj12.3.43.
Full textMuanda, Meschack Mukunga, Pele Pascal Daniel Omalanga, and Vanessa Mwambaie Mitonga. "Comparative Cleaning Stages in Recovery of Copper and Cobalt from Tailings using Potassium Amylxanthate as Collector." European Journal of Engineering and Technology Research 6, no. 2 (February 16, 2021): 96–100. http://dx.doi.org/10.24018/ejers.2021.6.2.2165.
Full textMuanda, Meschack Mukunga, Pele Pascal Daniel Omalanga, and Vanessa Mwambaie Mitonga. "Comparative Cleaning Stages in Recovery of Copper and Cobalt from Tailings using Potassium Amylxanthate as Collector." European Journal of Engineering and Technology Research 6, no. 2 (February 16, 2021): 96–100. http://dx.doi.org/10.24018/ejeng.2021.6.2.2165.
Full textYu, Shaning, and J. A. Finch. "Froth Zone Recovery in a Flotation Column." Canadian Metallurgical Quarterly 29, no. 3 (July 1990): 237–38. http://dx.doi.org/10.1179/cmq.1990.29.3.237.
Full textLepage, Mark R., Cesar O. Gomez, and Kristian E. Waters. "Using Top-of-Froth Conductivity to Infer Water Overflow Rate in a Two-Phase Lab-Scale Flotation Column." Minerals 12, no. 4 (April 7, 2022): 454. http://dx.doi.org/10.3390/min12040454.
Full textYou, Hao, Hongjuan Sun, Tongjiang Peng, Yating Qin, and Song Tang. "Recovery of Residual Carbon from Ti-Extraction Blast Furnace Slag by Flotation with Simultaneous Dechlorination." Energies 15, no. 18 (September 16, 2022): 6777. http://dx.doi.org/10.3390/en15186777.
Full textVallejos, Paulina, Juan Yianatos, Rodrigo Grau, and Alejandro Yáñez. "The Impact of Froth Launders Design in an Industrial Flotation Bank Using Novel Metallurgical and Hydrodynamic Models." Minerals 13, no. 2 (January 24, 2023): 169. http://dx.doi.org/10.3390/min13020169.
Full textMcFadzean, B., T. Marozva, and J. Wiese. "Flotation frother mixtures: Decoupling the sub-processes of froth stability, froth recovery and entrainment." Minerals Engineering 85 (January 2016): 72–79. http://dx.doi.org/10.1016/j.mineng.2015.10.014.
Full textMdoe, Reuben J., and Anand Anupam. "Recovery of Coal Values from Middling and Rejects by Froth Flotation and Mozley Mineral Separation." Studies in Engineering and Technology 8, no. 1 (June 18, 2021): 40. http://dx.doi.org/10.11114/set.v8i1.4785.
Full textGuler, Taki, and Ercan Polat. "Gangue Entrainment in Olivine Flotation: Effect of MIBC Dosage on the Mitigation of Lizardite Recovery." Current Physical Chemistry 10, no. 2 (August 19, 2020): 98–106. http://dx.doi.org/10.2174/1877946809666190919092219.
Full textGutierrez, Leopoldo, Fernando Betancourt, Lina Uribe, and Miguel Maldonado. "Influence of Seawater on the Degree of Entrainment in the Flotation of a Synthetic Copper Ore." Minerals 10, no. 7 (July 9, 2020): 615. http://dx.doi.org/10.3390/min10070615.
Full textPark, Chul-Hyun, Ho-Seok Jeon, Byoung-Gon Kim, and Oh-Hyung Han. "Recovery of Roasting-Molybdenite Concentrate by Froth Flotation." Korean Journal of Materials Research 19, no. 12 (December 27, 2009): 661–66. http://dx.doi.org/10.3740/mrsk.2009.19.12.661.
Full textRahman, Reza M., Seher Ata, and Graeme J. Jameson. "Froth recovery measurements in an industrial flotation cell." Minerals Engineering 53 (November 2013): 193–202. http://dx.doi.org/10.1016/j.mineng.2013.08.003.
Full textAlexander, D. J., J. P. Franzidis, and E. V. Manlapig. "Froth recovery measurement in plant scale flotation cells." Minerals Engineering 16, no. 11 (November 2003): 1197–203. http://dx.doi.org/10.1016/j.mineng.2003.07.016.
Full textLan, Zhuo Yue, Yong Cheng Zhou, and Xiong Tong. "Recovery of Fine Cassiterite from Tin Tailings Slime by Froth Flotation." Advanced Materials Research 634-638 (January 2013): 3478–83. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.3478.
Full textChen, Yong, Jiankang Wen, Yongsheng Song, Wenjuan Li, Shuang Liu, and Ying Liu. "Mineralogical Characteristics of Pegmatite Tailings and Beneficiation Assessment of Pollucite in Recovering Cesium." Minerals 12, no. 5 (April 27, 2022): 541. http://dx.doi.org/10.3390/min12050541.
Full textItyokumbul, M. T., W. Bulani, and N. Kosaric. "Economic and Environmental Benefits from Froth Flotation Recovery of Titanium, Zirconium, Iron and Rare Earth Minerals from Oilsand Tailings." Water Science and Technology 19, no. 3-4 (March 1, 1987): 323–31. http://dx.doi.org/10.2166/wst.1987.0213.
Full textAl-Maghrabi, Mohammed-Noor. "Modeling the Recovery of Froth Flotation Using Game Theory." Journal of Mining World Express 5 (2016): 1. http://dx.doi.org/10.14355/mwe.2016.05.001.
Full textJameson, Graeme J., and Cagri Emer. "Coarse chalcopyrite recovery in a universal froth flotation machine." Minerals Engineering 134 (April 2019): 118–33. http://dx.doi.org/10.1016/j.mineng.2019.01.024.
Full textHay, Martyn P. "Optimising froth condition and recovery for a nickel ore." Minerals Engineering 21, no. 12-14 (November 2008): 861–72. http://dx.doi.org/10.1016/j.mineng.2008.04.013.
Full textZhang, Jie, Jiapeng Li, Yu Wang, Meijie Sun, Lufan Wang, and Yanan Tu. "Separation of Graphites and Cathode Materials from Spent Lithium-Ion Batteries Using Roasting–Froth Flotation." Sustainability 15, no. 1 (December 20, 2022): 30. http://dx.doi.org/10.3390/su15010030.
Full textDvoichenkova, G. P., V. V. Morozov, E. L. Chanturia, and E. G. Kovalenko. "Selection of recycled water electrochemical conditioning parameters for preparation of diamond-bearing kimberlite for froth separation." Gornye nauki i tekhnologii = Mining Science and Technology (Russia) 6, no. 3 (October 13, 2021): 170–80. http://dx.doi.org/10.17073/2500-0632-2021-3-170-180.
Full textCao, Qin Bo, Shu Ming Wen, Chen Xiu Li, Shao Jun Bai, and Dan Liu. "Application of New Flotation Machine on Phosphate Flotation." Advanced Materials Research 616-618 (December 2012): 624–27. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.624.
Full textBustamante Rúa, Moises Oswaldo, Sindy Dayanis Gonzalez Arias, and Pablo Bustamante Baena. "Nickel laterite concentration through a non-conventional method with surface sulfidization." DYNA 87, no. 215 (October 1, 2020): 18–27. http://dx.doi.org/10.15446/dyna.v87n215.85981.
Full textAkande, S., E. O. Ajaka, O. O. Alabi, and T. A. Olatunji. "Effects of varied process parameters on froth flotation efficiency: A case study of Itakpe iron ore." Nigerian Journal of Technology 39, no. 3 (September 16, 2020): 807–15. http://dx.doi.org/10.4314/njt.v39i3.21.
Full textAmelunxen, Peter, Gerson Sandoval, David Barriga, and Roger Amelunxen. "The implications of the froth recovery at the laboratory scale." Minerals Engineering 66-68 (November 2014): 54–61. http://dx.doi.org/10.1016/j.mineng.2014.04.022.
Full textKoutlemani, M. M., P. Mavros, A. I. Zouboulis, and K. A. Matis. "Recovery of Co2+Ions from Aqueous Solutions by Froth Flotation." Separation Science and Technology 29, no. 7 (April 1994): 867–86. http://dx.doi.org/10.1080/01496399408006631.
Full textMuhammad Arif Bhatti, Muhammad Arif Bhatti, Kamran Raza Kazmi Kamran Raza Kazmi, Samreen Zahra Samreen Zahra, and Ansar Mehmood and Rashid Mehmood Ansar Mehmood and Rashid Mehmood. "Beneficiation Study on Low-Grade Graphite Ore of Shounter Valley, Azad Kashmir, Pakistan." Journal of the chemical society of pakistan 42, no. 1 (2020): 1. http://dx.doi.org/10.52568/000617.
Full textMuhammad Arif Bhatti, Muhammad Arif Bhatti, Kamran Raza Kazmi Kamran Raza Kazmi, Samreen Zahra Samreen Zahra, and Ansar Mehmood and Rashid Mehmood Ansar Mehmood and Rashid Mehmood. "Beneficiation Study on Low-Grade Graphite Ore of Shounter Valley, Azad Kashmir, Pakistan." Journal of the chemical society of pakistan 42, no. 1 (2020): 1. http://dx.doi.org/10.52568/000617/jcsp/42.01.2020.
Full textMehta, Neha, Giovanna Dino, Iride Passarella, Franco Ajmone-Marsan, Piergiorgio Rossetti, and Domenico De Luca. "Assessment of the Possible Reuse of Extractive Waste Coming from Abandoned Mine Sites: Case Study in Gorno, Italy." Sustainability 12, no. 6 (March 21, 2020): 2471. http://dx.doi.org/10.3390/su12062471.
Full textGrassia, P., E. Mas-Hernández, N. Shokri, S. J. Cox, G. Mishuris, and W. R. Rossen. "Analysis of a model for foam improved oil recovery." Journal of Fluid Mechanics 751 (June 20, 2014): 346–405. http://dx.doi.org/10.1017/jfm.2014.287.
Full textLeiva, Claudio, Claudio Acuña, Luis Bergh, Saija Luukkanen, and Cristóbal da Silva. "Online Superficial Gas Velocity, Holdup, and Froth Depth Sensor for Flotation Cells." Journal of Sensors 2022 (December 19, 2022): 1–12. http://dx.doi.org/10.1155/2022/7221294.
Full textHögberg, Ida, Dariusz Zasadowski, Anette Karlsson, Bengt Wikman, Fredrik Andersson, Erik Hedenström, Håkan Edlund, and Magnus Norgren. "Brightness development of a hydrogen peroxide bleached spruce TMP. Comparisons of pre-treatments with DTPA and a separable chelating surfactant." Nordic Pulp & Paper Research Journal 27, no. 1 (January 1, 2012): 50–55. http://dx.doi.org/10.3183/npprj-2012-27-01-p050-055.
Full textAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede, and Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production." European Journal of Engineering Research and Science 5, no. 5 (May 31, 2020): 622–25. http://dx.doi.org/10.24018/ejers.2020.5.5.1933.
Full textAlabi, Oladunni Oyelola, Olanrewaju Rotimi Bodede, and Taiwo Paul Popoola. "Froth Flotation Beneficiation a Sure Way to Value Addition to Arufu (Nigeria) Zinc Ore Towards Smelting Grade Concentrate Production." European Journal of Engineering and Technology Research 5, no. 5 (May 31, 2020): 622–25. http://dx.doi.org/10.24018/ejeng.2020.5.5.1933.
Full textCruz, Constanza, Sebastián Herrera-León, Daniel Calisaya-Azpilcueta, Ruth Salazar, Luis A. Cisternas, and Andrzej Kraslawski. "Using Waste Brine from Desalination Plant as a Source of Industrial Water in Copper Mining Industry." Minerals 12, no. 9 (September 14, 2022): 1162. http://dx.doi.org/10.3390/min12091162.
Full textMorozov, Iurii, Tatiana Intogarova, Olga Valieva, and Iuliia Donets. "Flotation classification in closed-circuit grinding as a way of reducing sulphide ore overgrinding." Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal, no. 1 (February 17, 2021): 85–96. http://dx.doi.org/10.21440/0536-1028-2021-1-85-96.
Full textDzingai, Mathew, Malibongwe Manono, and Kirsten Corin. "Simulating the Effect of Water Recirculation on Flotation through Ion-Spiking: Effect of Ca2+ and Mg2+." Minerals 10, no. 11 (November 19, 2020): 1033. http://dx.doi.org/10.3390/min10111033.
Full textYianatos, J., and P. Vallejos. "Limiting conditions in large flotation cells: Froth recovery and bubble loading." Minerals Engineering 185 (July 2022): 107695. http://dx.doi.org/10.1016/j.mineng.2022.107695.
Full text