Journal articles on the topic 'Frequency shifted feedback'

To see the other types of publications on this topic, follow the link: Frequency shifted feedback.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Frequency shifted feedback.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yoshida, Masato, Koichiro NAKAMURA, and Hiromasa ITO. "Frequency-Shifted Feedback Fiber Laser." Review of Laser Engineering 27, no. 7 (1999): 490–94. http://dx.doi.org/10.2184/lsj.27.490.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Balle, Stefan. "Lasers with internal frequency-shifted feedback." Optical Engineering 33, no. 4 (April 1, 1994): 1146. http://dx.doi.org/10.1117/12.163197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Balle, Stefan, Ian C. M. Littler, Klaas Bergmann, and Frank V. Kowalski. "Frequency shifted feedback dye laser operating at a small shift frequency." Optics Communications 102, no. 1-2 (September 1993): 166–74. http://dx.doi.org/10.1016/0030-4018(93)90487-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Paul, J., P. S. Spencer, K. A. Shore, I. Pierce, and Y. Hong. "Optical frequency-domain ranging using a frequency-shifted feedback distributed-feedback laser." IET Optoelectronics 1, no. 6 (December 1, 2007): 277–79. http://dx.doi.org/10.1049/iet-opt:20070034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saarinen, Esa J., Jari Nikkinen, and Oleg G. Okhotnikov. "Semiconductor Disk Laser With Frequency-Shifted Feedback." IEEE Photonics Technology Letters 23, no. 9 (May 2011): 567–69. http://dx.doi.org/10.1109/lpt.2011.2116779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Guillet de Chatellus, H., and J. P. Pique. "Statistical properties of frequency shifted feedback lasers." Optics Communications 283, no. 1 (January 2010): 71–77. http://dx.doi.org/10.1016/j.optcom.2009.09.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yatsenko, L. P., B. W. Shore, and K. Bergmann. "Theory of a frequency-shifted feedback laser." Optics Communications 236, no. 1-3 (June 2004): 183–202. http://dx.doi.org/10.1016/j.optcom.2004.03.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

de Chatellus, Hugues Guillet, Eric Lacot, Olivier Jacquin, Wilfried Glastre, and Olivier Hugon. "Heterodyne beatings between frequency-shifted feedback lasers." Optics Letters 37, no. 5 (February 21, 2012): 791. http://dx.doi.org/10.1364/ol.37.000791.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Natke, Ulrich, and Karl Theodor Kalveram. "Effects of Frequency-Shifted Auditory Feedback on Fundamental Frequency of Long Stressed and Unstressed Syllables." Journal of Speech, Language, and Hearing Research 44, no. 3 (June 2001): 577–84. http://dx.doi.org/10.1044/1092-4388(2001/045).

Full text
Abstract:
Twenty-four normally speaking subjects had to utter the test word /tatatas/with different stress patterns repeatedly. Auditory feedback was provided by headphones and was shifted downwards in frequency during randomly selected trials while the subjects were speaking the complete test word. If the first syllable was long stressed, fundamental frequency of the vowel significantly increased by 2 Hz (corresponding to 25.5 cents) under frequency-shifted auditory feedback of .5 octave downwards, whereas under a shift of one semitone downwards a trend of an increase could be observed. If the first syllable was unstressed, fundamental frequency remained unaffected. Regarding the second syllable, significant increases or a trend for an increase of fundamental frequency was found in both shifting conditions. Results indicate a negative feedback mechanism that controls the fundamental frequency via auditory feedback in speech production. However, within a syllable a response could be found only if the syllable duration was long enough. Compensation for frequency-shifted auditory feedback still is quite imperfect. It is concluded that control of fundamental frequency is rather important on a suprasegmental level.
APA, Harvard, Vancouver, ISO, and other styles
10

Nakamura, K., T. Hara, M. Yoshida, T. Miyahara, and H. Ito. "Optical frequency domain ranging by a frequency-shifted feedback laser." IEEE Journal of Quantum Electronics 36, no. 3 (March 2000): 305–16. http://dx.doi.org/10.1109/3.825877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Kowalski, Frank V., Koichiro Nakamura, and Hiromasa Ito. "Frequency shifted feedback lasers: continuous or stepwise frequency chirped output?" Optics Communications 147, no. 1-3 (February 1998): 103–6. http://dx.doi.org/10.1016/s0030-4018(97)00566-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Zhu, Kaiyi, Hongfang Chen, Shulian Zhang, Zhaoyao Shi, Yun Wang, and Yidong Tan. "Frequency-Shifted Optical Feedback Measurement Technologies Using a Solid-State Microchip Laser." Applied Sciences 9, no. 1 (December 29, 2018): 109. http://dx.doi.org/10.3390/app9010109.

Full text
Abstract:
Since its first application toward displacement measurements in the early-1960s, laser feedback interferometry has become a fast-developing precision measurement modality with many kinds of lasers. By employing the frequency-shifted optical feedback, microchip laser feedback interferometry has been widely researched due to its advantages of high sensitivity, simple structure, and easy alignment. More recently, the laser confocal feedback tomography has been proposed, which combines the high sensitivity of laser frequency-shifted feedback effect and the axial positioning ability of confocal microscopy. In this paper, the principles of a laser frequency-shifted optical feedback interferometer and laser confocal feedback tomography are briefly introduced. Then we describe their applications in various kinds of metrology regarding displacement measurement, vibration measurement, physical quantities measurement, imaging, profilometry, microstructure measurement, and so on. Finally, the existing challenges and promising future directions are discussed.
APA, Harvard, Vancouver, ISO, and other styles
13

Stellpflug, M., G. Bonnet, B. W. Shore, and K. Bergmann. "Dynamics of frequency shifted feedback lasers: simulation studies." Optics Express 11, no. 17 (August 25, 2003): 2060. http://dx.doi.org/10.1364/oe.11.002060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rebhi, Riadh, Pierre Mathey, Hans Rudolf Jauslin, and Serguey Odoulov. "Semilinear coherent optical oscillator with frequency shifted feedback." Optics Express 15, no. 25 (December 7, 2007): 17136. http://dx.doi.org/10.1364/oe.15.017136.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Willis, A. P., A. I. Ferguson, and D. M. Kane. "External cavity laser diodes with frequency-shifted feedback." Optics Communications 116, no. 1-3 (April 1995): 87–93. http://dx.doi.org/10.1016/0030-4018(95)00029-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Yoshizawa, Akio, and Hidemi Tsuchida. "Chirped-comb generation in frequency-shifted feedback laser diodes with a large frequency shift." Optics Communications 155, no. 1-3 (October 1998): 51–54. http://dx.doi.org/10.1016/s0030-4018(98)00373-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Otsuka, Kenju, Jing-Yuan Ko, and Tamaki Kubota. "Nonstationary chaotic oscillations in lasers with frequency-shifted feedback." Optics Letters 26, no. 9 (May 1, 2001): 638. http://dx.doi.org/10.1364/ol.26.000638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Wang, Yimin, Norihito Saito, Satoshi Wada, and Hideo Tashiro. "Narrow-band, widely electronically tuned frequency-shifted feedback laser." Optics Letters 27, no. 7 (April 1, 2002): 515. http://dx.doi.org/10.1364/ol.27.000515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Shore, K. A., and D. M. Kane. "Comb generation bandwidth for frequency-shifted feedback semiconductor lasers." IEEE Journal of Quantum Electronics 35, no. 7 (July 1999): 1053–56. http://dx.doi.org/10.1109/3.772175.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sabert, H., and E. Brinkmeyer. "Pulse generation in fiber lasers with frequency shifted feedback." Journal of Lightwave Technology 12, no. 8 (1994): 1360–68. http://dx.doi.org/10.1109/50.317522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Yatsenko, L. P., B. W. Shore, and K. Bergmann. "Ranging and interferometry with a frequency shifted feedback laser." Optics Communications 242, no. 4-6 (December 2004): 581–98. http://dx.doi.org/10.1016/j.optcom.2004.08.051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Richter, P. I., and T. W. Hänsch. "Diode lasers in external cavities with frequency-shifted feedback." Optics Communications 85, no. 5-6 (October 1991): 414–18. http://dx.doi.org/10.1016/0030-4018(91)90574-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kowalski, F. V., S. J. Shattil, and P. D. Hale. "Optical pulse generation with a frequency shifted feedback laser." Applied Physics Letters 53, no. 9 (August 29, 1988): 734–36. http://dx.doi.org/10.1063/1.99818.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Nakamura, Koichiro, Frank V. Kowalski, and Hiromasa Ito. "Chirped-frequency generation in a translated-grating-type frequency-shifted feedback laser." Optics Letters 22, no. 12 (June 15, 1997): 889. http://dx.doi.org/10.1364/ol.22.000889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wan, X. J., and Shu Lian Zhang. "Quasi-Common-Path Laser Feedback Interferometers for Precision Measurement of Non-Cooperative Targets." Key Engineering Materials 381-382 (June 2008): 49–52. http://dx.doi.org/10.4028/www.scientific.net/kem.381-382.49.

Full text
Abstract:
In this paper, we report a novel quasi-common-path laser feedback interferometer (QLFI) for highly stable, high-resolution and non-contact displacement measurement. QLFI measures the displacement of the target by measuring the phase of feedback light. In addition to the target-generated feedback light (frequency shifted by 2#), a reference mirror generates a reference feedback light which is frequency shifted by #. The phase variations of both feedback lights are measured by heterodyne detection simultaneously and their difference offers the phase variations caused only by target displacement. When the optical path lengths of the reference and measuring feedback light are nearly the same, the phase fluctuations caused by the environment and laser instability are effectively removed. The heat-induced deformation of a He-Ne laser tube is successfully in-line measured using QLFI.
APA, Harvard, Vancouver, ISO, and other styles
26

Oshima, Shinichi, and Yoshito Isei. "Simultaneous range and velocity measurement using frequency shifted feedback laser." Measurement: Sensors 18 (December 2021): 100134. http://dx.doi.org/10.1016/j.measen.2021.100134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nikolić, M., T. Taimre, J. R. Tucker, Yah Leng Lim, K. Bertling, and A. D. Rakić. "Laser dynamics under frequency‐shifted optical feedback with random phase." Electronics Letters 50, no. 19 (September 2014): 1380–82. http://dx.doi.org/10.1049/el.2014.2573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yatsenko, L. P., B. W. Shore, and K. Bergmann. "Coherence in the output spectrum of frequency shifted feedback lasers." Optics Communications 282, no. 2 (January 2009): 300–309. http://dx.doi.org/10.1016/j.optcom.2008.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zhang, Shaohui, Shulian Zhang, Liqun Sun, and Yidong Tan. "Spectrum Broadening in Optical Frequency-Shifted Feedback of Microchip Laser." IEEE Photonics Technology Letters 28, no. 14 (July 15, 2016): 1593–96. http://dx.doi.org/10.1109/lpt.2016.2556708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Martin, J., Y. Zhao, S. Balle, K. Bergmann, and M. P. Fewell. "Visible-wavelength diode laser with weak frequency-shifted optical feedback." Optics Communications 112, no. 1-2 (November 1994): 109–21. http://dx.doi.org/10.1016/0030-4018(94)90087-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Alam, S. U., and A. B. Grudinin. "Tunable Picosecond Frequency-Shifted Feedback Fiber Laser at 1550 nm." IEEE Photonics Technology Letters 16, no. 9 (September 2004): 2012–14. http://dx.doi.org/10.1109/lpt.2004.831958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Deng, Shiwei, Weixin Liu, and Hua Shen. "Laser polarization imaging method based on frequency-shifted optical feedback." Optics & Laser Technology 161 (June 2023): 109099. http://dx.doi.org/10.1016/j.optlastec.2022.109099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Littler, Ian C. M., and Klaas Bergmann. "Generation of multi-frequency laser emission using an active frequency shifted feedback cavity." Optics Communications 88, no. 4-6 (April 1992): 523–30. http://dx.doi.org/10.1016/0030-4018(92)90081-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Perry, I. R., R. L. Wang, and J. R. M. Barr. "Frequency shifted feedback and frequency comb generation in an Er3+ -doped fibre laser." Optics Communications 109, no. 1-2 (June 1994): 187–94. http://dx.doi.org/10.1016/0030-4018(94)90758-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Nikodem, Michal, and Krzysztof Abramski. "Controlling the frequency of the frequency-shifted feedback fiber laser using injection-seeding technique." Optics Communications 283, no. 10 (May 2010): 2202–5. http://dx.doi.org/10.1016/j.optcom.2010.01.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

KO, JING-YUAN, TAKAYUKI OHTOMO, KAZUTAKA ABE, and KENJU OTSUKA. "NONLINEAR DYNAMICS AND APPLICATION OF LASER-DIODE-PUMPED MICROCHIP SOLID-STATE LASERS WITH OPTICAL FEEDBACK." International Journal of Modern Physics B 15, no. 26 (October 20, 2001): 3369–95. http://dx.doi.org/10.1142/s0217979201007282.

Full text
Abstract:
This paper reviews our recent research on nonlinear dynamics of microchip solid-state lasers subjected to delayed optical feedback. Instabilities in two types of physical systems including multimode lasers with feedback and lasers with frequency-shifted feedback are discussed. Applications of microchip lasers with feedback to shot-noise-limited self-mixing optical sensing and imaging are summarized.
APA, Harvard, Vancouver, ISO, and other styles
37

Zhong, XU, and ZHANG Xiliang. "Long-distance vibration measurement based on laser frequency-shifted feedback interferometry." Journal of Applied Optics 41, no. 6 (2020): 1277–83. http://dx.doi.org/10.5768/jao202041.0607001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Romanenko, V. I., A. V. Romanenko, L. P. Yatsenko, G. A. Kazakov, A. N. Litvinov, B. G. Matisov, and Yu V. Rozhdestvensky. "Dark resonances in the field of frequency-shifted feedback laser radiation." Journal of Physics B: Atomic, Molecular and Optical Physics 43, no. 21 (October 19, 2010): 215402. http://dx.doi.org/10.1088/0953-4075/43/21/215402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lyakh, A., R. Barron-Jimenez, I. Dunayevskiy, R. Go, G. Tsvid, and C. Kumar N. Patel. "Continuous wave operation of quantum cascade lasers with frequency-shifted feedback." AIP Advances 6, no. 1 (January 2016): 015312. http://dx.doi.org/10.1063/1.4940760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Majewski, Matthew R., Robert I. Woodward, and Stuart D. Jackson. "Ultrafast mid-infrared fiber laser mode-locked using frequency-shifted feedback." Optics Letters 44, no. 7 (March 25, 2019): 1698. http://dx.doi.org/10.1364/ol.44.001698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Kim, Seung Kwan, Moo Jung Chu, and Jong Hyun Lee. "Wideband multiwavelength erbium-doped fiber ring laser with frequency shifted feedback." Optics Communications 190, no. 1-6 (April 2001): 291–302. http://dx.doi.org/10.1016/s0030-4018(01)01073-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Guillet de Chatellus, H., E. Lacot, W. Glastre, O. Jacquin, and O. Hugon. "The hypothesis of the moving comb in frequency shifted feedback lasers." Optics Communications 284, no. 20 (September 2011): 4965–70. http://dx.doi.org/10.1016/j.optcom.2011.06.042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Howell, Peter, Stevie Sackin, and Roberta Williams. "Differential effects of frequency-shifted feedback between child and adult stutterers." Journal of Fluency Disorders 24, no. 2 (June 1999): 127–36. http://dx.doi.org/10.1016/s0094-730x(98)00021-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Witomski, A., E. Lacot, O. Hugon, and S. Fechner. "Absolute measurement of laser frequency-shifted optical feedback by pump modulation." Optics Communications 254, no. 1-3 (October 2005): 119–27. http://dx.doi.org/10.1016/j.optcom.2005.05.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Kasahara, Kumio, Koichiro Nakamura, Manabu Sato, and Hiromasa Ito. "Spectral dynamics of an all solid-state frequency-shifted feedback laser." Optical Review 4, no. 1 (January 1997): 180–84. http://dx.doi.org/10.1007/bf02931676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Maran, J. N., R. Slavik, S. LaRochelle, and M. Karasek. "Chromatic Dispersion Measurement Using a Multiwavelength Frequency-Shifted Feedback Fiber Laser." IEEE Transactions on Instrumentation and Measurement 53, no. 1 (February 2004): 67–71. http://dx.doi.org/10.1109/tim.2003.822008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Cashen, M., V. Bretin, and H. Metcalf. "Optical pumping in ^4He with frequency-shifted feedback amplification of light." Journal of the Optical Society of America B 17, no. 4 (April 1, 2000): 530. http://dx.doi.org/10.1364/josab.17.000530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Pique, Jean-Paul, Vincent Fesquet, and Sylvie Jacob. "Pulsed frequency-shifted feedback laser for laser guide stars: intracavity preamplifier." Applied Optics 50, no. 33 (November 18, 2011): 6294. http://dx.doi.org/10.1364/ao.50.006294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nakamura, K., F. Abe, K. Kasahara, T. Hara, M. Sato, and H. Ito. "Spectral characteristics of an all solid-state frequency-shifted feedback laser." IEEE Journal of Quantum Electronics 33, no. 1 (1997): 103–11. http://dx.doi.org/10.1109/3.554902.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Hale, P. D., and F. V. Kowalski. "Output characterization of a frequency shifted feedback laser: theory and experiment." IEEE Journal of Quantum Electronics 26, no. 10 (1990): 1845–51. http://dx.doi.org/10.1109/3.60911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography