Journal articles on the topic 'Fronts (Meteorology) Australia, Northern'

To see the other types of publications on this topic, follow the link: Fronts (Meteorology) Australia, Northern.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 26 journal articles for your research on the topic 'Fronts (Meteorology) Australia, Northern.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tapper, NJ, G. Garden, J. Gill, and J. Fernon. "The Climatology and Meteorology of High Fire Danger in the Northern Territory." Rangeland Journal 15, no. 2 (1993): 339. http://dx.doi.org/10.1071/rj9930339.

Full text
Abstract:
In most areas of Australia the calculation of a fire danger index (FDI) is the cornerstone of fie weather forecasting and provides an operationally objective basis for the issue of fire weather warnings. FDI's are derived from the observation or prediction of a number of basic meteorological parameters which are then combined with information on fuel characteristics. The forest and grassland fire danger in southern Australia is greatest during the austral summer and is characterised by long periods of low fire danger interspersed with occasional extreme fire danger events. By contrast, much of tropical and subtropical Australia shows a distinctly different seasonality, magnitude and frequency of fire danger. The problem is essentially one of the austral winter-spring (dry season) period and is characterised by extended periods of moderate to high fire danger. This paper provides a broad climatological background to the problem of high fire danger in northern Australia, concentrating in particular on the Northern Territory. The paper also addresses particular meteorological situations in northern Australia which give rise to elevated fire danger. Two synoptic-scale weather patterns are discussed in particular; the passage of prefrontal troughs which seasonally produce high fire danger in the region of the tropic, and winter subtropical ridging which produces strong winds and high fire danger over the north of the continent during the dry season.
APA, Harvard, Vancouver, ISO, and other styles
2

Sokolov, Serguei, and Stephen R. Rintoul. "Multiple Jets of the Antarctic Circumpolar Current South of Australia*." Journal of Physical Oceanography 37, no. 5 (May 1, 2007): 1394–412. http://dx.doi.org/10.1175/jpo3111.1.

Full text
Abstract:
Abstract Maps of the gradient of sea surface height (SSH) and sea surface temperature (SST) reveal that the Antarctic Circumpolar Current (ACC) consists of multiple jets or frontal filaments. The braided and patchy nature of the gradient fields seems at odds with the traditional view, derived from hydrographic sections, that the ACC is made up of three continuous circumpolar fronts. By applying a nonlinear fitting procedure to 638 weekly maps of SSH gradient (∇SSH), it is shown that the distribution of maxima in ∇SSH (i.e., fronts) is strongly peaked at particular values of absolute SSH (i.e., streamlines). The association between the jets and particular streamlines persists despite strong topographic and eddy–mean flow interactions, which cause the jets to merge, diverge, and fluctuate in intensity along their path. The SSH values corresponding to each frontal branch are nearly constant over the sector of the Southern Ocean between 100°E and 180°. The front positions inferred from SSH agree closely with positions inferred from hydrographic sections using traditional water mass criteria. Recognition of the multiple branches of the Southern Ocean fronts helps to reconcile differences between front locations determined by previous studies. Weekly maps of SSH are used to characterize the structure and variability of the ACC fronts and filaments. The path, width, and intensity of the frontal branches are influenced strongly by the bathymetry. The “meander envelopes” of the fronts are narrow on the northern slope of topographic ridges, where the sloping topography reinforces the β effect, and broader over abyssal plains.
APA, Harvard, Vancouver, ISO, and other styles
3

Haq, M. S., Haolia, M. I. Sulaiman, I. Madrinovella, S. Satiawan, D. A. Zaky, S. K. Suhardja, et al. "Early Results of P Wave Regional Tomography Study at Sunda-Banda Arc using BMKG Seismic Network." IOP Conference Series: Earth and Environmental Science 873, no. 1 (October 1, 2021): 012065. http://dx.doi.org/10.1088/1755-1315/873/1/012065.

Full text
Abstract:
Abstract The plate movement, geological structure, magmatism, and seismic activity in the area of Bali to East Nusa Tenggara are mainly related with the subducting of Indo-Australian Plate underneath the Eurasian plate. The complexity is added with the recent collision of Australian continent lithosphere with the western Banda arc, along the islands of Flores, Sumba and Timor island. Our study area is known as the Sunda-Banda arc transition. With the aim of imaging subsurface structure, we perform seismic tomography inversion using regional events. We collected 5 years of earthquake data (January 2015 – December 2019) from the Indonesian Agency of Meteorology, Climatology, and Geophysics (BMKG). The output of our data processing is not limited to only P wave velocity model, but also relocated seismicity pattern in the region. In general, seismicity pattern shows dominant shallow events in the south that progressively shift into deeper events in the north down to a few 500 km, marking a dipping subduction zone in this region. A group of shallow events down to a depth of 50 km is also seen at the norther region that may relate to back-arc thrust activity. P wave tomogram model show a lower velocity perturbation at a depth of 30 km that could be associated with magmatic activity along the volcanic front line. Higher P wave perturbation model are spotted at two different zones, the first one is marking a dipping Indo-Australian plate down to depth of 400 km. We noticed that the angle of dipping is steeper in the Eastern part compared to the Western part. The second a relatively flat at shallow depth at the northern region from the island of Lombok to Nusa Tenggara Timur that may mark the back-arc thrust region
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, R., and M. Reeder. "A review of research on the dry season mesoscale meteorology of northern Australia." Australian Meteorological and Oceanographic Journal 64, no. 1 (March 2014): S9—S43. http://dx.doi.org/10.22499/2.6401.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jackson, Stephen. "Thornthwaite Moisture Index and Climate Zones in the Northern Territory." Australian Geomechanics Journal 57, no. 3 (September 1, 2022): 69–85. http://dx.doi.org/10.56295/agj5733.

Full text
Abstract:
The Thornthwaite Moisture Index (TMI) is an established climate parameter for geotechnical engineers to categorise a site and enable estimation of seasonal ground movements associated with soil moisture changes. TMI assessment and mapping for the Northern Territory are presented, using the TMI calculation method commonly used for similar recent studies elsewhere in Australia. The assessment included the analysis of 17 sites within the Northern Territory and one site in Queensland which has enabled development of Climate Zone classifications. Climate data was obtained from the Australian Bureau of Meteorology to calculate the TMI on a ‘year by year’ basis over a target period of 29 years (1990 to 2019). Related work in Queensland (Fox 2002) and Western Australia (Hu et al, 2016) has guided the development of the Northern Territory Climate Zone Map. Further work is required to characterise the soil moisture behaviour in arid zones. A general lack of guidance in AS2870 (2011) for arid areas, including much of the Northern Territory, could be addressed with further research and development.
APA, Harvard, Vancouver, ISO, and other styles
6

Gregg, P. C., G. P. Fitt, M. Coombs, and G. S. Henderson. "Migrating moths collected in tower-mounted light traps in northern New South Wales, Australia: influence of local and synoptic weather." Bulletin of Entomological Research 84, no. 1 (March 1994): 17–30. http://dx.doi.org/10.1017/s0007485300032181.

Full text
Abstract:
AbstractCatches of moths in tower-mounted light traps in northern New South Wales were analysed in relation to local and synoptic weather. Catches were correlated with windspeed, relative humidity and possibly rainfall. No correlations were obtained with temperature or moon phase. Catches were more likely to occur when winds were from the east, and were associated with wind shifts. There was a significant association with the passage of depressions or troughs, but not cold fronts. The traps were considered to be poor indicators of migration associated with fronts, because these were accompanied by high winds in which trap efficiency was reduced. Stepwise multiple regressions using temperature, relative humidity, rainfall and windspeed accounted for only about 25% of the variance, much lower than in comparable studies with ground level light traps. These results are thought to indicate that the trap catches were reflecting long-distance migration, which was usually associated with disturbed weather. Back tracking with upper wind data was used to define probable sources of moths. In the spring and early summer, these sources were predominantly to the north and west of the traps, in semi-arid pastoral and subhumid cropping zones. In the late summer and autumn they were predominantly to the south and east, in the humid pastoral and forest zone. These results are discussed in relation to the migratory strategies of several important agricultural pest species.
APA, Harvard, Vancouver, ISO, and other styles
7

McDougall, K. L., G. E. St J. Hardy, and R. J. Hobbs. "Distribution of Phytophthora cinnamomi in the northern jarrah (Eucalyptus marginata) forest of Western Australia in relation to dieback age and topography." Australian Journal of Botany 50, no. 1 (2002): 107. http://dx.doi.org/10.1071/bt01040.

Full text
Abstract:
The spatial distribution of Phytophthora cinnamomi Rands at seven dieback sites in the jarrah (Eucalyptus marginata Donn. ex Smith) forest of Western Australia was determined by the following two baiting techniques: in situ baiting with live Banksia grandis Willd. seedlings and ex situ baiting of sampled soil and root material. Four areas within each site were sampled, reflecting dieback age and position in the landscape. Approximate dieback ages of 50, 20 and 5 years were determined by aerial photography. The 50-year-old age class was divided into wet valley floor and dry gravelly slope. Phytophthora cinnamomi was recovered most frequently from the 5-year-old (dieback fronts) and wet 50-year-old areas by both baiting techniques. It was recovered from more than twice as many areas and about five times as many samples when in situ B. grandis baits were used compared with ex situ soil and root baiting. Almost all recoveries from in situ baits were made between October and December. From both methods, it appears that P. cinnamomi has a patchy distribution within dieback sites in the northern jarrah forest. It is easily detected only on dieback fronts and wet valley floors. On dry gravelly sites affected 20 years or more ago, P. cinnamomi is rare and may even be absent at some sites. This makes confident detection of the pathogen difficult. In situ baiting at least allows a temporal component to the sampling and will be a useful method of detection in areas where P. cinnamomi is rare or transient.
APA, Harvard, Vancouver, ISO, and other styles
8

Pook, M. J., J. S. Risbey, P. C. McIntosh, C. C. Ummenhofer, A. G. Marshall, and G. A. Meyers. "The Seasonal Cycle of Blocking and Associated Physical Mechanisms in the Australian Region and Relationship with Rainfall." Monthly Weather Review 141, no. 12 (November 25, 2013): 4534–53. http://dx.doi.org/10.1175/mwr-d-13-00040.1.

Full text
Abstract:
Abstract The seasonal cycle of blocking in the Australian region is shown to be associated with major seasonal temperature changes over continental Antarctica (approximately 15°–35°C) and Australia (about 8°–17°C) and with minor changes over the surrounding oceans (below 5°C). These changes are superimposed on a favorable background state for blocking in the region resulting from a conjunction of physical influences. These include the geographical configuration and topography of the Australian and Antarctic continents and the positive west to east gradient of sea surface temperature in the Indo-Australian sector of the Southern Ocean. Blocking is represented by a blocking index (BI) developed by the Australian Bureau of Meteorology. The BI has a marked seasonal cycle that reflects seasonal changes in the strength of the westerly winds in the midtroposphere at selected latitudes. Significant correlations between the BI at Australian longitudes and rainfall have been demonstrated in southern and central Australia for the austral autumn, winter, and spring. Patchy positive correlations are evident in the south during summer but significant negative correlations are apparent in the central tropical north. By decomposing the rainfall into its contributions from identifiable synoptic types during the April–October growing season, it is shown that the high correlation between blocking and rainfall in southern Australia is explained by the component of rainfall associated with cutoff lows. These systems form the cyclonic components of blocking dipoles. In contrast, there is no significant correlation between the BI and rainfall from Southern Ocean fronts.
APA, Harvard, Vancouver, ISO, and other styles
9

Williams, Paul R., Eleanor M. Collins, Mick Blackman, Clare Blackman, Jackie McLeod, Leasie Felderhof, Lauren Colless, et al. "The influence of ignition technique on fire behaviour in spinifex open woodland in semiarid northern Australia." International Journal of Wildland Fire 24, no. 5 (2015): 607. http://dx.doi.org/10.1071/wf14177.

Full text
Abstract:
Unplanned, unmanaged wildfires are a significant threat to people, infrastructure and ecosystems around the world. Managed, planned burning is widely used for reducing the incidence, extent or intensity of wildfires. Fire weather and the season of burning are recognised as crucial factors influencing fire behaviour but the demonstrated influence of ignition technique on fire behaviour is not as prominently discussed in relation to planned fires. We found wildfires, irrespective of season, burnt the ground layer more completely (i.e. were less patchy) and produced greater crown scorch severity than did planned fires in a spinifex (Triodia spp.)-dominated open woodland. Fires ignited with a 50-m line burning with the wind produced significantly higher intensities than did line ignition against the wind, and spot ignitions with or against the wind. These data suggest that the higher severity of wildfires in spinifex-dominated habitats is strongly influenced by long fire fronts, in addition to fire season and weather conditions. This study supports the value of planned burning for reducing fire severity and highlights the value of spot ignitions in ecological burning to create a patchily burnt landscape, with limited canopy severity.
APA, Harvard, Vancouver, ISO, and other styles
10

Kilinc, Musa, and Jason Beringer. "The Spatial and Temporal Distribution of Lightning Strikes and Their Relationship with Vegetation Type, Elevation, and Fire Scars in the Northern Territory." Journal of Climate 20, no. 7 (April 1, 2007): 1161–73. http://dx.doi.org/10.1175/jcli4039.1.

Full text
Abstract:
Abstract In this paper the authors explore the spatial and temporal patterns of lightning strikes in northern Australia for the first time. In particular, the possible relationships between lightning strikes and elevation, vegetation type, and fire scars (burned areas) are examined. Lightning data provided by the Bureau of Meteorology were analyzed for a 6-yr period (1998–2003) over the northern, southern, and coastal regions of the Northern Territory (NT) through the use of Geographical Information Systems (GIS) to determine the spatial and temporal characteristics of lightning strikes. It was determined that the highest densities of lightning strikes occurred during the monsoon transitional period (dry to wet) and during the active monsoon periods, when atmospheric moisture is highest. For the period of this study, lightning was far more prevalent over the northern region (1.21 strikes per km2 yr−1) than over the southern (0.58 strikes per km2 yr−1) and coastal regions (0.71 strikes per km2 yr−1). Differences in vegetation cover were suggested to influence the lightning distribution over the northern region of the NT, but no relationship was found in the southern region. Lightning strikes in the southern region showed a positive relationship with elevations above 800 m, but no relationship was found in the northern region, which could be due to the low-lying topography of the area. A comparison of lightning densities between burned and unburned areas showed high variability; however, the authors suggest that, under ideal atmospheric conditions, large-scale fire scars (>500 m) could produce lightning strikes triggered by either enhanced free convection or mesoscale circulations.
APA, Harvard, Vancouver, ISO, and other styles
11

Jankov, Isidora, Jian-Wen Bao, Paul J. Neiman, Paul J. Schultz, Huiling Yuan, and Allen B. White. "Evaluation and Comparison of Microphysical Algorithms in ARW-WRF Model Simulations of Atmospheric River Events Affecting the California Coast." Journal of Hydrometeorology 10, no. 4 (August 1, 2009): 847–70. http://dx.doi.org/10.1175/2009jhm1059.1.

Full text
Abstract:
Abstract Numerical prediction of precipitation associated with five cool-season atmospheric river events in northern California was analyzed and compared to observations. The model simulations were performed by using the Advanced Research Weather Research and Forecasting Model (ARW-WRF) with four different microphysical parameterizations. This was done as a part of the 2005–06 field phase of the Hydrometeorological Test Bed project, for which special profilers, soundings, and surface observations were implemented. Using these unique datasets, the meteorology of atmospheric river events was described in terms of dynamical processes and the microphysical structure of the cloud systems that produced most of the surface precipitation. Events were categorized as “bright band” (BB) or “nonbright band” (NBB), the differences being the presence of significant amounts of ice aloft (or lack thereof) and a signature of higher reflectivity collocated with the melting layer produced by frozen precipitating particles descending through the 0°C isotherm. The model was reasonably successful at predicting the timing of surface fronts, the development and evolution of low-level jets associated with latent heating processes and terrain interaction, and wind flow signatures consistent with deep-layer thermal advection. However, the model showed the tendency to overestimate the duration and intensity of the impinging low-level winds. In general, all model configurations overestimated precipitation, especially in the case of BB events. Nonetheless, large differences in precipitation distribution and cloud structure among model runs using various microphysical parameterization schemes were noted.
APA, Harvard, Vancouver, ISO, and other styles
12

Hall, Lisa S., Meredith L. Orr, Megan E. Lech, Steven Lewis, Adam H. E. Bailey, Ryan Owens, Barry E. Bradshaw, and George Bernardel. "Geological and Bioregional Assessments: assessing the prospectivity for tight, shale and deep-coal resources in the Cooper Basin, Beetaloo Subbasin and Isa Superbasin." APPEA Journal 61, no. 2 (2021): 477. http://dx.doi.org/10.1071/aj20035.

Full text
Abstract:
The Geological and Bioregional Assessment Program is a series of independent scientific studies undertaken by Geoscience Australia and the CSIRO, supported by the Bureau of Meteorology, and managed by the Department of Agriculture, Water and the Environment. The program consists of three stages across three regions with potential to deliver gas to the East Coast Gas Market. Stage 1 was a rapid regional prioritisation conducted by Geoscience Australia, to identify those sedimentary basins with the greatest potential to deliver shale and/or tight gas to the East Coast Gas Market within the next 5–10 years. This prioritisation process assessed 27 onshore eastern and northern Australian basins with shale and/or tight gas potential. Further screening reduced this to a shortlist of nine basins where exploration was underway. The shortlisted basins were ranked on a number of criteria. The Cooper Basin, the Beetaloo Subbasin and the Isa Superbasin were selected for more detailed assessment. Stage 2 of the program involved establishing a baseline understanding of the identified regions. Geoscience Australia produced regional geological evaluations and conceptualisations that informed the assessment of shale and/or tight gas prospectivity, ground- and surface-water impacts and hydraulic fracturing models. Geoscience Australia’s relative prospectivity assessments provide an indication of where viable petroleum plays are most likely to be present. These data indicate areal and stratigraphic constraints that support the program’s further work in Stage 3, on understanding likely development scenarios, impact assessments and causal pathways.
APA, Harvard, Vancouver, ISO, and other styles
13

Amirthanathan, Gnanathikkam Emmanuel, Mohammed Abdul Bari, Fitsum Markos Woldemeskel, Narendra Kumar Tuteja, and Paul Martinus Feikema. "Regional significance of historical trends and step changes in Australian streamflow." Hydrology and Earth System Sciences 27, no. 1 (January 11, 2023): 229–54. http://dx.doi.org/10.5194/hess-27-229-2023.

Full text
Abstract:
Abstract. The Hydrologic Reference Stations is a network of 467 high-quality streamflow gauging stations across Australia that is developed and maintained by the Bureau of Meteorology as part of an ongoing responsibility under the Water Act 2007. The main objectives of the service are to observe and detect climate-driven changes in observed streamflow and to provide a quality-controlled dataset for research. We investigate trends and step changes in streamflow across Australia in data from all 467 streamflow gauging stations. Data from 30 to 69 years in duration ending in February 2019 were examined. We analysed data in terms of water-year totals and for the four seasons. The commencement of the water year varies across the country – mainly from February–March in the south to September–October in the north. We summarized our findings for each of the 12 drainage divisions defined by Australian Hydrological Geospatial Fabric (Geofabric) and for continental Australia as a whole. We used statistical tests to detect and analyse linear and step changes in seasonal and annual streamflow. Monotonic trends were detected using modified Mann–Kendall (MK) tests, including a variance correction approach (MK3), a block bootstrap approach (MK3bs) and a long-term persistence approach (MK4). A nonparametric Pettitt test was used for step-change detection and identification. The regional significance of these changes at the drainage division scale was analysed and synthesized using a Walker test. The Murray–Darling Basin, home to Australia's largest river system, showed statistically significant decreasing trends for the region with respect to the annual total and all four seasons. Drainage divisions in New South Wales, Victoria and Tasmania showed significant annual and seasonal decreasing trends. Similar results were found in south-western Western Australia, South Australia and north-eastern Queensland. There was no significant spatial pattern observed in central nor mid-west Western Australia, with one possible explanation for this being the sparse density of streamflow stations and/or the length of the datasets available. Only the Tanami–Timor Sea Coast drainage division in northern Australia showed increasing trends and step changes in annual and seasonal streamflow that were regionally significant. Most of the step changes occurred during 1970–1999. In the south-eastern part of Australia, the majority of the step changes occurred in the 1990s, before the onset of the “Millennium Drought”. Long-term monotonic trends in observed streamflow and its regional significance are consistent with observed changes in climate experienced across Australia. The findings of this study will assist water managers with long-term infrastructure planning and management of water resources under climate variability and change across Australia.
APA, Harvard, Vancouver, ISO, and other styles
14

Power, Scott, Malcolm Haylock, Rob Colman, and Xiangdong Wang. "The Predictability of Interdecadal Changes in ENSO Activity and ENSO Teleconnections." Journal of Climate 19, no. 19 (October 1, 2006): 4755–71. http://dx.doi.org/10.1175/jcli3868.1.

Full text
Abstract:
Abstract El Niño–Southern Oscillation (ENSO) in a century-long integration of a Bureau of Meteorology Research Centre (BMRC) coupled general circulation model (CGCM) drives rainfall and temperature changes over Australia that are generally consistent with documented observational changes: dry/hot conditions occur more frequently during El Niño years and wet/mild conditions occur more frequently during La Niña years. The relationship between ENSO [as measured by Niño-4 or the Southern Oscillation index (SOI), say] and all-Australia rainfall and temperature is found to be nonlinear in the observations and in the CGCM during June–December: a large La Niña sea surface temperature (SST) anomaly is closely linked to a large Australian response (i.e., Australia usually becomes much wetter), whereas the magnitude of an El Niño SST anomaly is a poorer guide to how dry Australia will actually become. Australia tends to dry out during El Niño events, but the degree of drying is not as tightly linked to the magnitude of the El Niño SST anomaly. Nonlinear or asymmetric teleconnections are also evident in the western United States/northern Mexico. The implications of asymmetric teleconnections for prediction services are discussed. The relationship between ENSO and Australian climate in both the model and the observations is strong in some decades, but weak in others. A series of decadal-long perturbation experiments are used to show that if these interdecadal changes are predictable, then the level of predictability is low. The model’s Interdecadal Pacific Oscillation (IPO), which represents interdecadal ENSO-like SST variability, is statistically linked to interdecadal changes in ENSO’s impact on Australia during June–December when ENSO’s impact on Australia is generally greatest. A simple stochastic model that incorporates the nonlinearity above is used to show that the IPO [or the closely related Pacific Decadal Oscillation (PDO)] can appear to modulate ENSO teleconnections even if the IPO–PDO largely reflect unpredictable random changes in, for example, the relative frequency of El Niño and La Niña events in a given interdecadal period. Note, however, that predictability in ENSO-related variability on decadal time scales might be either underestimated by the CGCM, or be too small to be detected by the modest number of perturbation experiments conducted. If there is a small amount of predictability in ENSO indices on decadal time scales, and there may be, then the nonlinearity described above provides a mechanism via which ENSO teleconnections could be modulated on decadal time scales in a partially predictable fashion.
APA, Harvard, Vancouver, ISO, and other styles
15

Lee, Chia-Ying, Suzana J. Camargo, Fréderic Vitart, Adam H. Sobel, and Michael K. Tippett. "Subseasonal Tropical Cyclone Genesis Prediction and MJO in the S2S Dataset." Weather and Forecasting 33, no. 4 (July 3, 2018): 967–88. http://dx.doi.org/10.1175/waf-d-17-0165.1.

Full text
Abstract:
Abstract Subseasonal probabilistic prediction of tropical cyclone (TC) genesis is investigated here using models from the Seasonal to Subseasonal (S2S) Prediction dataset. Forecasts are produced for basin-wide TC occurrence at weekly temporal resolution. Forecast skill is measured using the Brier skill score relative to a seasonal climatology that varies monthly through the TC season. Skill depends on models’ characteristics, lead time, and ensemble prediction design. Most models show skill for week 1 (days 1–7), the period when initialization is important. Among the six S2S models examined here, the European Centre for Medium-Range Weather Forecasts (ECMWF) model has the best performance, with skill in the Atlantic, western North Pacific, eastern North Pacific, and South Pacific at week 2. Similarly, the Australian Bureau of Meteorology (BoM) model is skillful in the western North Pacific, South Pacific, and across northern Australia at week 2. The Madden–Julian oscillation (MJO) modulates observed TC genesis, and there is a relationship, across models and lead times, between models’ skill scores and their ability to accurately represent the MJO and the MJO–TC relation. Additionally, a model’s TC climatology also influences its performance in subseasonal prediction. The dependence of the skill score on the simulated climatology, MJO, and MJO–TC relationship, however, varies from one basin to another. Skill scores increase with the ensemble size, as found in previous weather and seasonal prediction studies.
APA, Harvard, Vancouver, ISO, and other styles
16

England, Matthew H., Caroline C. Ummenhofer, and Agus Santoso. "Interannual Rainfall Extremes over Southwest Western Australia Linked to Indian Ocean Climate Variability." Journal of Climate 19, no. 10 (May 15, 2006): 1948–69. http://dx.doi.org/10.1175/jcli3700.1.

Full text
Abstract:
Abstract Interannual rainfall extremes over southwest Western Australia (SWWA) are examined using observations, reanalysis data, and a long-term natural integration of the global coupled climate system. The authors reveal a characteristic dipole pattern of Indian Ocean sea surface temperature (SST) anomalies during extreme rainfall years, remarkably consistent between the reanalysis fields and the coupled climate model but different from most previous definitions of SST dipoles in the region. In particular, the dipole exhibits peak amplitudes in the eastern Indian Ocean adjacent to the west coast of Australia. During dry years, anomalously cool waters appear in the tropical/subtropical eastern Indian Ocean, adjacent to a region of unusually warm water in the subtropics off SWWA. This dipole of anomalous SST seesaws in sign between dry and wet years and appears to occur in phase with a large-scale reorganization of winds over the tropical/subtropical Indian Ocean. The wind field alters SST via anomalous Ekman transport in the tropical Indian Ocean and via anomalous air–sea heat fluxes in the subtropics. The winds also change the large-scale advection of moisture onto the SWWA coast. At the basin scale, the anomalous wind field can be interpreted as an acceleration (deceleration) of the Indian Ocean climatological mean anticyclone during dry (wet) years. In addition, dry (wet) years see a strengthening (weakening) and coinciding southward (northward) shift of the subpolar westerlies, which results in a similar southward (northward) shift of the rain-bearing fronts associated with the subpolar front. A link is also noted between extreme rainfall years and the Indian Ocean Dipole (IOD). Namely, in some years the IOD acts to reinforce the eastern tropical pole of SST described above, and to strengthen wind anomalies along the northern flank of the Indian Ocean anticyclone. In this manner, both tropical and extratropical processes in the Indian Ocean generate SST and wind anomalies off SWWA, which lead to moisture transport and rainfall extremes in the region. An analysis of the seasonal evolution of the climate extremes reveals a progressive amplification of anomalies in SST and atmospheric circulation toward a wintertime maximum, coinciding with the season of highest SWWA rainfall. The anomalies in SST can appear as early as the summertime months, however, which may have important implications for predictability of SWWA rainfall extremes.
APA, Harvard, Vancouver, ISO, and other styles
17

Steinkamp, Kay, Sara E. Mikaloff Fletcher, Gordon Brailsford, Dan Smale, Stuart Moore, Elizabeth D. Keller, W. Troy Baisden, Hitoshi Mukai, and Britton B. Stephens. "Atmospheric CO<sub>2</sub> observations and models suggest strong carbon uptake by forests in New Zealand." Atmospheric Chemistry and Physics 17, no. 1 (January 2, 2017): 47–76. http://dx.doi.org/10.5194/acp-17-47-2017.

Full text
Abstract:
Abstract. A regional atmospheric inversion method has been developed to determine the spatial and temporal distribution of CO2 sinks and sources across New Zealand for 2011–2013. This approach infers net air–sea and air–land CO2 fluxes from measurement records, using back-trajectory simulations from the Numerical Atmospheric dispersion Modelling Environment (NAME) Lagrangian dispersion model, driven by meteorology from the New Zealand Limited Area Model (NZLAM) weather prediction model. The inversion uses in situ measurements from two fixed sites, Baring Head on the southern tip of New Zealand's North Island (41.408° S, 174.871° E) and Lauder from the central South Island (45.038° S, 169.684° E), and ship board data from monthly cruises between Japan, New Zealand, and Australia. A range of scenarios is used to assess the sensitivity of the inversion method to underlying assumptions and to ensure robustness of the results. The results indicate a strong seasonal cycle in terrestrial land fluxes from the South Island of New Zealand, especially in western regions covered by indigenous forest, suggesting higher photosynthetic and respiratory activity than is evident in the current a priori land process model. On the annual scale, the terrestrial biosphere in New Zealand is estimated to be a net CO2 sink, removing 98 (±37) Tg CO2 yr−1 from the atmosphere on average during 2011–2013. This sink is much larger than the reported 27 Tg CO2 yr−1 from the national inventory for the same time period. The difference can be partially reconciled when factors related to forest and agricultural management and exports, fossil fuel emission estimates, hydrologic fluxes, and soil carbon change are considered, but some differences are likely to remain. Baseline uncertainty, model transport uncertainty, and limited sensitivity to the northern half of the North Island are the main contributors to flux uncertainty.
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Wang, Jena, Paton-Walsh, Guérette, Utembe, Silver, and Keywood. "Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models During Recent Field Campaigns in Australia, Part II: Comparison of WRF/Chem and WRF/Chem-ROMS and Impacts of Air-Sea Interactions and Boundary Conditions." Atmosphere 10, no. 4 (April 20, 2019): 210. http://dx.doi.org/10.3390/atmos10040210.

Full text
Abstract:
Air-sea interactions play an important role in atmospheric circulation and boundary layer conditions through changing convection processes and surface heat fluxes, particularly in coastal areas. These changes can affect the concentrations, distributions, and lifetimes of atmospheric pollutants. In this Part II paper, the performance of the Weather Research and Forecasting model with chemistry (WRF/Chem) and the coupled WRF/Chem with the Regional Ocean Model System (ROMS) (WRF/Chem-ROMS) are intercompared for their applications over quadruple-nested domains in Australia during the three following field campaigns: The Sydney Particle Study Stages 1 and 2 (SPS1 and SPS2) and the Measurements of Urban, Marine, and Biogenic Air (MUMBA). The results are used to evaluate the impact of air-sea interaction representation in WRF/Chem-ROMS on model predictions. At 3, 9, and 27 km resolutions, compared to WRF/Chem, the explicit air-sea interactions in WRF/Chem-ROMS lead to substantial improvements in simulated sea-surface temperature (SST), latent heat fluxes (LHF), and sensible heat fluxes (SHF) over the ocean, in terms of statistics and spatial distributions, during all three field campaigns. The use of finer grid resolutions (3 or 9 km) effectively reduces the biases in these variables during SPS1 and SPS2 by WRF/Chem-ROMS, whereas it further increases these biases for WRF/Chem during all field campaigns. The large differences in SST, LHF, and SHF between the two models lead to different radiative, cloud, meteorological, and chemical predictions. WRF/Chem-ROMS generally performs better in terms of statistics and temporal variations for temperature and relative humidity at 2 m, wind speed and direction at 10 m, and precipitation. The percentage differences in simulated surface concentrations between the two models are mostly in the range of ±10% for CO, OH, and O3, ±25% for HCHO, ±30% for NO2, ±35% for H2O2, ±50% for SO2, ±60% for isoprene and terpenes, ±15% for PM2.5, and ±12% for PM10. WRF/Chem-ROMS at 3 km resolution slightly improves the statistical performance of many surface and column concentrations. WRF/Chem simulations with satellite-constrained boundary conditions (BCONs) improve the spatial distributions and magnitudes of column CO for all field campaigns and slightly improve those of the column NO2 for SPS1 and SPS2, column HCHO for SPS1 and MUMBA, and column O3 for SPS2 at 3 km over the Greater Sydney area. The satellite-constrained chemical BCONs reduce the model biases of surface CO, NO, and O3 predictions at 3 km for all field campaigns, surface PM2.5 predictions at 3 km for SPS1 and MUMBA, and surface PM10 predictions at all grid resolutions for all field campaigns. A more important role of chemical BCONs in the Southern Hemisphere, compared to that in the Northern Hemisphere reported in this work, indicates a crucial need in developing more realistic chemical BCONs for O3 in the relatively clean SH.
APA, Harvard, Vancouver, ISO, and other styles
19

Mitchell, Ross M., Bruce W. Forgan, and Susan K. Campbell. "The Climatology of Australian Aerosol." Atmospheric Chemistry and Physics 17, no. 8 (April 20, 2017): 5131–54. http://dx.doi.org/10.5194/acp-17-5131-2017.

Full text
Abstract:
Abstract. Airborne particles or aerosols have long been recognised for their major contribution to uncertainty in climate change. In addition, aerosol amounts must be known for accurate atmospheric correction of remotely sensed images, and are required to accurately gauge the available solar resource. However, despite great advances in surface networks and satellite retrievals over recent years, long-term continental-scale aerosol data sets are lacking. Here we present an aerosol assessment over Australia based on combined sun photometer measurements from the Bureau of Meteorology Radiation Network and CSIRO/AeroSpan. The measurements are continental in coverage, comprising 22 stations, and generally decadal in timescale, totalling 207 station-years. Monthly climatologies are given at all stations. Spectral decomposition shows that the time series can be represented as a weighted sum of sinusoids with periods of 12, 6 and 4 months, corresponding to the annual cycle and its second and third harmonics. Their relative amplitudes and phase relationships lead to sawtooth-like waveforms sharply rising to an austral spring peak, with a slower decline often including a secondary peak during the summer. The amplitude and phase of these periodic components show significant regional change across the continent. Fits based on this harmonic analysis are used to separate the periodic and episodic components of the aerosol time series. An exploratory classification of the aerosol types is undertaken based on (a) the relative periodic amplitudes of the Ångström exponent and aerosol optical depth, (b) the relative amplitudes of the 6- and 4-month harmonic components of the aerosol optical depth, and (c) the ratio of episodic to periodic variation in aerosol optical depth. It is shown that Australian aerosol can be broadly grouped into three classes: tropical, arid and temperate. Statistically significant decadal trends are found at 4 of the 22 stations. Despite the apparently small associated declining trends in mid-visible aerosol optical depth of between 0.001 and 0.002 per year, these trends are much larger than those projected to occur due to declining emissions of anthropogenic aerosols from the Northern Hemisphere. There is remarkable long-range coherence in the aerosol cycle across the continent, suggesting broadly similar source characteristics, including a possible role for intercontinental transport of biomass burning aerosol.
APA, Harvard, Vancouver, ISO, and other styles
20

Lawson, S. J., M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, et al. "Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S." Atmospheric Chemistry and Physics Discussions 15, no. 13 (July 1, 2015): 17599–649. http://dx.doi.org/10.5194/acpd-15-17599-2015.

Full text
Abstract:
Abstract. Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m−3) and particles > 3 nm (~ 13 000 cm−3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000–5000 CCN cm−3, which were enhanced above typical background levels by a factor of 6–34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001–0.074). A shortlived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2–4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meterological events on BB emissions. Emission factors (EF) were derived for a range of trace gases, some never before reported for Australian conditions, (including hydrogen, phenol and toluene) using a calculated ER to CO and a published CO EF. The EF derived for most species are comparable to other temperate Australian studies but lower than Northern Hemisphere temperate studies. This work demonstrates the substantial impact that BB plumes have on the composition of marine air, and the significant changes that can occur as the plume is diluted and interacts with other emission sources. We also provide new trace gas and particle EF for temperate southern Australia.
APA, Harvard, Vancouver, ISO, and other styles
21

Lawson, S. J., M. D. Keywood, I. E. Galbally, J. L. Gras, J. M. Cainey, M. E. Cope, P. B. Krummel, et al. "Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania." Atmospheric Chemistry and Physics 15, no. 23 (December 7, 2015): 13393–411. http://dx.doi.org/10.5194/acp-15-13393-2015.

Full text
Abstract:
Abstract. Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6–34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001–0.074). A short-lived increase in NMOCs by a factor of 10 corresponded with a large CO enhancement, an increase of the NMOC / CO emission ratio (ER) by a factor of 2–4 and a halving of the BC / CO ratio. Rainfall on Robbins Island was observed by radar during this period which likely resulted in a lower fire combustion efficiency, and higher emission of compounds associated with smouldering. This highlights the importance of relatively minor meteorological events on BB emission ratios. Emission factors (EFs) were derived for a range of trace gases, some never before reported for Australian fires, (including hydrogen, phenol and toluene) using the carbon mass balance method. This provides a unique set of EFs for Australian coastal heathland fires. Methyl halide EFs were higher than EFs reported from other studies in Australia and the Northern Hemisphere which is likely due to high halogen content in vegetation on Robbins Island. This work demonstrates the substantial impact that BB plumes can have on the composition of marine air, and the significant changes that can occur as the plume interacts with terrestrial, aged urban and marine emission sources.
APA, Harvard, Vancouver, ISO, and other styles
22

Verbeke, T., J. Lathière, S. Szopa, and N. de Noblet-Ducoudré. "Impact of future land-cover changes on HNO<sub>3</sub> and O<sub>3</sub> surface dry deposition." Atmospheric Chemistry and Physics 15, no. 23 (December 9, 2015): 13555–68. http://dx.doi.org/10.5194/acp-15-13555-2015.

Full text
Abstract:
Abstract. Dry deposition is a key component of surface–atmosphere exchange of compounds, acting as a sink for several chemical species. Meteorological factors, chemical properties of the trace gas considered and land surface properties are strong drivers of dry deposition efficiency and variability. Under both climatic and anthropogenic pressure, the vegetation distribution over the Earth has been changing a lot over the past centuries and could be significantly altered in the future. In this study, we perform a modeling investigation of the potential impact of land-cover changes between the present day (2006) and the future (2050) on dry deposition velocities at the surface, with special interest for ozone (O3) and nitric acid (HNO3), two compounds which are characterized by very different physicochemical properties. The 3-D chemistry-transport model LMDz-INCA is used, considering changes in vegetation distribution based on the three future projections, RCPs 2.6, 4.5 and 8.5, and present-day (2007) meteorology. The 2050 RCP 8.5 vegetation distribution leads to a rise of up to 7 % (+0.02 cm s−1) in the surface deposition velocity calculated for ozone (Vd,O3) and a decrease of −0.06 cm s−1 in the surface deposition velocity calculated for nitric acid (Vd,HNO3) relative to the present-day values in tropical Africa and up to +18 and −15 %, respectively, in Australia. When taking into account the RCP 4.5 scenario, which shows dramatic land-cover change in Eurasia, Vd,HNO3 increases by up to 20 % (annual-mean value) and reduces Vd,O3 by the same magnitude in this region. When analyzing the impact of surface dry deposition change on atmospheric chemical composition, our model calculates that the effect is lower than 1 ppb on annual-mean surface ozone concentration for both the RCP 8.5 and RCP 2.6 scenarios. The impact on HNO3 surface concentrations is more disparate between the two scenarios regarding the spatial repartition of effects. In the case of the RCP 4.5 scenario, a significant increase of the surface O3 concentration reaching locally by up to 5 ppb (+5 %) is calculated on average during the June–August period. This scenario also induces an increase of HNO3 deposited flux exceeding locally 10 % for monthly values. Comparing the impact of land-cover change to the impact of climate change, considering a 0.93 °C increase of global temperature, on dry deposition velocities, we estimate that the strongest increase over lands occurs in the Northern Hemisphere during winter, especially in Eurasia, by +50 % (+0.07 cm s−1) for Vd,O3 and +100 % (+0.9 cm s−1) for Vd,HNO3. However, different regions are affected by both changes, with climate change impact on deposition characterized by a latitudinal gradient, while the land-cover change impact is much more heterogeneous depending on vegetation distribution modification described in the future RCP scenarios. The impact of long-term land-cover changes on dry deposition is shown to be significant and to differ strongly from one scenario to another. It should therefore be considered in biosphere–atmospheric chemistry interaction studies in order to have a fully consistent picture.
APA, Harvard, Vancouver, ISO, and other styles
23

Moros, Matthias, Patrick De Deckker, Kerstin Perner, Ulysses S. Ninnemann, Lukas Wacker, Richard Telford, Eystein Jansen, Thomas Blanz, and Ralph Schneider. "Hydrographic shifts south of Australia over the last deglaciation and possible interhemispheric linkages." Quaternary Research, April 13, 2021, 1–12. http://dx.doi.org/10.1017/qua.2021.12.

Full text
Abstract:
Abstract Northern and southern hemispheric influences—particularly changes in Southern Hemisphere westerly winds (SSW) and Southern Ocean ventilation—triggered the stepwise atmospheric CO2 increase that accompanied the last deglaciation. One approach for gaining potential insights into past changes in SWW/CO2 upwelling is to reconstruct the positions of the northern oceanic fronts associated with the Antarctic Circumpolar Current. Using two deep-sea cores located ~600 km apart off the southern coast of Australia, we detail oceanic changes from ~23 to 6 ka using foraminifer faunal and biomarker alkenone records. Our results indicate a tight coupling between hydrographic and related frontal displacements offshore South Australia (and by analogy, possibly the entire Southern Ocean) and Northern Hemisphere (NH) climate that may help confirm previous hypotheses that the westerlies play a critical role in modulating CO2 uptake and release from the Southern Ocean on millennial and potentially even centennial timescales. The intensity and extent of the northward displacements of the Subtropical Front following well-known NH cold events seem to decrease with progressing NH ice sheet deglaciation and parallel a weakening NH temperature response and amplitude of Intertropical Convergence Zone shifts. In addition, an exceptional poleward shift of Southern Hemisphere fronts occurs during the NH Heinrich Stadial 1. This event was likely facilitated by the NH ice maximum and acted as a coup-de-grâce for glacial ocean stratification and its high CO2 capacitance. Thus, through its influence on the global atmosphere and on ocean mixing, “excessive” NH glaciation could have triggered its own demise by facilitating the destratification of the glacial ocean CO2 state.
APA, Harvard, Vancouver, ISO, and other styles
24

Hajbane, Sara, Bruna Calmanovici, Julia Reisser, Adam Jolly, Vyvyan Summers, Francesco Ferrari, Anas Ghadouani, and Charitha Pattiaratchi. "Coastal Garbage Patches: Fronts Accumulate Plastic Films at Ashmore Reef Marine Park (Pulau Pasir), Australia." Frontiers in Marine Science 8 (April 16, 2021). http://dx.doi.org/10.3389/fmars.2021.613399.

Full text
Abstract:
Millions of tons of buoyant plastic materials enter oceans annually, the majority originating from terrestrial sources and transported to oceans where oceanographic processes disperse or accumulate them. Some of these materials beach while others accumulate in convergent zones in coastal seas and the open ocean. Although accumulations associated with subtropical gyres, for example, the “Great Pacific Garbage Patch” (GPGP) are well-known, coastal accumulation zones have received less attention. Here we report quantities and characteristics of plastics accumulated in fronts encountered within the Ashmore Reef marine park (Pulau Pasir), northern Australia. These areas, as well as surrounding waters, were sampled using Manta trawls, drone, and snorkel surveys conducted in October 2018. With mean plastic concentrations of 523,146 pieces km−2 for plastics &gt; 500 micron these hotpots contained plastic concentrations an order of magnitude higher than surrounding waters (16,561 pieces km−2) and comparable to the largest known accumulation zone: the GPGP. Furthermore, the mean mass within hotspots was 5,161 g km–2 vs. 9 g km–2 in surrounding waters. Therefore, we classify the features described in this study as types of “Coastal Garbage Patches” (CGPs). Importantly, the coastal fronts accumulating plastics in CGPs are key habitats for many marine species. Biomass outnumbered plastics by weight, with a ratio of 0.521 in CGPs and 0.016 in surrounding waters vs. 287.7 recorded in the GPGP. Polymer types found between the CGPs and GPGP were similar, but plastic films vastly dominated in the CGPs, whilst they were amongst the rarest types found in the GPGP. This study demonstrates the existence of CGPs coinciding with high priority conservation zones in coastal waters and highlights a need for further research into these environments.
APA, Harvard, Vancouver, ISO, and other styles
25

Kean Yap, Wai, and Vishy Karri. "Comparative Study in Predicting the Global Solar Radiation for Darwin, Australia." Journal of Solar Energy Engineering 134, no. 3 (May 7, 2012). http://dx.doi.org/10.1115/1.4006574.

Full text
Abstract:
This paper presents a comparative study in predicting the monthly average solar radiation for Darwin, Australia (latitude 12.46 deg S longitude 130.84 deg E). The city of Darwin, Northern Territory (NT), has the highest and most consistent sunshine duration among all the other Australian states. This unique climate presents an opportunity for photovoltaic (PV) applications. Reliable and accurate predictions of solar radiation enable potential site locations, which exhibit high solar radiations and sunshine hours, to be identified for PV installation. Three predictive models were investigated in this study—the linear regression (LR), Angstrom–Prescott–Page (APP), and the artificial neural network (ANN) models. The mean global solar radiation coupled with the climate data (mean minimum and maximum temperatures, mean rainfall, mean evaporation, and sunshine fraction) obtained from the Australian Bureau of Meteorology (BoM) formed the basis of the dataset. Using simple and easily obtainable climate data presents an added advantage by reducing model complexity. Predictive results showed the root mean square errors (RMSEs) obtained were 6.72%, 13.29%, and 8.11% for the LR, APP, and ANN models, respectively. The predicted solar exposure from the LR model was then compared with the satellite-derived data to assess the accuracy of the LR method.
APA, Harvard, Vancouver, ISO, and other styles
26

Atkins, E., Q. Pilard, K. Rogers, A. Salam, and A. Rodgers. "P1943Ambient temperature and seasonal effects on blood pressure in 2.6 million Australians." European Heart Journal 40, Supplement_1 (October 1, 2019). http://dx.doi.org/10.1093/eurheartj/ehz748.0690.

Full text
Abstract:
Abstract Background There is evidence that blood pressure (BP) levels vary considerably from season to season, due principally to variation in ambient temperature. This gives the potential for both under- and over-treatment if BP lowering medications are not varied seasonally, but is not acknowledged in clinical guidelines. We will describe the seasonal variation in BP and assess the association between systolic blood pressure (SBP) and outdoor maximum ambient temperature in Australia. Methods The primary care data is an extract from MedicineInsight, a national general practice data program developed and managed by NPS MedicineWise, which extracts deidentified data from almost 10% of all Australian general practices. We included patients aged 30–90 years with at least one BP measure recorded from 1 Jan 2010 to 1 Aug 2017. Australian Bureau of Meteorology daily max temperature is linked by matching observation dates and location to nearest weather station. Decomposition of the mean will determine seasonal variation. Multiple linear regression was used to estimate the associations between max temperature and SBP with adjustment for age, sex, socioeconomic index, current smoking, comorbidities, BP lowering medication use, lipid lowering medication use and year of BP measurement. Results The study population includes 2.6 million people, mean age 55 years (standard deviation [SD] 16.3). Fifty-five percent are female, over a third of the cohort reside in New South Wales, and 62.4% reside in major Australian cities. The mean (SD) temperature was 23°C (6.6). There was a mean (SD) of 7 (11.4) BP measurements per person over the study period, median 3 measures (interquartile range 1–8). A quarter had a history of hypertension, 8% had a history of cardiovascular disease, and 8% had a history of diabetes. Twenty-six percent had at least one prescription for BP lowering therapy. The average monthly SBP for the cohort demonstrated strong seasonal variation with higher values in winter. The population mean varies by 3mmHg SBP between seasons across Australia, ranging from 1.7mmHg in the Northern Territory to 3.5mmHg in South Australia (range of mean maximum temperature 3°C [30–33] and 14°C [15–29] for the capital cities respectively). Each 10°C increase in max outdoor temperature was associated with a 1.8mmHg [95% CI 1.80–1.83] lower mean SBP. The proportion of people with SBP>140mmHg varied by season, irrespective of age, sex and use of BP lowering treatment. For example, among those treated control rates varied between 70 and 81%, and among those not treated between 78 and 85% (Figure). Blood pressure seasonality in Australia Conclusions BP control rates vary considerably by season. These findings have implications for the reliable diagnosis of hypertension, and suggest seasonal adjustments in treatment should be considered for some patients. The clinical and public health relevance of this phenomenon is expected to increase with increasing climate variability. Acknowledgement/Funding National Health and Medical Research Council Australia, National Heart Foundation Australia
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography