Academic literature on the topic 'Frequency stability'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Frequency stability.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Frequency stability"
Chen, Chaoyong, Chunqing Gao, Huixing Dai, and Qing Wang. "Single-frequency Er:YAG ceramic pulsed laser with frequency stability close to 100 kHz." Chinese Optics Letters 20, no. 4 (2022): 041402. http://dx.doi.org/10.3788/col202220.041402.
Full textPercival, D. B. "Characterization of frequency stability: frequency-domain estimation of stability measures." Proceedings of the IEEE 79, no. 7 (July 1991): 961–72. http://dx.doi.org/10.1109/5.84973.
Full textWalls, F. L., and D. W. Allan. "Measurements of frequency stability." Proceedings of the IEEE 74, no. 1 (1986): 162–68. http://dx.doi.org/10.1109/proc.1986.13429.
Full textJaffe, S. M., M. Rochon, and W. M. Yen. "Increasing the frequency stability of single‐frequency lasers." Review of Scientific Instruments 64, no. 9 (September 1993): 2475–81. http://dx.doi.org/10.1063/1.1143906.
Full textRutman, J., and F. L. Walls. "Characterization of frequency stability in precision frequency sources." Proceedings of the IEEE 79, no. 7 (July 1991): 952–60. http://dx.doi.org/10.1109/5.84972.
Full textRongcheng Li, Xiaming Liang, Ziyuan Jin, Liming Li, and Yongshi Xia. "NIM frequency stability measurement system." IEEE Transactions on Instrumentation and Measurement 38, no. 2 (April 1989): 537–40. http://dx.doi.org/10.1109/19.192341.
Full textLitwin, C. "Fluctuations and low‐frequency stability." Physics of Fluids B: Plasma Physics 3, no. 8 (August 1991): 2170–73. http://dx.doi.org/10.1063/1.859631.
Full textJefferies, S. M., P. L. Pallé, H. B. van der Raay, C. Régulo, and T. Roca Cortés. "Frequency stability of solar oscillations." Nature 333, no. 6174 (June 1988): 646–49. http://dx.doi.org/10.1038/333646a0.
Full textMatsko, A. B., A. A. Savchenkov, V. S. Ilchenko, D. Seidel, and L. Maleki. "Optical-RF frequency stability transformer." Optics Letters 36, no. 23 (November 23, 2011): 4527. http://dx.doi.org/10.1364/ol.36.004527.
Full textGelfer, Marylou Pausewang. "Stability in phonational frequency range." Journal of Communication Disorders 22, no. 3 (June 1989): 181–92. http://dx.doi.org/10.1016/0021-9924(89)90015-4.
Full textDissertations / Theses on the topic "Frequency stability"
Nocera, Aurelio <1994>. "High Frequency Trading and Financial Stability." Master's Degree Thesis, Università Ca' Foscari Venezia, 2020. http://hdl.handle.net/10579/16789.
Full textIsmael, Alexander. "Comparison of fast frequency reserve strategies for Nordic grid frequency stability." Thesis, Uppsala universitet, Institutionen för elektroteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-411503.
Full textSaarinen, Linn. "The Frequency of the Frequency : On Hydropower and Grid Frequency Control." Doctoral thesis, Uppsala universitet, Elektricitetslära, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-308441.
Full textDahlborg, Elin. "Grid frequency stability from a hydropower perspective." Licentiate thesis, Uppsala universitet, Elektricitetslära, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-444453.
Full textMARTINEZ, DIANA MARGARITA GARCIA. "VOLTAGE STABILITY ASSESSMENT CONSIDERING PRIMARY FREQUENCY CONTROL AND FREQUENCY-DEPENDENT LINE PARAMETERS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25603@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
A crescente demanda de energia elétrica faz com que a complexidade dos sistemas elétricos de potência seja cada vez maior, associado às limitações na expansão do sistema de transmissão, resulta na operação dos sistemas elétricos mais próximos de seus limites, tornando-os vulneráveis a problemas de estabilidade de tensão. Nesse contexto, faz-se necessário o desenvolvimento de ferramentas computacionais capazes de representar os sistemas elétricos mais adequadamente, melhorando assim as condições de análise. Neste trabalho são apresentadas três modelagens do fluxo de carga mais completas que a modelagem clássica, a saber: a modelagem de múltiplas barras swing, a modelagem com regulação primária e a modelagem com parâmetros da rede de transmissão variáveis com a frequência. Uma vez utilizadas na solução do problema do fluxo de carga estas modelagens são estendidas para a realização do cálculo dos índices de estabilidade de tensão das barras de carga, barras de tensão controlada e barras swing. Testes numéricos com um sistema-teste de 6 barras são apresentados para a verificação da aplicabilidade e adequação dos modelos analisados.
The growing demand for electricity increases the complexity of electric power systems which, when combined with limitations in the expansion of transmission systems, results in the operation of electrical systems closer to their limits, making them vulnerable to voltage stability problems. In this context, there is a gap in the market for the development of computational tools that can represent the electrical systems more appropriately, thereby improving the conditions of analysis. The present study formulates three non-classical load flow representations: multiple swing buses, primary frequency control, and frequency dependent transmission network parameters. Once used in the load flow problem solving, these models are also extended to allow the calculation of voltage stability indices of load buses, controlled voltage buses and swing buses. Numerical tests with a 6-bus test system are presented to verify the applicability and adequacy of the proposed models.
Tan, Hui Boon. "Disentangling low-frequency versus high-frequency economic relationships via regression parameter stability tests." Diss., Virginia Tech, 1995. http://hdl.handle.net/10919/38575.
Full textHewes, Dominic [Verfasser]. "Frequency Stability in Sustainable Power Systems: Effects of Reduced Rotational Inertia on Frequency Stability in the European Transmission System / Dominic Hewes." München : Verlag Dr. Hut, 2020. http://d-nb.info/1219469866/34.
Full textZhang, Xiao Meny. "The mutation frequency and genome stability of measles virus." Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.546455.
Full textWan, Kin Wa. "Advanced numerical and digital techniques in frequency stability analysis." Thesis, University of Portsmouth, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.237843.
Full textVirgilio, Gianluca. "Is high-frequency trading a threat to financial stability?" Thesis, University of Hertfordshire, 2017. http://hdl.handle.net/2299/18841.
Full textBooks on the topic "Frequency stability"
Kroupa, Věnceslav F. Frequency Stability. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118310144.
Full textFrequency stability: Introduction and applications. Hoboken, N.J: Wiley, 2012.
Find full textAltshuller, Dmitry. Frequency Domain Criteria for Absolute Stability. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4234-8.
Full textL, Walls F., and National Institute of Standards and Technology (U.S.), eds. Time domain frequency stability calculated from the frequency domain description: Use of the SIGNET software package to calculate time domain frequency stability from the frequency domain. Boulder, Colo: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1990.
Find full textRubiola, Enrico. Phase noise and frequency stability in oscillators. New York: Cambridge University Press, 2008.
Find full textS, Sudo, and Sakai Yoshihisa, eds. Frequency stabilization of semiconductor laser diodes. Boston: Artech House, 1995.
Find full textKhapaev, M. M. Averaging in stability theory: A study of resonance multi-frequency systems. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textMotoichi, Ohtsu, ed. Frequency control of semiconductor lasers. New York: Wiley, 1996.
Find full text1964-, Ponomarenko D. V., and Smirnova Vera B. 1946-, eds. Frequency-domain methods for nonlinear analysis: Theory and applications. Singapore: World Scientific, 1996.
Find full textWan, Kin Wa. Advanced numerical and digital techniques in frequency stability analysis. Portsmouth: Portsmouth Polytechnic, School of Systems Engineering, 1990.
Find full textBook chapters on the topic "Frequency stability"
Weik, Martin H. "frequency stability." In Computer Science and Communications Dictionary, 655. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7701.
Full textWeik, Martin H. "frequency standard stability." In Computer Science and Communications Dictionary, 655. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_7705.
Full textAltshuller, Dmitry. "Stability Multipliers." In Frequency Domain Criteria for Absolute Stability, 43–80. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4234-8_3.
Full textThomsen, Jon Juel. "Special Effects of High-Frequency Excitation." In Vibrations and Stability, 287–337. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-662-10793-5_7.
Full textThomsen, Jon Juel. "Special Effects of High-Frequency Excitation." In Vibrations and Stability, 387–447. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68045-9_7.
Full textWalls, F. L. "Stability of Frequency Locked Loops." In Frequency Standards and Metrology, 145–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74501-0_27.
Full textHapaev, M. M. "Stability of Multi — Frequency Systems." In Averaging in Stability Theory, 114–39. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2644-1_4.
Full textRamos, Germán A., Ramon Costa-Castelló, and Josep M. Olm. "Stability Analysis Methods." In Digital Repetitive Control under Varying Frequency Conditions, 15–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37778-5_3.
Full textYang, Weijia. "Stable Operation Regarding Frequency Stability." In Hydropower Plants and Power Systems, 53–63. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17242-8_4.
Full textEschauzier, Rudy G. H., and Johan H. Huijsing. "Stability of Feedback Circuits." In Frequency Compensation Techniques for Low-Power Operational Amplifiers, 29–56. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-2375-5_3.
Full textConference papers on the topic "Frequency stability"
Dick, G. J. "Frequency stability of 1x10." In 10th International Conference on European Frequency and Time. IEE, 1996. http://dx.doi.org/10.1049/cp:19960059.
Full textVernotte, F., N. Gautherot, H. Locatelli, P. M. Mbaye, E. Meyer, O. Pajot, C. Plantard, and E. Tisserand. "High stability composite clock performances." In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702202.
Full textKalivas, G. A., and R. G. Harrison. "Frequency Stability Characterization of Hopping Sources." In 41st Annual Symposium on Frequency Control. IEEE, 1987. http://dx.doi.org/10.1109/freq.1987.201013.
Full textWebster, S. A., M. Oxborrow, and P. Gill. "High stability Nd:YAG laser." In 18th European Frequency and Time Forum (EFTF 2004). IEE, 2004. http://dx.doi.org/10.1049/cp:20040939.
Full textLi Rongcheng, Liang Xianming, Jin Ziyuan, Li Liming, and Xia Yongshi. "NIM Frequency Stability Measurement System." In Conference on Precision Electromagnetic Measurements. IEEE, 1988. http://dx.doi.org/10.1109/cpem.1988.671363.
Full textVoreck, Richard, and Craig Lin. "Telemetry transmitter frequency stability evaluation." In 2016 IEEE Aerospace Conference. IEEE, 2016. http://dx.doi.org/10.1109/aero.2016.7500877.
Full textKljajic, Ruzica, Predrag Maric, Hrvoje Glavas, and Matej Znidarec. "Microgrid Stability: A Review on Voltage and Frequency Stability." In 2020 IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE). IEEE, 2020. http://dx.doi.org/10.1109/cando-epe51100.2020.9337800.
Full textBai, Lina, and Wei Zhou. "The measurement of transient stability with high resolution." In 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC). IEEE, 2013. http://dx.doi.org/10.1109/eftf-ifc.2013.6702129.
Full textAllan, D. W. "Millisecond Pulsar Rivals Best Atomic Clock Stability." In 41st Annual Symposium on Frequency Control. IEEE, 1987. http://dx.doi.org/10.1109/freq.1987.200994.
Full textNewbury, N. R., W. C. Swann, I. Coddington, L. Lorini, J. C. Bergquist, and S. A. Diddams. "Fiber laser-based frequency combs with high relative frequency stability." In 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum. IEEE, 2007. http://dx.doi.org/10.1109/freq.2007.4319226.
Full textReports on the topic "Frequency stability"
Riley, W. J., and W. J. Riley. Handbook of frequency stability analysis. Gaithersburg, MD: National Institute of Standards and Technology, 2008. http://dx.doi.org/10.6028/nist.sp.1065.
Full textWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.89-3916.
Full textWalls, F. L., John Gary, Abbie O'Gallagher, Roland Sweet, and Linda Sweet. Time domain frequency stability calculated from the frequency domain description :. Gaithersburg, MD: National Institute of Standards and Technology, 1991. http://dx.doi.org/10.6028/nist.ir.89-3916r1991.
Full textBrennan M. J., J. Gabusi, E. Gill, and A. Zaltsman. Flattop? Frequency Studies for the VHF Cavity; Stability, Reproducibility, Resolution. Office of Scientific and Technical Information (OSTI), February 1988. http://dx.doi.org/10.2172/1131566.
Full textArveson, Paul, and Ralph Goodman. Low-frequency Sea Surface Scattering Levels as a Function of Stability. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629296.
Full textWu, Lingqi. Micromechanical Disk Array for Enhanced Frequency Stability Against Bias Voltage Fluctuations. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada624236.
Full textFrueholz, Robert P. The Effects of Ambient Temperature Fluctuations on the Long-Term Frequency Stability of a Miniature Rubidium Atomic Frequency Standard. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada349664.
Full textMiller, N. W., M. Shao, S. Pajic, and R. D'Aquila. Western Wind and Solar Integration Study Phase 3 – Frequency Response and Transient Stability. Office of Scientific and Technical Information (OSTI), December 2014. http://dx.doi.org/10.2172/1167065.
Full textNicholls, David P. High-Order Numerical Methods for the Simulation of Linear and Nonlinear Waves: High-Frequency Radiation and Dynamic Stability. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129414.
Full textHurricane, Omar Al. The kinetic theory and stability of a stochastic plasma with respect to low frequency perturbations and magnetospheric convection. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/654355.
Full text