To see the other types of publications on this topic, follow the link: Frequency stability.

Journal articles on the topic 'Frequency stability'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Frequency stability.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Percival, D. B. "Characterization of frequency stability: frequency-domain estimation of stability measures." Proceedings of the IEEE 79, no. 7 (July 1991): 961–72. http://dx.doi.org/10.1109/5.84973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Chaoyong, Chunqing Gao, Huixing Dai, and Qing Wang. "Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz." Chinese Optics Letters 20, no. 4 (2022): 041402. http://dx.doi.org/10.3788/col202220.041402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Walls, F. L., and D. W. Allan. "Measurements of frequency stability." Proceedings of the IEEE 74, no. 1 (1986): 162–68. http://dx.doi.org/10.1109/proc.1986.13429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jaffe, S. M., M. Rochon, and W. M. Yen. "Increasing the frequency stability of single‐frequency lasers." Review of Scientific Instruments 64, no. 9 (September 1993): 2475–81. http://dx.doi.org/10.1063/1.1143906.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rutman, J., and F. L. Walls. "Characterization of frequency stability in precision frequency sources." Proceedings of the IEEE 79, no. 7 (July 1991): 952–60. http://dx.doi.org/10.1109/5.84972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rongcheng Li, Xiaming Liang, Ziyuan Jin, Liming Li, and Yongshi Xia. "NIM frequency stability measurement system." IEEE Transactions on Instrumentation and Measurement 38, no. 2 (April 1989): 537–40. http://dx.doi.org/10.1109/19.192341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Litwin, C. "Fluctuations and low‐frequency stability." Physics of Fluids B: Plasma Physics 3, no. 8 (August 1991): 2170–73. http://dx.doi.org/10.1063/1.859631.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jefferies, S. M., P. L. Pallé, H. B. van der Raay, C. Régulo, and T. Roca Cortés. "Frequency stability of solar oscillations." Nature 333, no. 6174 (June 1988): 646–49. http://dx.doi.org/10.1038/333646a0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsko, A. B., A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki. "Optical-RF frequency stability transformer." Optics Letters 36, no. 23 (November 23, 2011): 4527. http://dx.doi.org/10.1364/ol.36.004527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gelfer, Marylou Pausewang. "Stability in phonational frequency range." Journal of Communication Disorders 22, no. 3 (June 1989): 181–92. http://dx.doi.org/10.1016/0021-9924(89)90015-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yang, Ke, and Wen Sun. "Frequency Stability Assessment of Power System Using Frequency Stability Indices and Artificial Neural Newwork." IOP Conference Series: Earth and Environmental Science 514 (July 3, 2020): 042057. http://dx.doi.org/10.1088/1755-1315/514/4/042057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

INABA, Hajime, Sho OKUBO, and Masato WADA. "Frequency Stability Improvements and Evaluations of Optical Frequency Comb." Review of Laser Engineering 46, no. 2 (2018): 61. http://dx.doi.org/10.2184/lsj.46.2_61.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Nguyen, N. M., and R. G. Meyer. "Start-up and frequency stability in high-frequency oscillators." IEEE Journal of Solid-State Circuits 27, no. 5 (May 1992): 810–20. http://dx.doi.org/10.1109/4.133172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kalivas, G. A., and R. G. Harrison. "Characterization of the frequency stability of frequency-hopping sources." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 38, no. 5 (September 1991): 429–35. http://dx.doi.org/10.1109/58.84287.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kotby, M. N., I. R. Titze, M. M. Saleh, and D. A. Berry. "Fundamental Frequency Stability in Functional Dysphonia." Acta Oto-Laryngologica 113, no. 3 (January 1993): 439–44. http://dx.doi.org/10.3109/00016489309135841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 13, no. 5 (May 6, 2011): 059501. http://dx.doi.org/10.1088/1367-2630/13/5/059501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Brida, G. "High resolution frequency stability measurement system." Review of Scientific Instruments 73, no. 5 (May 2002): 2171–74. http://dx.doi.org/10.1063/1.1464654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rebeiz, G. M., and L. D. DiDomenico. "Frequency stability in adaptive retrodirective arrays." IEEE Transactions on Aerospace and Electronic Systems 36, no. 4 (2000): 1219–31. http://dx.doi.org/10.1109/7.892670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Filicori, F., and G. Vannini. "Frequency stability in resonator-stabilized oscillators." IEEE Transactions on Circuits and Systems 37, no. 11 (1990): 1440–44. http://dx.doi.org/10.1109/31.62420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Walls, F. L., and D. W. Allan. "Correction to "Measurements of frequency stability"." Proceedings of the IEEE 74, no. 8 (1986): 1166. http://dx.doi.org/10.1109/proc.1986.13603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Repasky, K. S., J. G. Wessel, and J. L. Carlsten. "Frequency stability of high-finesse interferometers." Applied Optics 35, no. 4 (February 1, 1996): 609. http://dx.doi.org/10.1364/ao.35.000609.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Wong, H. Vernon, W. Horton, J. W. Van Dam, and C. Crabtree. "Low frequency stability of geotail plasma." Physics of Plasmas 8, no. 5 (May 2001): 2415–24. http://dx.doi.org/10.1063/1.1357828.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Savilov, A. V., and G. S. Nusinovich. "Stability of frequency-multiplying harmonic gyroklystrons." Physics of Plasmas 15, no. 1 (January 2008): 013112. http://dx.doi.org/10.1063/1.2832681.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Lodewyck, Jérôme, Philip G. Westergaard, Arnaud Lecallier, Luca Lorini, and Pierre Lemonde. "Frequency stability of optical lattice clocks." New Journal of Physics 12, no. 6 (June 28, 2010): 065026. http://dx.doi.org/10.1088/1367-2630/12/6/065026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Urban, Rudez, Sodin Denis, and Mihalic Rafael. "Estimating frequency stability margin for flexible under-frequency relay operation." Electric Power Systems Research 194 (May 2021): 107116. http://dx.doi.org/10.1016/j.epsr.2021.107116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Marinelli, Mattia, Kristian Sevdari, Lisa Calearo, Andreas Thingvad, and Charalampos Ziras. "Frequency stability with converter-connected resources delivering fast frequency control." Electric Power Systems Research 200 (November 2021): 107473. http://dx.doi.org/10.1016/j.epsr.2021.107473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Cao, Liyu, Kazutaka Segawa, Akira Nabae, and Kazuo Ohnishi. "Mid-Frequency Oscillation and High Frequency Stability in Stepping Motors." IEEJ Transactions on Industry Applications 117, no. 9 (1997): 1146–53. http://dx.doi.org/10.1541/ieejias.117.1146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ferreiro, Teresa I., Jinghua Sun, and Derryck T. Reid. "Frequency stability of a femtosecond optical parametric oscillator frequency comb." Optics Express 19, no. 24 (November 11, 2011): 24159. http://dx.doi.org/10.1364/oe.19.024159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Candelier, V., V. Giordano, A. Hamel, G. Th�obald, P. C�rez, and C. Audoin. "Frequency stability of an optically pumped cesium beam frequency standard." Applied Physics B Photophysics and Laser Chemistry 49, no. 4 (October 1989): 365–70. http://dx.doi.org/10.1007/bf00324187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cappelli, Francesco, Giulio Campo, Iacopo Galli, Giovanni Giusfredi, Saverio Bartalini, Davide Mazzotti, Pablo Cancio, et al. "Frequency stability characterization of a quantum cascade laser frequency comb." Laser & Photonics Reviews 10, no. 4 (June 2, 2016): 623–30. http://dx.doi.org/10.1002/lpor.201600003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

An, Byeong-Hyeon, Jae-Deok Park, Jun-Soo Che, Tae-Hun Kim, and Tae-Sik Park. "Research on Improving Grid Frequency Stability Using Variable Frequency Transformer." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 38, no. 1 (February 29, 2024): 40–48. http://dx.doi.org/10.5207/jieie.2024.38.1.40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yoo, Jae Ik, Yong Cheol Kang, Eduard Muljadi, Kyu-Ho Kim, and Jung-Wook Park. "Frequency Stability Support of a DFIG to Improve the Settling Frequency." IEEE Access 8 (2020): 22473–82. http://dx.doi.org/10.1109/access.2020.2969051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Xie, Yuzheng, Changgang Li, Hengxu Zhang, Huadong Sun, and Vladimir Terzija. "Long-Term Frequency Stability Assessment Based on Extended Frequency Response Model." IEEE Access 8 (2020): 122444–55. http://dx.doi.org/10.1109/access.2020.3006239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Browning, J. J., N. Hershkowitz, T. Intrator, R. Majeski, and S. Meassick. "Radio‐frequency wave interchange stability experiments below the ion cyclotron frequency." Physics of Fluids B: Plasma Physics 1, no. 8 (August 1989): 1692–701. http://dx.doi.org/10.1063/1.858948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Terra, Osama. "Characterization of the Frequency Stability of a Multibranch Optical Frequency Comb." IEEE Transactions on Instrumentation and Measurement 69, no. 10 (October 2020): 7773–80. http://dx.doi.org/10.1109/tim.2020.2986422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Yang, Hong-Yu, Shu-Xi Gong, Peng-Fei Zhang, Feng-Tao Zha, and Jin Ling. "A novel miniaturized frequency selective surface with excellent center frequency stability." Microwave and Optical Technology Letters 51, no. 10 (July 23, 2009): 2513–16. http://dx.doi.org/10.1002/mop.24604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Khristenko, A. "A SIMPLE METHOD FOR IMPROVING OUT-OF-BAND HIGH-FREQUENCY STABILITY OF RADIO FREQUENCY AMPLIFIERS." RADIO PHYSICS AND RADIO ASTRONOMY 28, no. 4 (2023): 318–28. http://dx.doi.org/10.15407/rpra28.04.318.

Full text
Abstract:
Subject and Purpose. Methods for determining and ensuring the stability of radio frequency (RF) amplifiers have been progressing quite actively over the past decades. However, most of them are not convenient for practical use. Combining analytical and graphical techniques widely accepted at the moment requires a highly skillful user and licensed software. Also, a bad point is the lack of clear algorithms for increasing the out-of-band high-frequency stability of amplifiers, sending us to the procedure of successive approx- imations when an optimal solution for an individual scheme is sought. The present work seeks for a simple method that effectively increases the out-of-band high-frequency stability of RF amplifiers and improves the reliability of signal amplification systems, espe- cially those complex structures that incorporate low-frequency radio telescopes. Methods and Methodology. The parameters of the RF amplifiers and passive circuits are obtained by computer modeling upon the S-parameters given by the manufacturer. The amplifier stability is determined by the K-factor for stability. Results. A simple universal method has been developed to improve the out-of-band high-frequency stability of RF amplifiers. In this method, a stabilization RstabLstab circuit is connected to the amplifier in series with the load. An original procedure has been designed to calculate the stabilization circuit. Also, a metric has been proposed that evaluates the practical margins of the out-of-band high-frequency stability of RF amplifiers and makes it possible to compare them one to another. Finally, the proposed method offers freedom from the licensed software. Conclusions. The proposed method significantly increases the high-frequency stability of RF amplifiers beyond the operating fre- quency range and simplifies the technological requirements for the design. The employment of RF amplifiers is more available almost without compromising their performance in the operating frequency range. The method is simple and easy to apply.
APA, Harvard, Vancouver, ISO, and other styles
38

Pérez-Illanes, Felipe, Eduardo Álvarez-Miranda, Claudia Rahmann, and Camilo Campos-Valdés. "Robust Unit Commitment Including Frequency Stability Constraints." Energies 9, no. 11 (November 16, 2016): 957. http://dx.doi.org/10.3390/en9110957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhang Yin, 张胤, and 王青 Wang Qing. "Research of Automatic Frequency Stability Diode Laser." Chinese Journal of Lasers 41, no. 6 (2014): 0602001. http://dx.doi.org/10.3788/cjl201441.0602001b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lu, Lan, Yongxing Che, Shouzhu Tang, Zhihao Xu, and Hongchao Wu. "A Large Angle Stability Frequency Selective Surface." Procedia Computer Science 187 (2021): 538–41. http://dx.doi.org/10.1016/j.procs.2021.04.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Hojo, Hitoshi. "Low-Frequency Stability of Mirror Confined Plasmas." Kakuyūgō kenkyū 65, no. 6 (1991): 639–57. http://dx.doi.org/10.1585/jspf1958.65.639.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Tseng, Yu-Chuan, Chin-Yun Pan, Pao-Hsin Liu, Yi-Hsin Yang, Hong-Po Chang, and Chun-Ming Chen. "Resonance frequency analysis of miniscrew implant stability." Journal of Oral Science 60, no. 1 (2018): 64–69. http://dx.doi.org/10.2334/josnusd.16-0613.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hoang Suoc. "About the stability of frequency-independent networks." IEEE Transactions on Circuits and Systems 32, no. 9 (September 1985): 970–73. http://dx.doi.org/10.1109/tcs.1985.1085811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lu, Yong, and Benjamin Texier. "A Stability Criterion for High-Frequency Oscillations." Mémoires de la Société mathématique de France 1 (2015): 1–138. http://dx.doi.org/10.24033/msmf.450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Gelfer, Marylou Pausewang. "The stability of total phonational frequency range." Journal of the Acoustical Society of America 79, S1 (May 1986): S83. http://dx.doi.org/10.1121/1.2023419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Schredl, Michael, and Stephany Fulda. "Reliability and stability of dream recall frequency." Dreaming 15, no. 4 (December 2005): 240–44. http://dx.doi.org/10.1037/1053-0797.15.4.240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kamenetskiy, V. A. "Frequency-domain stability conditions for hybrid systems." Automation and Remote Control 78, no. 12 (December 2017): 2101–19. http://dx.doi.org/10.1134/s0005117917120013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Sheng, K., S. J. Finney, and B. W. Williams. "Thermal stability of IGBT high-frequency operation." IEEE Transactions on Industrial Electronics 47, no. 1 (2000): 9–16. http://dx.doi.org/10.1109/41.824018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Sargsyan, A., A. V. Papoyan, D. Sarkisyan, and A. Weis. "Efficient technique for measuring laser frequency stability." European Physical Journal Applied Physics 48, no. 2 (September 22, 2009): 20701. http://dx.doi.org/10.1051/epjap/2009147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wilbanks, T., M. Devlin, A. E. Lange, S. Sato, J. W. Beeman, and E. E. Haller. "Improved low frequency stability of bolometric detectors." IEEE Transactions on Nuclear Science 37, no. 2 (April 1990): 566–72. http://dx.doi.org/10.1109/23.106678.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography