Academic literature on the topic 'Freshwater turtle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Freshwater turtle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Freshwater turtle"

1

Shiping, Gong, Wang Jichao, Shi Haitao, Song Riheng, and Xu Rumei. "Illegal trade and conservation requirements of freshwater turtles in Nanmao, Hainan Province, China." Oryx 40, no. 3 (July 2006): 331–36. http://dx.doi.org/10.1017/s0030605306000949.

Full text
Abstract:
China has one of the world's most diverse freshwater turtle faunas but is also a major consumer of freshwater turtles. In the 1980s over-collecting, illegal trade and habitat destruction increased dramatically, pushing almost all Chinese turtles towards extinction. Despite the critical status of Chinese turtles little has been done to quantify and evaluate the impact of illegal activities on wild populations. We used a combination of market surveys and questionnaires to examine the illegal trade and conservation status of native freshwater turtles in Nanmao, Hainan Province, from February to August 2003. We found a total of 245 collected freshwater turtles comprising eight species. These data indicate that Nanmao has a rich freshwater turtle fauna that is being affected heavily by illegal poaching. No effective measures have been taken to protect the few remaining wild turtle populations. The main factors that lead to illegal trade include the cultural belief that turtles are a viable food/medicine product, lack of conservation awareness, poaching of turtles as a supplement to income, and poor law enforcement. Possible conservation strategies are discussed.
APA, Harvard, Vancouver, ISO, and other styles
2

Glorioso, Brad M., Allison J. Vaughn, and J. Hardin Waddle. "The Aquatic Turtle Assemblage Inhabiting a Highly Altered Landscape in Southeast Missouri." Journal of Fish and Wildlife Management 1, no. 2 (November 1, 2010): 161–68. http://dx.doi.org/10.3996/072010-jfwm-020.

Full text
Abstract:
Abstract Turtles are linked to energetic food webs as both consumers of plants and animals and prey for many species. Turtle biomass in freshwater systems can be an order of magnitude greater than that of endotherms. Therefore, declines in freshwater turtle populations can change energy transfer in freshwater systems. Here we report on a mark–recapture study at a lake and adjacent borrow pit in a relict tract of bottomland hardwood forest in the Mississippi River floodplain in southeast Missouri, which was designed to gather baseline data, including sex ratio, size structure, and population size, density, and biomass, for the freshwater turtle population. Using a variety of capture methods, we captured seven species of freshwater turtles (snapping turtle Chelydra serpentina; red-eared slider Trachemys scripta; southern painted turtle Chrysemys dorsalis; river cooter Pseudemys concinna; false map turtle Graptemys pseudogeographica; eastern musk turtle Sternotherus odoratus; spiny softshell Apalone spinifera) comprising four families (Chelydridae, Emydidae, Kinosternidae, Trinoychidae). With the exception of red-eared sliders, nearly all individuals captured were adults. Most turtles were captured by baited hoop-nets, and this was the only capture method that caught all seven species. The unbaited fyke net was very successful in the borrow pit, but only captured four of the seven species. Basking traps and deep-water crawfish nets had minimal success. Red-eared sliders had the greatest population estimate (2,675), density (205/ha), and biomass (178 kg/ha). Two species exhibited a sex-ratio bias: snapping turtles C. serpentina in favor of males, and spiny softshells A. spinifera in favor of females.
APA, Harvard, Vancouver, ISO, and other styles
3

Browne, Constance L., S. Andrew Sullivan, and Donald F. McAlpine. "Freshwater turtle by-catch from angling in New Brunswick, Canada." Canadian Field-Naturalist 134, no. 3 (November 28, 2020): 222–30. http://dx.doi.org/10.22621/cfn.v134i3.2437.

Full text
Abstract:
Turtles are among the most threatened vertebrate taxa, with populations especially vulnerable to any increase in adult mortality. By-catch from freshwater angling, as a potential cause of turtle mortality is poorly documented and little understood. Here we document cases of turtle by-catch by recreational anglers in an urban park in New Brunswick and among the wider angling communities in the province. We also consider factors that may influence rates of hooking. Although we are unable to estimate turtle hooking frequency for the provincial recreational angling community as a whole, five of 75 (~7%) anglers interviewed in the urban park reported interactions with a turtle, with most reported incidents (75%) involving hooking. Snapping Turtles (Chelydra serpentina) seem to be more prone to hooking than Eastern Painted Turtles (Chrysemys picta picta). Although we conclude that turtle hooking by recreational anglers appears to be generally uncommon in New Brunswick, even apparently low by-catch rates may be sufficient to lead to population declines at heavily fished sites. The collection of additional data on turtle by-catch in the recreational fishery in Canada is warranted.
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Min, Cuijuan Niu, and Yixuan Chen. "Diverse Response Pattern to Anoxia in Three Freshwater Turtle Species." Biology 12, no. 1 (December 27, 2022): 50. http://dx.doi.org/10.3390/biology12010050.

Full text
Abstract:
With increasing water eutrophication and global warming, anoxia and hypoxia are becoming more and more common in water environments. Most vertebrates have a limited tolerance to anoxia of only a few minutes, but some species, such as turtles, can survive for months being exposed to anoxia. Antioxidant defense systems may have a potential role in resisting anoxia stress in freshwater turtles. The three-keeled pond turtle Chinemys reevesii, the snapping turtle Chelydra serpentina and the soft-shelled turtle Pelodiscus sinensis are three popular aquaculture species and share similar habitats in China. While C. reevesii and C. serpentina are hard-shelled turtles with poor skin permeability, P. sinensis is soft-shelled turtle whose skin permeability is good. We examined the antioxidant defense responses in different tissues of the three turtle species under acute anoxia stress for 10 h and subsequently recovered for 24 h in order to reveal the response patterns of the antioxidant defense system of the three turtle species that differed in morphological structure and life history strategy. We found that the antioxidant response patterns to acute anoxia stress were tissue- and species-specific. The soft-shelled turtle was more sensitive to anoxia than the hard-shelled turtles. Under anoxia stress, the three species kept the activities of most antioxidant enzymes stable. C. reevesii and P. sinensis were highly dependent on vitamin C in antioxidant defense, while high activities of structural antioxidant enzymes were found in the tissues of C. serpentina. The above diverse patterns may be related with adaptive evolution of morphological structure and physiological functions of the three turtle species.
APA, Harvard, Vancouver, ISO, and other styles
5

Jadhav, Trupti D., Nitin S. Sawant, and Soorambail K. Shyama. "Diversity and distribution of freshwater turtles (Reptilia: Testudines) in Goa, India." Journal of Threatened Taxa 10, no. 9 (August 26, 2018): 12194. http://dx.doi.org/10.11609/jott.2835.10.9.12194-12202.

Full text
Abstract:
Freshwater turtles symbolize a key component of biodiversity in aquatic ecosystems. Of the 356 living species of turtles and tortoises in the world, 34 species are recorded from India. The number of freshwater turtle and tortoise species found in the state of Goa, however, is debatable. No study specific to the Goa region has been carried out on freshwater turtles. Therefore, baseline data on diversity and distribution of freshwater turtles is scanty. The present study was conducted to address this lacuna in knowledge, which will further aid in identifying threats to the population of freshwater turtles and in devising appropriate methods for their conservation. The diversity and distribution of freshwater turtles was investigated in 186 sites in Goa from June 2012 to May 2015. A total of 337 specimens of two native and one introduced species of freshwater turtles belonging to three families—Trionychidae (Indian Flap-shell Turtle Lissemys puncata), Geomydidae (Indian Black Turtle Melanochelys trijuga) and Emydidae (Red-eared Slider Trachemys scripta elegans)— were identified. Melanochelys trijuga (52.23%) was the most widely and abundantly distributed species, and was recorded from 132 sites. L. punctata (46.88%) was recorded from 113 sites, while T. scripta elegans (0.89%) was rare and was recorded from only two sites. While Melanochelys trijuga is generalized in habitat selection, making it the widely distributed species in the State of Goa, L. punctata is more specific in habitat selection thus restricting its range to coastal, middle-level plateau and the foothills of Western Ghats.
APA, Harvard, Vancouver, ISO, and other styles
6

Jones, Michael T., Lisabeth L. Willey, Derek T. Yorks, Peter D. Hazelton, and Steve L. Johnson. "Passive transport of Eastern Elliptio (Elliptio complanata) by freshwater turtles in New England." Canadian Field-Naturalist 134, no. 1 (July 8, 2020): 56–59. http://dx.doi.org/10.22621/cfn.v134i1.2379.

Full text
Abstract:
Dispersal of freshwater mussels (order Unionida) is primarily as glochidia on the fins and gills of host fish. Adult mussels are more sessile, generally moving short distances (<2 m/week) along lake and river beds. Between 2007 and 2016, we observed seven instances of adult Eastern Elliptio (Elliptio complanata) and one instance of a fingernail clam (Sphaerium sp.) attached to the feet of freshwater turtles in streams and ponds of New England, United States. Observations included five instances of mussels attached to Wood Turtles (Glyptemys insculpta) in Maine and Massachusetts, one instance of a mussel attached to the fingernail of an Eastern Painted Turtle (Chrysemys picta) in Massachusetts, one instance of a mussel attached to a Snapping Turtle (Chelydra serpentina) in Massachusetts, and one instance of a fingernail clam attached to the fingernail of an Eastern Painted Turtle in Massachusetts. We suggest that Eastern Elliptio may be susceptible to transport by freshwater turtles foraging in mussel beds and that transport of adult mussels by freshwater turtles could result in otherwise atypical long-distance, upstream, or overland dispersal between waterbodies.
APA, Harvard, Vancouver, ISO, and other styles
7

Dupuis-Desormeaux, Marc, Christina Davy, Amy Lathrop, Emma Followes, Andrew Ramesbottom, Andrea Chreston, and Suzanne E. MacDonald. "Colonization and usage of an artificial urban wetland complex by freshwater turtles." PeerJ 6 (August 8, 2018): e5423. http://dx.doi.org/10.7717/peerj.5423.

Full text
Abstract:
Conservation authorities invest heavily in the restoration and/or creation of wetlands to counteract the destruction of habitat caused by urbanization. Monitoring the colonization of these new wetlands is critical to an adaptive management process. We conducted a turtle mark-recapture survey in a 250 ha artificially created wetland complex in a large North American city (Toronto, Ontario). We found that two of Ontario’s eight native turtle species (Snapping turtle (SN), Chelydra serpentina, and Midland Painted (MP) turtle, Chrysemys picta marginata) were abundant and both were confirmed nesting. The Blanding’s turtle (Emydoidea blandingii) was present but not well established. Species richness and turtle density were not equally distributed throughout the wetland complex. We noted SN almost exclusively populated one water body, while other areas of the wetland had a varying representation of both species. The sex ratios of both SN and MP turtles were 1:1. We tracked the movement of Snapping and Blanding’s turtles and found that most turtles explored at least two water bodies in the park, that females explored more water bodies than males, and that 95% of turtles showed fidelity to individual overwintering wetlands. We performed DNA analysis of two Blanding’s turtles found in the created wetlands and could not assign these turtles to any known profiled populations. The genetic data suggest that the turtles probably belong to a remnant local population. We discuss the implications of our results for connectivity of artificial wetlands and the importance of the whole wetland complex to this turtle assemblage.
APA, Harvard, Vancouver, ISO, and other styles
8

Karson, Alyson, Siow Yan Jennifer Angoh, and Christina M. Davy. "Depredation of gravid freshwater turtles by Raccoons (Procyon lotor)." Canadian Field-Naturalist 132, no. 2 (January 1, 2019): 122–25. http://dx.doi.org/10.22621/cfn.v132i2.2043.

Full text
Abstract:
During summer 2017, we found 19 dead or fatally wounded adult female turtles belonging to three at-risk species at a nesting site on the north shore of Lake Erie, Ontario. Individuals were found flipped onto their carapace, had similar holes in their body cavities, and were eviscerated. Their eggs had also been consumed. Although turtle nest depredation by Raccoons (Procyon lotor) is common, it is unusual for them to target large numbers of gravid turtles within a season. Depredated species included Snapping Turtle (Chelydra serpentina), Northern Map Turtle (Graptemys geographica), and Blanding’s Turtle (Emydoidea blandingii). Our observation represents a spike in additive mortality for these populations, which could have long-term demographic consequences.
APA, Harvard, Vancouver, ISO, and other styles
9

Krishnakumar, K., Rajeev Raghavan, and Benno Pereira. "Protected on Paper, Hunted in Wetlands: Exploitation and Trade of Freshwater Turtles (Melanochelys Trijuga Coronata and Lissemys Punctata Punctata) in Punnamada, Kerala, India." Tropical Conservation Science 2, no. 3 (September 2009): 363–73. http://dx.doi.org/10.1177/194008290900200306.

Full text
Abstract:
Soft shell turtles are among the most threatened groups of freshwater animals that are in need of urgent conservation attention. In Kerala (South India), two species of freshwater turtles, the Indian black turtle or Indian pond terrapin, Melanochelys trijuga coronata (Schweigger, 1812) and the Indian Flap-shelled turtle Lissemys punctata punctata (Lacépède, 1788) are exploited from Vembanad lake and associated wetlands in Punnamada to meet the demand from local restaurants and toddy shops. Eight hundred and forty three individuals belonging to the two species (499 pond terrapins and 344 flap-shelled turtle) were observed during a field survey conducted in 2007 at Punnamada. Despite being listed at the highest level in the Indian wildlife protection act, very little law enforcement takes place and turtles are exploited and traded regularly. Collection and trade have also become an important component of the local livelihoods in Punnamada, with the involvement of around five full-time and 25 part-time collectors. Details of the collection, marketing, economics and management of the freshwater turtles in Punnamada are discussed.
APA, Harvard, Vancouver, ISO, and other styles
10

Jackson, Donald C., Sarah E. Taylor, Vivian S. Asare, Dania Villarnovo, Jonathan M. Gall, and Scott A. Reese. "Comparative shell buffering properties correlate with anoxia tolerance in freshwater turtles." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, no. 2 (February 2007): R1008—R1015. http://dx.doi.org/10.1152/ajpregu.00519.2006.

Full text
Abstract:
Freshwater turtles as a group are more resistant to anoxia than other vertebrates, but some species, such as painted turtles, for reasons not fully understood, can remain anoxic at winter temperatures far longer than others. Because buffering of lactic acid by the shell of the painted turtle is crucial to its long-term anoxic survival, we have tested the hypothesis that previously described differences in anoxia tolerance of five species of North American freshwater turtles may be explained at least in part by differences in their shell composition and buffering capacity. All species tested have large mineralized shells. Shell comparisons included 1) total shell CO2 concentration, 2) volume of titrated acid required to hold incubating shell powder at pH 7.0 for 3 h (an indication of buffer release from shell), and 3) lactate concentration of shell samples incubated to equilibrium in a standard lactate solution. For each measurement, the more anoxia-tolerant species (painted turtle, Chrysemys picta; snapping turtle, Chelydra serpentina) had higher values than the less anoxia-tolerant species (musk turtle, Sternotherus odoratus; map turtle, Graptemys geographica; red-eared slider, Trachemys scripta). We suggest that greater concentrations of accessible CO2 (as carbonate or bicarbonate) in the more tolerant species enable these species, when acidotic, to release more buffer into the extracellular fluid and to take up more lactic acid into their shells. We conclude that the interspecific differences in shell composition and buffering can contribute to, but cannot explain fully, the variations observed in anoxia tolerance among freshwater turtles.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Freshwater turtle"

1

Judge, David, and n/a. "The Ecology of the polytopic freshwater turtle species, Emydura macquarii macquarii." University of Canberra. Resource, Environmental and Heritage Sciences, 2001. http://erl.canberra.edu.au./public/adt-AUC20050418.151350.

Full text
Abstract:
An ecological study of Emydura macquarii macquarii in the south-east region of Australia was conducted between October 1995 and March 1998. E. m. macquarii is an abundant and widespread species of short-necked turtle that is highly variable in morphology and related life history attributes. No study in Australia had previously looked at geographic variation in biological traits in freshwater turtles, hence the level of variation in E. m. macquarii had been poorly documented. The principal aims of this study were to investigate the plasticity of life history traits across populations of E. m. macquarii and to speculate on possible causes. A more intensive study was also conducted on a rare and suspected declining population of E. m. macquarii in the Nepean River to determine whether relevant management and conservation measures; were required. The study involved comparing various life history attributes between five populations of E. m. macquarii (Brisbane River, Macleay River, Hunter River, Nepean River and Murray River). The populations were specifically chosen to account for the range of variation in body size within this subspecies. Body size (maximum size, size at maturity, growth rates), population structures (sex ratios, age and size structures), reproductive traits (clutch mass, clutch size, egg size, egg content, etc.) and other attributes were collected for each population. Patterns of life history traits, both within and among populations, were explored so that causes of variation could be sought. Geographic variation in Body Size and other Related Life History Traits Body size in E. m. macquarii differed markedly between populations. Females ranged in maximum sizes (carapace length) of 180 mm in the Macleay River to over 300 mm in the Murray River. E. m. macquarii was sexually dimorphic across all populations with females larger than males in all cases. Maximum body size was positively related to the size at which a turtle matures. The size at maturity in turn was positively related to juvenile growth rates. Age was a more important factor for males in terms of timing of maturity whereas in females it was body size. Morphological variation was not only great between populations, but also within populations. Maximum body size was unrelated to latitude; hence it was inferred that habitat productivity had the most important influence on geographic variation in body size. Population structures also differed between populations. Sex ratios did not differ in the Brisbane, Macleay and Murray Rivers. However, a male bias was present in the Nepean River population and a female bias in the Hunter River. Juveniles were scarce in the Brisbane and Macleay Rivers but numerous in the Nepean and Hunter Rivers. Geographic Variation in Reproduction There was large variation in reproductive traits across populations of E. m. macquarii. Nesting season began as early as mid-September in the Brisbane River and as late as December in the Hunter River, and continued until early January. Populations in the Hunter and Murray Rivers are likely to produce only one clutch per season while populations from the Macleay and Nepean Rivers can produce two, and on some occasions, three clutches annually. The majority of females would appear to reproduce every year. Clutch mass, clutch size, and egg size varied greatly both within and among populations. A large proportion of variation in reproductive traits was due to the effects of body size. E. m. macquarii from large-bodied populations such as in the Brisbane and Murray Rivers produced bigger eggs than small-bodied populations. Within a population, clutch mass, clutch size, and egg size were all correlated with body size, except the Nepean River. The variability of egg size was smaller in large-bodied populations where egg size was more constant. Not all variation in reproductive traits was due to body size. Some of this variation was due to annual differences within a population. Reproductive traits within a population are relatively plastic, most likely a result of changing environmental conditions. Another source is the trade-off between egg size and clutch size. A negative relationship was found between egg size and clutch size (except the Brisbane River). Reproductive variation was also influenced by latitudinal effects. Turtles at lower latitudes produces more clutches, relatively smaller clutch sizes, clutch mass and larger eggs than populations at higher latitudes. Annual reproductive output is greater in tropical populations because they can produce more clutches per year in an extended breeding season. Eggs that were incubated at warmer temperatures hatched faster and produced smaller hatchlings. Incubation temperatures above 30�C increased egg mortality and hatchling deformities, suggesting this is above the optimum developmental temperature for E. m. macquarii. Hatchling size was positively related to egg size, hence hatchling sizes was on average larger in the Murray and Brisbane rivers. However, population differences remained in hatchling size after adjustments were made for egg size. For example, hatchlings from the Hunter River were smaller than those from the Macleay River despite the egg size being the same. These differences were most likely due to the shorter incubation periods of hatchlings from the Hunter River. Nepean River The Nepean River population of E. m. macquarii is at the southern coastal limit of its range. This is a locally rare population, which is believed to be declining. This study aimed at determining the distribution, abundance, and population dynamics to assess whether any conservation management actions were required. E. m. macquarii in the Nepean River was mainly concentrated between Penrith and Nortons Basin, although even here it was found at a very low density (10.6 - 12.1 per hectare). The largest male caught was 227 mm while the largest female was 260.4 mm. Males generally mature between 140 - 150 mm in carapace length and at four or five years of age. Females mature at 185 -195 mm and at six to seven years of age. Compared with other populations of E. macquarii, Nepean River turtles grow rapidly, mature quickly, are dominated by juveniles, have a male bias and have a high reproductive output. Far from being a population on the decline, the life history traits suggest a population that is young and expanding. There are considered to be two possible scenarios as to why the Nepean River population is at such a low density when it appears to be thriving. The first scenario is that the distribution of the population on the edge of its range may mean that a small and fluctuating population size may be a natural feature due to sub-optimal environmental conditions. A second scenario is that the population in the Nepean River has only recently become established from dumped pet turtles.
APA, Harvard, Vancouver, ISO, and other styles
2

au, turtle111@aapt net, and Jacqueline Giles. "The underwater acoustic repertoire of the long-necked, freshwater turtle Chelodina oblonga." Murdoch University, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20061121.103729.

Full text
Abstract:
The major question addressed by this project was to determine if the long-necked, freshwater turtle Chelodina oblonga, vocalise underwater and whether their vocal activity could be related to behavioural or ecological aspects of their lives. These turtles often live in wetlands where visibility is restricted due to habitat complexity or light limitation caused by factors such as tannin-staining, or turbidity. For many aquatic animals, sound is a useful means of communication over distances beyond their visual acuity. This thesis gives the first detailed account of the underwater vocal repertoire of C. oblonga. In total, over 230 days were spent in the field and more than 500 hours of tape recordings were made for this research. Initially, a number of recordings took place in three wetlands known to support turtle populations: Blue Gum Lake; Glen Brook Dam; and Lake Leschenaultia in Perth, Western Australia; in order to determine the nature of the freshwater sound field and place turtle vocalisations into the context in which they were vocalising. The wetlands differed in terms of degree of enrichment, substrate material, water depth and habitat complexity. Recordings were made over a four-week period in the last month of summer and the first week of autumn (Feb-Mar 2003). Invertebrate sweeps were also taken over a two-week period at each recording site to determine if invertebrate distributions were related to patterns of sonic activity. To determine the influence of wind on ambient noise; recordings were undertaken on winter mornings (June-August, 2003) at Blue Gum Lake and Glen Brook Dam at locations north, south, west and east for four different wind speeds – Beaufort Wind Scale (BWS) 0,1,2 & 3. There were seven distinctive calls recognised in the recordings. The frequency bandwidth most utilised by organisms was between 3 kHz up to around 14 kHz, with the exception of the ‘bird-like song’; which extended from 500 Hz up to around 10 kHz. Blue Gum Lake contained a more diverse and abundant assemblage of invertebrates than Lake Leschenaultia and Glen Brook Dam. Correspondingly, a greater diversity of calls was recorded at Blue Gum Lake, as well as the presence of chorus activity, which was not heard at the two less-enriched sites. The periods of greatest diversity and abundance of macroinvertebrates was synonymous with the increased sonic activity at dusk and midnight with noise levels greatest at dusk in particular, and to a lesser extent at midnight. There was no difference in ambient noise at Blue Gum Lake or Glen Brook Dam at wind speeds of Beaufort Wind Scale 0, 1 and 2. Turtles from three populations were recorded in artificial environments: consisting of round, plastic, above-ground ponds (1.8m dia. x 0.65m depth), which were set up to recreate small wetlands. Recordings occurred from September to October, 2003 and from February to December, 2004 as well as January, 2005. Seven hatchling and five juvenile turtles (CL <10cm) were also recorded in order to ascertain whether very young turtles vocalised. Hatchlings were recorded in a glass aquarium (35.5cm length x 20cm width x 22.0cm depth) and juveniles were placed into a below-ground outdoor pond (1m length x 0.5m width x 0.4m depth). Recordings occurred from as early as 4.30am (dawn recordings) to as late as 1.30am (evening recordings). The recordings revealed that turtles utilise an underwater acoustic communication system (calling at the water’s surface was also noted but these were not recorded or a part of this research) involving a repertoire of both complex and percussive sounds with short, medium and potentially long-range propagation characteristics. Complex structures included harmonically related elements (richly or sparsely) and different rates of frequency modulation. Frequency use extended beyond the in-air auditory sensitivity known for a single species of turtle studied from the family Chelidae; with calls ranging from around 100 Hz in some of the percussive displays, to as high as 3.5 kHz in some complex calls, with ‘clicks’ extending beyond the 20 kHz upper limit of the recording system. However, most of C. oblonga’s vocalisations had dominant frequencies below 1 kHz. Turtles were intermittent callers with an extensive vocal repertoire of seventeen (17) vocal categories - highly suggestive of complex social organisation. Vocalisations included: a) clacks; b) clicks; c) squawks; d) hoots; e) short chirps; f) high short chirps; g) medium chirps; h) long chirps; i) high calls; j) cries or wails; k) cat whines; l) grunts; m) growls; n) blow bursts; o) staccatos; p) a wild howl; and q) drum rolling. Also, two sustained ‘pulse-bouts’ were recorded during the breeding months, hypothesised to function as acoustic advertisement displays – possibly ‘calling songs’. Hatchling turtles were not heard to vocalise within the audible range. Only a single complex vocalisation was heard produced by the juvenile turtles, with a number of percussive calls. Preliminary playback trials were conducted under free-field conditions and within an artificial environment, which consisted of a below ground rectangular tank (2.4m length x 0.8m width x 0.6m deep). A number of turtle calls recorded in the artificial ponds were selected for playback. A UW 30 speaker was used for broadcast of calls. The free-field playbacks occurred at Mabel Talbot Lake and Blue Gum Lake during the months of April and May, 2005. Playback using 14 seconds of an artificially constructed sequence from the sustained ‘pulse-bout’ occurred in the artificial channels. This sequence consisted of some of the first phase pulses followed by a section of the ‘vibrato’. The preliminary free-field playback trials indicated that turtles had some interest in the calls being played by responding with an ‘alert posture’. Turtles were shown to remain in the alert posture for a significantly longer time than when no sound was played or when white noise was played. The extensive repertoire and initial responses to the free-field playbacks indicated that sound has some biological importance for C. oblonga, although results of playbacks under artificial conditions were inconclusive.
APA, Harvard, Vancouver, ISO, and other styles
3

Giles, Jacqueline. "The underwater acoustic repertoire of the long-necked, freshwater turtle Chelodina oblonga." Thesis, Giles, Jacqueline (2005) The underwater acoustic repertoire of the long-necked, freshwater turtle Chelodina oblonga. PhD thesis, Murdoch University, 2005. https://researchrepository.murdoch.edu.au/id/eprint/39/.

Full text
Abstract:
The major question addressed by this project was to determine if the long-necked, freshwater turtle Chelodina oblonga, vocalise underwater and whether their vocal activity could be related to behavioural or ecological aspects of their lives. These turtles often live in wetlands where visibility is restricted due to habitat complexity or light limitation caused by factors such as tannin-staining, or turbidity. For many aquatic animals, sound is a useful means of communication over distances beyond their visual acuity. This thesis gives the first detailed account of the underwater vocal repertoire of C. oblonga. In total, over 230 days were spent in the field and more than 500 hours of tape recordings were made for this research. Initially, a number of recordings took place in three wetlands known to support turtle populations: Blue Gum Lake; Glen Brook Dam; and Lake Leschenaultia in Perth, Western Australia; in order to determine the nature of the freshwater sound field and place turtle vocalisations into the context in which they were vocalising. The wetlands differed in terms of degree of enrichment, substrate material, water depth and habitat complexity. Recordings were made over a four-week period in the last month of summer and the first week of autumn (Feb-Mar 2003). Invertebrate sweeps were also taken over a two-week period at each recording site to determine if invertebrate distributions were related to patterns of sonic activity. To determine the influence of wind on ambient noise; recordings were undertaken on winter mornings (June-August, 2003) at Blue Gum Lake and Glen Brook Dam at locations north, south, west and east for four different wind speeds - Beaufort Wind Scale (BWS) 0,1,2 and 3. There were seven distinctive calls recognised in the recordings. The frequency bandwidth most utilised by organisms was between 3 kHz up to around 14 kHz, with the exception of the 'bird-like song'; which extended from 500 Hz up to around 10 kHz. Blue Gum Lake contained a more diverse and abundant assemblage of invertebrates than Lake Leschenaultia and Glen Brook Dam. Correspondingly, a greater diversity of calls was recorded at Blue Gum Lake, as well as the presence of chorus activity, which was not heard at the two less-enriched sites. The periods of greatest diversity and abundance of macroinvertebrates was synonymous with the increased sonic activity at dusk and midnight with noise levels greatest at dusk in particular, and to a lesser extent at midnight. There was no difference in ambient noise at Blue Gum Lake or Glen Brook Dam at wind speeds of Beaufort Wind Scale 0, 1 and 2. Turtles from three populations were recorded in artificial environments: consisting of round, plastic, above-ground ponds (1.8m dia. x 0.65m depth), which were set up to recreate small wetlands. Recordings occurred from September to October, 2003 and from February to December, 2004 as well as January, 2005. Seven hatchling and five juvenile turtles (CL < 10cm) were also recorded in order to ascertain whether very young turtles vocalised. Hatchlings were recorded in a glass aquarium (35.5cm length x 20cm width x 22.0cm depth) and juveniles were placed into a below-ground outdoor pond (1m length x 0.5m width x 0.4m depth). Recordings occurred from as early as 4.30am (dawn recordings) to as late as 1.30am (evening recordings). The recordings revealed that turtles utilise an underwater acoustic communication system (calling at the water's surface was also noted but these were not recorded or a part of this research) involving a repertoire of both complex and percussive sounds with short, medium and potentially long-range propagation characteristics. Complex structures included harmonically related elements (richly or sparsely) and different rates of frequency modulation. Frequency use extended beyond the in-air auditory sensitivity known for a single species of turtle studied from the family Chelidae; with calls ranging from around 100 Hz in some of the percussive displays, to as high as 3.5 kHz in some complex calls, with 'clicks' extending beyond the 20 kHz upper limit of the recording system. However, most of C. oblonga's vocalisations had dominant frequencies below 1 kHz. Turtles were intermittent callers with an extensive vocal repertoire of seventeen (17) vocal categories - highly suggestive of complex social organisation. Vocalisations included: a) clacks; b) clicks; c) squawks; d) hoots; e) short chirps; f) high short chirps; g) medium chirps; h) long chirps; i) high calls; j) cries or wails; k) cat whines; l) grunts; m) growls; n) blow bursts; o) staccatos; p) a wild howl; and q) drum rolling. Also, two sustained 'pulse-bouts' were recorded during the breeding months, hypothesised to function as acoustic advertisement displays - possibly 'calling songs'. Hatchling turtles were not heard to vocalise within the audible range. Only a single complex vocalisation was heard produced by the juvenile turtles, with a number of percussive calls. Preliminary playback trials were conducted under free-field conditions and within an artificial environment, which consisted of a below ground rectangular tank (2.4m length x 0.8m width x 0.6m deep). A number of turtle calls recorded in the artificial ponds were selected for playback. A UW 30 speaker was used for broadcast of calls. The free-field playbacks occurred at Mabel Talbot Lake and Blue Gum Lake during the months of April and May, 2005. Playback using 14 seconds of an artificially constructed sequence from the sustained 'pulse-bout' occurred in the artificial channels. This sequence consisted of some of the first phase pulses followed by a section of the 'vibrato'. The preliminary free-field playback trials indicated that turtles had some interest in the calls being played by responding with an 'alert posture'. Turtles were shown to remain in the alert posture for a significantly longer time than when no sound was played or when white noise was played. The extensive repertoire and initial responses to the free-field playbacks indicated that sound has some biological importance for C. oblonga, although results of playbacks under artificial conditions were inconclusive.
APA, Harvard, Vancouver, ISO, and other styles
4

Giles, Jacqueline. "The underwater acoustic repertoire of the long-necked, freshwater turtle Chelodina oblonga." Giles, Jacqueline (2005) The underwater acoustic repertoire of the long-necked, freshwater turtle Chelodina oblonga. PhD thesis, Murdoch University, 2005. http://researchrepository.murdoch.edu.au/39/.

Full text
Abstract:
The major question addressed by this project was to determine if the long-necked, freshwater turtle Chelodina oblonga, vocalise underwater and whether their vocal activity could be related to behavioural or ecological aspects of their lives. These turtles often live in wetlands where visibility is restricted due to habitat complexity or light limitation caused by factors such as tannin-staining, or turbidity. For many aquatic animals, sound is a useful means of communication over distances beyond their visual acuity. This thesis gives the first detailed account of the underwater vocal repertoire of C. oblonga. In total, over 230 days were spent in the field and more than 500 hours of tape recordings were made for this research. Initially, a number of recordings took place in three wetlands known to support turtle populations: Blue Gum Lake; Glen Brook Dam; and Lake Leschenaultia in Perth, Western Australia; in order to determine the nature of the freshwater sound field and place turtle vocalisations into the context in which they were vocalising. The wetlands differed in terms of degree of enrichment, substrate material, water depth and habitat complexity. Recordings were made over a four-week period in the last month of summer and the first week of autumn (Feb-Mar 2003). Invertebrate sweeps were also taken over a two-week period at each recording site to determine if invertebrate distributions were related to patterns of sonic activity. To determine the influence of wind on ambient noise; recordings were undertaken on winter mornings (June-August, 2003) at Blue Gum Lake and Glen Brook Dam at locations north, south, west and east for four different wind speeds - Beaufort Wind Scale (BWS) 0,1,2 and 3. There were seven distinctive calls recognised in the recordings. The frequency bandwidth most utilised by organisms was between 3 kHz up to around 14 kHz, with the exception of the 'bird-like song'; which extended from 500 Hz up to around 10 kHz. Blue Gum Lake contained a more diverse and abundant assemblage of invertebrates than Lake Leschenaultia and Glen Brook Dam. Correspondingly, a greater diversity of calls was recorded at Blue Gum Lake, as well as the presence of chorus activity, which was not heard at the two less-enriched sites. The periods of greatest diversity and abundance of macroinvertebrates was synonymous with the increased sonic activity at dusk and midnight with noise levels greatest at dusk in particular, and to a lesser extent at midnight. There was no difference in ambient noise at Blue Gum Lake or Glen Brook Dam at wind speeds of Beaufort Wind Scale 0, 1 and 2. Turtles from three populations were recorded in artificial environments: consisting of round, plastic, above-ground ponds (1.8m dia. x 0.65m depth), which were set up to recreate small wetlands. Recordings occurred from September to October, 2003 and from February to December, 2004 as well as January, 2005. Seven hatchling and five juvenile turtles (CL < 10cm) were also recorded in order to ascertain whether very young turtles vocalised. Hatchlings were recorded in a glass aquarium (35.5cm length x 20cm width x 22.0cm depth) and juveniles were placed into a below-ground outdoor pond (1m length x 0.5m width x 0.4m depth). Recordings occurred from as early as 4.30am (dawn recordings) to as late as 1.30am (evening recordings). The recordings revealed that turtles utilise an underwater acoustic communication system (calling at the water's surface was also noted but these were not recorded or a part of this research) involving a repertoire of both complex and percussive sounds with short, medium and potentially long-range propagation characteristics. Complex structures included harmonically related elements (richly or sparsely) and different rates of frequency modulation. Frequency use extended beyond the in-air auditory sensitivity known for a single species of turtle studied from the family Chelidae; with calls ranging from around 100 Hz in some of the percussive displays, to as high as 3.5 kHz in some complex calls, with 'clicks' extending beyond the 20 kHz upper limit of the recording system. However, most of C. oblonga's vocalisations had dominant frequencies below 1 kHz. Turtles were intermittent callers with an extensive vocal repertoire of seventeen (17) vocal categories - highly suggestive of complex social organisation. Vocalisations included: a) clacks; b) clicks; c) squawks; d) hoots; e) short chirps; f) high short chirps; g) medium chirps; h) long chirps; i) high calls; j) cries or wails; k) cat whines; l) grunts; m) growls; n) blow bursts; o) staccatos; p) a wild howl; and q) drum rolling. Also, two sustained 'pulse-bouts' were recorded during the breeding months, hypothesised to function as acoustic advertisement displays - possibly 'calling songs'. Hatchling turtles were not heard to vocalise within the audible range. Only a single complex vocalisation was heard produced by the juvenile turtles, with a number of percussive calls. Preliminary playback trials were conducted under free-field conditions and within an artificial environment, which consisted of a below ground rectangular tank (2.4m length x 0.8m width x 0.6m deep). A number of turtle calls recorded in the artificial ponds were selected for playback. A UW 30 speaker was used for broadcast of calls. The free-field playbacks occurred at Mabel Talbot Lake and Blue Gum Lake during the months of April and May, 2005. Playback using 14 seconds of an artificially constructed sequence from the sustained 'pulse-bout' occurred in the artificial channels. This sequence consisted of some of the first phase pulses followed by a section of the 'vibrato'. The preliminary free-field playback trials indicated that turtles had some interest in the calls being played by responding with an 'alert posture'. Turtles were shown to remain in the alert posture for a significantly longer time than when no sound was played or when white noise was played. The extensive repertoire and initial responses to the free-field playbacks indicated that sound has some biological importance for C. oblonga, although results of playbacks under artificial conditions were inconclusive.
APA, Harvard, Vancouver, ISO, and other styles
5

Browne, Carol. "Impacts of urbanisation and metal pollution on freshwater turtles." University of Sydney, 2005. http://hdl.handle.net/2123/4009.

Full text
Abstract:
Doctor of Philosophy (PhD)
Over 85% of Australia’s population live in urban areas and many turtle populations occur on Australia’s east coast where urban development is particularly concentrated. In the state of NSW, over half of the freshwater coastal wetlands have been highly modified or completely destroyed, and urban freshwater creeks often have only a narrow strip of weedy bushland left along their banks. Even though habitat degradation may result in declines in density and distribution of turtle populations, there are few data on Australian freshwater turtles in urban areas. In addition to extreme habitat alteration, urban waterways are innundated with anthropogenic contaminants from sources including wet weather surface runoff and industrial and sewage discharges. Pollutants can impact all systems of the body with potentially severe effects on reproduction and survival that can result in deterioration of animal populations. Turtles are particularly susceptible to anthropogenic contaminants due to their intimate contact with the aquatic environment, an often high trophic level, their ability to accumulate toxins, and their longevity. For almost all contaminants, the degree of accumulation in and effect on reptile species is unknown. Sublethal effects in field situations are particularly poorly studied and have never been documented in pleurodiran turtles. As a pioneering work in Australian reptile ecotoxicology, this thesis takes a broad approach, but focuses primarily on immunotoxicity and reproductive toxicity – two areas that greatly impact the size and continuance of animal populations. The aim of the thesis is to provide baseline data on haematology, cellular immunology and tissue metal concentrations for freshwater turtles in Sydney – data which were lacking for all Australian turtle species prior to this study. After initial assessment of the distribution and density of freshwater turtles in Sydney, the study examines the potential for Sydney’s turtles as sentinel species for measuring the effects of pollution on haematology, cellular immunity, and parasite loads; and considers the relationships between urban metal pollution and reproductive variables. The relative suitability of non-lethally sampled tissues (blood, carapace, egg) for use in biomonitoring is also assessed. Three species of Australian freshwater turtles were found in the Sydney region, with Chelodina longicollis occurring naturally in the area, and populations of Emydura macquarii and Elseya latisternum likely to have originated from translocated individuals. The North American turtle Trachemys scripta elegans was not encountered during this study despite concerns that it was establishing in the Sydney area. Chelodina longicollis populations were widespread, although poor recruitmment was indicated by low capture rates and comparatively low percentage of juveniles at some sites. Not so widespread, Emydura macquarii was present in much larger numbers than C. longicollis and with a high juvenile component in some areas of southeastern Sydney. I provide information on erythrocyte and leucocyte parameters in C. longicollis over a range of sites, pollution conditions, and seasons. In C. longicollis, numbers of lymphocytes, heterophils and eosinophils varied over sites, but not due to pollution from sewage treatment plant outfalls. There was significant temporal variation in erythrocyte, lymphocyte, eosinophil, heterophil, and basophil number, the heterophil:lymphocyte ratio, and haematocrit, but not consistently among sites. Future studies should ensure simultaneous sampling across sites for comparative purposes. Similarly, turtle populations downstream of sewage treatment plant outfalls showed no consistent difference in number, body condition, blood haemogregarine load, or leech (haemogregarine vector) load from upstream populations. Leech (Helobdella papillornata, with some Placobdella sp.) load and haemogregarine numbers increase dramatically once C. longicollis reach a carapace of 110 mm. The number of leeches on turtles varied across season, year, and site. Turtles with large numbers of leeches had reduced haematocrit, but the presence of leeches had no other correlations with haematological parameters. Haemogregarine numbers did not change across season or year, and were not correlated with haematological variables. The hypothesis that pollutants lead to an increase in normal blood protozoa due to reduced immunity thus was not supported. The concentration of metals in C. longicollis and E. macquarii carapace and in lagoon sediments varied significantly over four urban and four national park sites, but not based on this split. Pollution in periurban areas, such as illegal dumping of toxic wastes and atmospheric deposition of pollutants, means that each site must be classified separately as to degree of metal pollution. There was little or no affect of species, size, sex, or gravidity on metal concentrations in the carapace of adult turtles. Emydura macquarii had higher concentrations of blood Fe than C. longicollis from a different site, but this is possibly due to an increase in haemoglobin resulting from the site’s low aquatic oxygen concentration rather than any increased environmental exposure. Chelid turtles in Sydney do not show much promise as a biomonitoring tool. Carapace analysis is largely discounted as a potential tool for metal biomonitoring due to poor correlations between potentially toxic metals in non-lethally samplable tissues (carapace, claw) and internal organs (liver, kidney) or bone (femur). However, carapace metal concentrations still potentially reflect long-term metal presence or different dietary exposures as evidenced by the significant variation in concentrations over sites. A rare correlation was found for concentrations of aquatic Pb and carapace Pb, and a correlation was also found for concentrations of blood Pb and carapace Pb in E. macquarii. Thus any potential for tissue biomonitoring seems to lie with this highly ecotoxicologically relevant metal. Although two other ecotoxicologically relevent metals, Cu and Se, were significantly higher in egg contents of C. longicollis compared to E. macquarii, these elements are also essential and a lack of baseline values means it is not known if this simply reflects natural taxonomic variation. Ni, a metal of toxicological concern in sea turtles, was not present in egg contents, and only variably present in eggshell. The absence of Pb from eggs, despite its presence in many maternal tissues, suggests that selective metal uptake into eggs may be protective of toxic elements, rather than eggs serving as a maternal method of toxic metal elimination as has been previously suggested. The paucity of toxic metal detection in eggs renders them unlikely tissues for biomonitoring. The maternal tissue or tissues or environmental source from which egg metals originate remains obscure, although a significant negative effect of maternal carapace concentrations of Ca and Mg on eggshell thickness in E. macquarii indicates that there may be mobilisation of Ca and Mg from the carapace for eggshell formation. The only metal whose eggshell concentration correlated with eggshell thickness was Mg, indicating that ecotoxic metals previously associated with eggshell thinning are not problematic in the Sydney chelids. As with North American turtles living at polluted sites, none of the chelid hatchlings were found to have any overt abnormalities. Hatching success was poor and hatching mass low for eggs of both C. longicollis and E. macquarii, although results from natural nests are required to determine whether or not this was an outcome of hormonally-induced oviposition and artificial incubation. It is difficult to interpret metal concentrations found in the soft tissues, calcified tissues, and eggs of chelonians due to the paucity of comparative data, and much more research is required on tissue metal concentrations before patterns will emerge. This especially applies to pleurodires for which no previous information is available. From comparisons with the limited data available for other freshwater turtles, marine turtles, and other aquatic reptiles, it does not appear that Sydney’s turtle populations have unusually high metal concentrations in tissues. Exclusion of toxic metals such as Pb from the egg may also be protective to the developing embryo. An ability to live in polluted habitats, while limiting the accumulation of toxic contaminants, may be one key to their persistence in urban waterways from which other freshwater fauna have disappeared. Reproductive impacts such as low embryo survival and small hatchling weights require more rigorous examination, but may have less effect on these animals which have such naturally high egg and hatchling mortality. Although it was generally hard to demonstrate biochemical, physiological or population impacts of contaminants, C. longicollis from a site with severe sewage pollution did display unusual alterations in a number of haematological variables, body condition, and carapace bone structure. Despite this, the population was large and had a comparatively high ratio of juveniles. Additionally, the adverse haematological alterations appeared reversible. Thus, successful populations in Sydney probably are more dependent on basic ecological needs being met, than on low levels of environmental contaminants. The ongoing persistence of chelid populations in Sydney is likely to be dependent to some extent on their opportunistic diets, which generally make animals less vulnerable to habitat modification and the reduction in prey item diversity following pollution (Mason 1996, Allanson & Georges 1999), with a further benefit possibly bestowed at some sites on E. macquarii by its omnivory.
APA, Harvard, Vancouver, ISO, and other styles
6

Roe, John H., and n/a. "THE TERRESTRIAL ECOLOGY OF A FRESHWATER TURTLE, CHELODINA LONGICOLLIS, IN BOODEREE NATIONAL PARK, AUSTRALIA." University of Canberra. Institute for Applied Ecology, 2007. http://erl.canberra.edu.au./public/adt-AUC20081009.143208.

Full text
Abstract:
Most studies of wetlands tend to focus on the biotic and abiotic interactions within the aquatic habitat. Though wetlands and associated biota may appear to be somewhat isolated from the influence of the wider landscape, wetland habitats are critically linked with adjacent terrestrial habitats and other wetlands through the two-way flows of energy and nutrients and provision of structure. While an understanding of these inter-habitat linkages is breaking down the perceived boundaries between "aquatic" and "terrestrial" ecosystems, there is more limited knowledge on the ecology of wetland animals that must meet critical needs in both aquatic and terrestrial habitats at some time during their life or seasonal cycles. Here, I examine the terrestrial ecology of a freshwater turtle, the eastern long-necked turtle (Chelodina longicollis) in the temporally dynamic and heterogeneous landscape of Booderee national park in south-east Australia by 1) providing a description of terrestrial behaviours, 2) identifying the factors driving terrestrial behaviour and its functional significance, 3) examining factors that may limit or constrain terrestrial behaviour and 4) demonstrating how various terrestrial behaviours can factor prominently in the overall biology of a nominally aquatic animal. Chelodina longicollis used terrestrial habitats for reasons other than nesting, including aestivation and movements between wetlands. Radio-telemetry of 60 turtles revealed that nearly 25 % of all locations were in terrestrial habitats up to 505 m from the wetland, where turtles remained for extended periods (up to 480 consecutive days) buried under sand and leaf litter in the forest. Individuals also maintained an association with a permanent lake and at least one temporary wetland within 1470 m, though some inter-wetland dispersal movements were much longer (5248 m). As a result of their associations with several wetlands and terrestrial aestivation sites, C. longicollis traversed large areas and long distances (13.8 +/- 2.8 ha home range, 2608 +/- 305 m moved), indicating that this species is highly vagile. In fact, a three-year capture-mark-recapture study conducted in 25 wetlands revealed that 33% of the population moved overland between wetlands. After scaling this rate to the number of generations elapsed during the study, C. longicollis moved between discrete water bodies at a rate of 88-132% per generation. This rate is not only high for freshwater turtles, but is among the highest rates of inter-patch movement for any vertebrate or invertebrate. Chelodina longicollis demonstrated an impressive capacity for individual variation in nearly every aspect of its behaviour examined. Most of the variation in space use, movements, terrestrial aestivation and activity could be attributed to extrinsic local and landscape factors, seasonal influences and rainfall, whereas intrinsic attributes of the individual such as sex, body size, body condition and maturity status were less important. Turtles increased movement distance and home range size in regions where inter-wetland distances were farther and with increasing wetland size. Individuals spent more time in terrestrial habitats with decreasing wetland hydroperiod and increasing distance to the nearest permanent lake. Overland movements between wetlands were correlated with rainfall, but the directionality of these movements and the frequency with which they occurred varied according to the prevalent rainfall patterns; movements were to permanent lakes during drought, but turtles returned to temporary wetlands en masse upon the return of heavy rainfall. However, deteriorating conditions in drying wetlands forced turtles to move even in the absence of rainfall. Captures at a terrestrial drift fence revealed that immature turtles as small as 72.3 mm plastron length may move overland between wetlands with similar frequency as larger adults. Taken together, these results suggest that C. longicollis behaviour is in part conditional or state-dependent (i.e., plastic) and shaped by the spatiotemporal variation and heterogeneity of the landscape. Perhaps the most surprising aspect of individual variation was the alternate responses to wetland drying. Turtles either aestivated in terrestrial habitats (for variable lengths of time), or moved to other wetlands. Movement to other wetlands was the near universal strategy when only a short distance from permanent lakes, but the proportion of individuals that aestivated terrestrially increased with distance to the nearest permanent lake. When long distances must be travelled, both behaviours were employed by turtles in the same wetland, suggesting that individuals differentially weigh the costs and benefits of residing terrestrially versus those of long-distance movement. I propose that diversity in response to wetland drying in the population is maintained by stochastic fluctuations in resource quality. The quality of temporary wetlands relative to permanent wetlands at our study site varies considerably and unpredictably with annual rainfall and with it the cost-benefit ratio of each strategy or tactic. Residency in or near temporary wetlands is more successful during wet periods due to production benefits (high growth, reproduction and increased body condition), but movement to permanent wetlands is more successful, or least costly, during dry periods due to the fitness benefits of increased survival and body condition. I used the doubly-labelled water (DLW) method to provide the first estimates of water and energy costs of aestivation and overland movement for any freshwater turtle behaving naturally in the field. Chelodina longicollis remained hydrated while terrestrial with water flux rates (14.3-19.3 ml kg-1 d-1) on par with those of strictly terrestrial turtles, but field metabolic rate during aestivation (20.0-24.6 kJ kg-1 d-1) did not indicate substantial physiological specializations in metabolism during aestivation. Energy reserves, but not water, are predicted to limit survival in aestivation to an estimated 49-261 days, which is in close agreement with the durations of natural aestivation. The energy costs of overland movement were 46-99 kJ (kg d)-1, or 1.6-1.7 times more expensive than aestivation. When a wetland dries, a turtle that foregoes movement to other wetlands can free sufficient energy to fuel up to 134 days in aestivation. The increasing value of this energy "trade-off" with travel distance fits our behavioural observations of variance in response to wetland drying. Taken together, this evidence indicates that terrestrial habitats provide more than just organic and structural inputs and filtering services and that nearby wetlands are important for reasons other than potential sources of occasional colonists to a population. Terrestrial habitats are used for aestivation in response to wetland drying and different wetlands are diverse in their functions of meeting the annual or life-cycle requirements of C. longicollis in temporally dynamic wetland systems. As overland movements between these various habitat types are in response to spatiotemporal variation in habitat quality and associated shifts in the fitness gradient between them, I suggest that terrestrial and different aquatic habitats in Booderee offer complementary resources contributing to regional carrying capacity and population persistence of the turtle population. Thus, important ecological processes regulating C. longicollis in a focal wetland should not be viewed as operating independently of other nearby wetlands and their adjacent terrestrial habitats. Collectively, these findings highlight the complex and dynamic associations between a population of freshwater turtles and the wider terrestrial and aquatic landscape, demonstrating that turtle populations and the factors that impact them can extend well beyond the boundaries of a focal wetland.
APA, Harvard, Vancouver, ISO, and other styles
7

Stecyk, Jonathan Anthony William. "Control of cardiovascular function during prolonged anoxia exposure in the freshwater turtle (Trachemys scripta)." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31162.

Full text
Abstract:
Unlike the majority of vertebrates, the freshwater turtle (Trachemys scripta) can survive anoxia for hours at warm acclimation temperatures and weeks at cold acclimation temperatures. During anoxia exposure, the turtle heart continues its role in internal convection, but systemic cardiac output and systemic cardiac power output are massively reduced, primarily due to a decreased heart rate (ƒH). Therefore, control of ƒH is critical to cardiac energy management during anoxia. This thesis investigated what extrinsic, autocrine/paracrine and intrinsic mechanisms control the cardiovascular system of anoxic freshwater turtles. Cardiac control was examined at the level of the whole animal, organ (isolated heart chambers), and cell (isolated cardiac myocytes). A 2 x 2 exposure design allowed comparisons between 21°C- and 5°C-acclimated turtles under normoxia and anoxia. For warm-acclimated turtles, I discovered a re-setting of intrinsic ƒH that accounts for up to 57% of the anoxic bradycardia, which, when combined with cholinergic cardiac inhibition (previously known), fully explains the depression of ƒH with anoxia. Interestingly, prolongation of ventricular action potential duration (APD) by 47% with anoxia was proportional to the reduction in intrinsic ƒH. My thesis also revealed how cold acclimation prepared cardiac muscle for winter anoxic conditions. Cold temperature decreased intrinsic ƒH, prolonged cardiac APDs and reduced the chronotropic sensitivity to extracellular anoxia and acidosis. Also, the decreased peak densities of ventricular I[sub Na] and I[sub Ca] and conductance of i[sub KI] observed in 5°C-acclimated turtle hearts compared with 21°C-acclimated turtle hearts could serve to conserve the ATP cost of ion pumping. When cold-acclimated turtles were exposed to anoxia, during which cholinergic cardiovascular control is blunted, my thesis discovered that a re-setting of intrinsic ƒH accounts for up to 66% of the anoxic bradycardia. However, contrary to 21°C, there was no prolongation of cardiac APDs. No evidence was found for either α-adrenergic or adenosinergic cardiac inhibition in cold-acclimated anoxic turtles, yet their reduction of in vivo cardiac activity correlated with alterations in myocardial high-energy phosphate metabolism, intracellular pH and free energy of ATP hydrolysis. These novel insights point to the importance of future studies on pacemaker currents and cardiac refractoriness.
Science, Faculty of
Zoology, Department of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
8

Cloninger, Partick Lee. "The ecology of freshwater turtle communities on the Upper-Coastal Plain of South Carolina." Connect to this title online, 2007. http://etd.lib.clemson.edu/documents/1193080163/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hill, Shannon K. Vodopich Darrell S. "The influence of urbanization on the basking behavior of a Central Texas freshwater turtle community." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Willmore, William Glen. "Molecular adaptation to anoxia and recovery from anoxia in the freshwater turtle Trachemys scripta elegans." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26874.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Freshwater turtle"

1

Choudhury, B. C. Turtle trade in India: A study of tortoises and freshwater turtles. New Delhi: WWF-India, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shepherd, Chris R. Pet freshwater turtle and tortoise trade in Chatuchak market, Bangkok, Thailand. Petaling Jaya, Selangor, Malaysia: Traffic Southeast Asia, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shepherd, Chris R. An overview of the regulation of the freshwater turtle and tortoise pet trade in Jakarta, Indonesia. Petaling Jaya, Selangor, Malaysia: Traffic Southeast Asia, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia (1999 Phnom Penh, Cambodia). Asian turtle trade: Proceedings of a Workshop on Conservation and Trade of Freshwater Turtles and Tortoises in Asia--Phnom Penh, Cambodia, 1-4 December 1999. Lunenburg, Mass: Chelonian Research Foundation, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Australian freshwater turtles. [Singapore: Beaumont Pub., 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

C, Highfield A. Practical encyclopedia of keeping and breeding tortoises and freshwater turtles. London, England: Carapace Press, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jackson, Dale R. Reproductive strategies of sympatric freshwater emydid turtles in northern peninsular Florida. Gainesville: University of Florida, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jenkins, Martin. Tortoises and freshwater turtles: The trade in South East Asia. Cambridge, U.K: TRAFFIC International, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Auliya, Mark. An identification guide to the tortoises and freshwater Turtles of Brunei Darussalam, Indonesia, Malaysia, Papua New Guinea, Philippines, Singapore, and Timor Leste. Petaling Jaya: TRAFFIC Southeast Asia, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vosjoli, Philippe De. The general care and maintenance of red-eared sliders and other popular freshwater turtles. Lakeside, CA: Advanced Vivarium Systems, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Freshwater turtle"

1

Leh, Charles M. U. "Hatch rates of green turtle eggs in Sarawak." In Ecology and Conservation of Southeast Asian Marine and Freshwater Environments including Wetlands, 171–75. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0958-1_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Georges, Arthur. "Setting conservation priorities for Australian freshwater turtles." In Herpetology in Australia, 49–58. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1993. http://dx.doi.org/10.7882/rzsnsw.1993.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kennett, R., and Jeremy Russell-Smith. "Seed dispersal by freshwater turtles in northern Australia." In Herpetology in Australia, 69–70. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1993. http://dx.doi.org/10.7882/rzsnsw.1993.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cann, John. "VIEWPOINT--DO NOT TAKE OUR FRESHWATER TURTLES FOR GRANTED." In Herpetology in Australia, 363–65. P.O. Box 20, Mosman NSW 2088, Australia: Royal Zoological Society of New South Wales, 1993. http://dx.doi.org/10.7882/rzsnsw.1993.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zenteno Ruiz, Claudia Elena, Casiano Alberto Méndez Sánchez, Diana Ivette Triana Ramírez, and Angel Sol Sánchez. "Cultural, Economic and Environmental Impact of Conservation and Sustainable Exploitation Management Areas (UMA) of Freshwater Turtles in Tabasco, Mexico." In Agri-Based Bioeconomy, 163–68. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003033394-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bury, R. Bruce, and Brent M. Matsuda. "Introduced and Extralimital Species of Freshwater Turtles in the Pacific Northwest." In Exotic Amphibians and Reptiles of the United States, 65–69. University Press of Florida, 2022. http://dx.doi.org/10.5744/florida/9780813066967.003.0007.

Full text
Abstract:
This chapter assesses the extralimital colonization of the Pacific Northwest by turtles that are native to the eastern United States. There are two native turtles in the Pacific Northwest: the Western pond turtle and the Western painted turtle. Today, many introduced or extralimital species of turtles are present, which may outcompete or displace native turtles. There is a lack of published evidence of this interaction in the Pacific Northwest; however, there is a growing body of negative impact reported of sliders on native turtles in Europe and California. Some suggested impacts include native turtles avoiding basking sites with sliders, competition for food sources, disease transmission, and fitness. The chapter then considers how the presence and abundance of non-native turtles in the Pacific Northwest run counter to restrictions on selling them regionally.
APA, Harvard, Vancouver, ISO, and other styles
7

Meshaka, Walter E., Suzanne L. Collins, R. Bruce Bury, and Malcolm L. McCallum. "Turtles (Testudines)." In Exotic Amphibians and Reptiles of the United States, 70–88. University Press of Florida, 2022. http://dx.doi.org/10.5744/florida/9780813066967.003.0008.

Full text
Abstract:
This chapter addresses turtles, starting with snapping turtles. In the United States, the common snapping turtle is exotic to Arizona, California, Nevada, New Mexico, Oregon, Utah, and Washington. A potentially abundant source of food for human consumption, this species has been transported outside its native range. Creation of artificial ponds has increased the rate of its dispersal. The common snapping turtle can inhabit most any kind of freshwater and brackish habitats, but it most prefers still water less than 36.0 inches deep, with lots of underwater structure. The chapter then looks at box and water turtles, including the Southern painted turtle and the Western painted turtle; the False map turtle; the Florida red-bellied cooter and the Northern red-bellied cooter; and the Red-eared slider. It also considers softshells, including the Florida softshell, the Smooth softshell, the Spiny softshell, the Wattle-necked softshell, and the Chinese softshell.
APA, Harvard, Vancouver, ISO, and other styles
8

Anders, Ben, and John Iverson. "Mauremys nigricans (Gray 1834) – Red-Necked Pond Turtle, Chinese Red-Necked Turtle, Kwangtung River Turtle, Black-Necked Pond Turtle." In Conservation Biology of Freshwater Turtles and Tortoises. Chelonian Research Foundation, 2012. http://dx.doi.org/10.3854/crm.5.068.nigricans.v1.2012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Freeman, Alastair, and John Cann. "Myuchelys latisternum (Gray 1867) – Sawshelled Turtle, Saw-Shell Turtle." In Conservation Biology of Freshwater Turtles and Tortoises. Chelonian Research Foundation, 2014. http://dx.doi.org/10.3854/crm.5.073.latisternum.v1.2014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lovich, Jeffrey, Will Selman, and C. McCoy. "Graptemys gibbonsi Lovich and McCoy 1992 – Pascagoula Map Turtle, Pearl River Map Turtle, Gibbons’ Map Turtle." In Conservation Biology of Freshwater Turtles and Tortoises, 029.1–029.8. Chelonian Research Foundation, 2009. http://dx.doi.org/10.3854/crm.5.029.gibbonsi.v1.2009.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Freshwater turtle"

1

Meyers-Schone, L. Comparison of Two Freshwater Turtle Species as Monitors of Environmental Contamination. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/814413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Meyers-Schoene, L., and B. Walton. Comparison of two freshwater turtle species as monitors of environmental contamination. Office of Scientific and Technical Information (OSTI), April 1990. http://dx.doi.org/10.2172/6700598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Valenzuela, Nicole M. Evolutionary Ecology of Freshwater Turtles. Ames: Iowa State University, Digital Repository, 2007. http://dx.doi.org/10.31274/farmprogressreports-180814-298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Salcido, Charles, Patrick Wilson, Justin Tweet, Blake McCan, Clint Boyd, and Vincent Santucci. Theodore Roosevelt National Park: Paleontological resource inventory (public version). National Park Service, May 2022. http://dx.doi.org/10.36967/nrr-2293509.

Full text
Abstract:
Theodore Roosevelt National Park (THRO) in western North Dakota was established for its historical connections with President Theodore Roosevelt. It contains not only historical and cultural resources, but abundant natural resources as well. Among these is one of the best geological and paleontological records of the Paleocene Epoch (66 to 56 million years ago) of any park in the National Park System. The Paleocene Epoch is of great scientific interest due to the great mass extinction that occurred at its opening (the Cretaceous–Paleogene extinction event), and the unusual climatic event that began at the end of the epoch (the Paleocene–Eocene Thermal Maximum, an anomalous global temperature spike). It is during the Paleocene that mammals began to diversify and move into the large-bodied niches vacated by dinosaurs. The rocks exposed at THRO preserve the latter part of the Paleocene, when mammals were proliferating and crocodiles were the largest predators. Western North Dakota was warmer and wetter with swampy forests; today these are preserved as the “petrified forests” that are one of THRO’s notable features. Despite abundant fossil resources, THRO has not historically been a scene of significant paleontological exploration. For example, the fossil forests have only had one published scientific description, and that report focused on the associated paleosols (“fossil soils”). The widespread petrified wood of the area has been known since at least the 19th century and was considered significant enough to be a tourist draw in the decades leading up to the establishment of THRO in 1947. Paleontologists occasionally collected and described fossil specimens from the park over the next few decades, but the true extent of paleontological resources was not realized until a joint North Dakota Geological Survey–NPS investigation under John Hoganson and Johnathan Campbell between 1994–1996. This survey uncovered 400 paleontological localities within the park representing a variety of plant, invertebrate, vertebrate, and trace fossils. Limited investigation and occasional collection of noteworthy specimens took place over the next two decades. In 2020, a new two-year initiative to further document the park’s paleontological resources began. This inventory, which was the basis for this report, identified another 158 fossil localities, some yielding taxa not recorded by the previous survey. Additional specimens were collected from the surface, among them a partial skeleton of a choristodere (an extinct aquatic reptile), dental material of two mammal taxa not previously recorded at THRO, and the first bird track found at the park. The inventory also provided an assessment of an area scheduled for ground-disturbing maintenance. This inventory is intended to inform future paleontological resource research, management, protection, and interpretation at THRO. THRO’s bedrock geology is dominated by two Paleocene rock formations: the Bullion Creek Formation and the overlying Sentinel Butte Formation of the Fort Union Group. Weathering of these formations has produced the distinctive banded badlands seen in THRO today. These two formations were deposited under very different conditions than the current conditions of western North Dakota. In the Paleocene, the region was warm and wet, with a landscape dominated by swamps, lakes, and rivers. Great forests now represented by petrified wood grew throughout the area. Freshwater mollusks, fish, amphibians (including giant salamanders), turtles, choristoderes, and crocodilians abounded in the ancient wetlands, while a variety of mammals representing either extinct lineages or the early forebearers of modern groups inhabited the land. There is little representation of the next 56 million years at THRO. The only evidence we have of events in the park for most of these millions of years is isolated Neogene lag deposits and terrace gravel. Quaternary surficial deposits have yielded a few fossils...
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography