Academic literature on the topic 'Frege's philosophy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Frege's philosophy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Frege's philosophy"
Chauvier, Stéphane. "Frege et le cogito." Dialogue 38, no. 2 (1999): 349–68. http://dx.doi.org/10.1017/s0012217300007253.
Full textEllenbogen, Sara. "On the Link Between Frege's Platonic-Realist Semantics and His Doctrine of Private Senses." Philosophy 72, no. 281 (July 1997): 375–82. http://dx.doi.org/10.1017/s0031819100057065.
Full textAukštuolytė, Nijolė. "Loginių žinojimo pagrindų analizė G. Frege's filosofijoje." Problemos 58 (September 29, 2014): 91–98. http://dx.doi.org/10.15388/problemos.2000.58.6811.
Full textShieh, Sanford, and William Demopoulos. "Frege's Philosophy of Mathematics." Philosophical Review 106, no. 2 (April 1997): 275. http://dx.doi.org/10.2307/2998362.
Full textHale, Bob. "Frege's Philosophy of Mathematics." Philosophical Quarterly 49, no. 194 (January 1999): 92–104. http://dx.doi.org/10.1111/1467-9213.00132.
Full textNye, Andrea. "Frege's Metaphors." Hypatia 7, no. 2 (1992): 18–39. http://dx.doi.org/10.1111/j.1527-2001.1992.tb00883.x.
Full textHacker, P. M. S. "Frege and the Later Wittgenstein." Royal Institute of Philosophy Supplement 44 (March 1999): 223–47. http://dx.doi.org/10.1017/s1358246100006743.
Full textRuthrof, Horst. "Frege's Error." Philosophy Today 37, no. 3 (1993): 306–17. http://dx.doi.org/10.5840/philtoday199337319.
Full textVallor, Shannon. "Frege's Puzzle." Philosophy Today 46, no. 9999 (2002): 178–85. http://dx.doi.org/10.5840/philtoday200246supplement20.
Full textCook, Roy T., and Philip A. Ebert. "Frege's Recipe." Journal of Philosophy 113, no. 7 (2016): 309–45. http://dx.doi.org/10.5840/jphil2016113721.
Full textDissertations / Theses on the topic "Frege's philosophy"
Jennings, Mark Richard John. "Frege's logicism : getting an insight into what we grasp." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269765.
Full textBroackes, J. "The identity of properties." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375879.
Full textYates, Alexander. "Frege's case for the logicality of his basic laws." Thesis, University of St Andrews, 2017. http://hdl.handle.net/10023/12252.
Full textBranquinho, João Miguel Biscaia Valadas. "Direct reference, cognitive significance and Fregean sense." Thesis, University of Oxford, 1992. http://ora.ox.ac.uk/objects/uuid:9d87a630-2d56-4e0a-a437-ab8f3ad82ad8.
Full textKaschmieder, Hartfried. "Beurteilbarer Inhalt und Gedanke in der Philosophie Gottlob Freges /." Hildesheim : G. Olms, 1989. http://catalogue.bnf.fr/ark:/12148/cb35518128q.
Full textDUARTE, ALESSANDRO BANDEIRA. "HUMENULLS PRINCIPLE: POSSIBILITY OF A (NEO) FREGEAN PHILOSOPHY OF ARITHMETIC?" PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5189@1.
Full textA dissertação apresenta e discute as idéias desenvolvidas por Crispin Wright no livro Frege´s Conception of Numbers as Objects (1983), em particular, a sua tese de que a aritmética é analítica. Wright deposita toda sua força argumentativa (em relação à analiticidade da aritmética) na derivação dos axiomas da aritmética de segunda ordem de Dedekind-Peano a partir do Princípio de Hume. Assim, é nosso principal objetivo apresentar e discutir em que medida o Princípio de Hume é capaz de fornecer, segundo Wright, um relato da analiticidade da aritmética, assim como, as objeções a esse relato.
The dissertation presents and discusses the ideas developed by Crispin Wright in his book Frege's Conception of Numbers as Objects (1983), in particular his thesis that arithmetic is analytic. Wright concentrates all his argumentative efforts (in relation to the analyticity of arithmetic) on the derivation of the axioms of Dedekind-Peano's second order arithmetic from Hume's Principle. Thus, it is our main goal to present and discuss how Hume's Principle provides, according to Wright, an explanation of the analytic character of arithmetic as well as some objections to this account.
DUARTE, ALESSANDRO BANDEIRA. "LOGIC AND ARITHMETIC IN FREGE´S PHILOSOPHY OF MATHEMATICS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13942@1.
Full textNos Fundamentos da Aritmética (parágrafo 68), Frege propõe definir explicitamente o operador-abstração ´o número de...´ por meio de extensões e, a partir desta definição, provar o Princípio de Hume (PH). Contudo, a prova imaginada por Frege depende de uma fórmula (BB) não provável no sistema em 1884. Acreditamos que a distinção entre sentido e referência e a introdução dos valores de verdade como objetos foram motivada para justificar a introdução do Axioma IV, a partir do qual um análogo de (BB) é provável. Com (BB) no sistema, a prova do Princípio de Hume estaria garantida. Concomitantemente, percebemos que uma teoria unificada das extensões só é possível com a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Caso contrário, Frege teria sido obrigado a introduzir uma série de Axiomas V no seu sistema, o que acarretaria problemas com a identidade (Júlio César). Com base nestas considerações, além do fato de que, em 1882, Frege provara as leis básicas da aritmética (carta a Anton Marty), parece-nos perfeitamente plausível que as estas provas foram executadas adicionando-se o PH ao sistema lógico de Begriffsschrift. Mostramos que, nas provas dos axiomas de Peano a partir de PH dentro da conceitografia, nenhum uso é feito de (BB). Destarte, não é necessária a introdução do Axioma IV no sistema e, por conseguinte, não são necessárias a distinção entre sentido e referência e a introdução dos valores de verdade como objetos. Disto, podemos concluir que, provavelmente, a introdução das extensões nos Fundamentos foi um ato tardio; e que Frege não possuía uma prova formal de PH a partir da sua definição explícita. Estes fatos também explicam a demora na publicação das Leis Básicas da Aritmética e o descarte de um manuscrito quase pronto (provavelmente, o livro mencionado na carta a Marty).
In The Foundations of Arithmetic (paragraph 68), Frege proposes to define explicitly the abstraction operator ´the number of …´ by means of extensions and, from this definition, to prove Hume´s Principle (HP). Nevertheless, the proof imagined by Frege depends on a formula (BB), which is not provable in the system in 1884. we believe that the distinction between sense and reference as well as the introduction of Truth-Values as objects were motivated in order to justify the introduction of Axiom IV, from which an analogous of (BB) is provable. With (BB) in the system, the proof of HP would be guaranteed. At the same time, we realize that a unified theory of extensions is only possible with the distinction between sense and reference and the introduction of Truth-Values as objects. Otherwise, Frege would have been obliged to introduce a series of Axioms V in his system, what cause problems regarding the identity (Julius Caesar). Based on these considerations, besides the fact that in 1882 Frege had proved the basic laws of Arithmetic (letter to Anton Marty), it seems perfectly plausible that these proofs carried out by adding to the Begriffsschrift´s logical system. We show that in the proofs of Peano s axioms from HP within the begriffsschrift, (BB) is not used at all. Thus, the introduction of Axiom IV in the system is not necessary and, consequently, neither the distinction between sense and reference nor the introduction of Truth- Values as objects. From these findings we may conclude that probably the introduction of extensions in The Foundations was a late act; and that Frege did not hold a formal proof of HP from his explicit definition. These facts also explain the delay in the publication of the Basic Laws of Arithmetic and the abandon of a manuscript almost finished (probably the book mentioned in the letter to Marty).
McKinnon, Christine. "Wittgenstein, Frege and theories of meaning." Thesis, University of Oxford, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385581.
Full textHarcourt, Edward. "Sense and the first person : Frege and Wittgenstein." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295782.
Full textRosenkrantz, Max Langan. "Sense, reference and ontology in early analytic philosophy /." Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004369.
Full textBooks on the topic "Frege's philosophy"
Frege's puzzle. Cambridge, Mass: MIT Press, 1986.
Find full textFrege's theorem. Oxford: Clarendon Press, 2011.
Find full textWolfgang, Carl. Frege's theory of sense and reference: Its origin and scope. Cambridge: Cambridge University Press, 1994.
Find full textFrege's theory of sense and reference: Its origins and scope. Cambridge: Cambridge University Press, 1994.
Find full textFrege's notations: What they are and how they mean. Houndmills, Basingstoke, Hampshire: Palgrave Macmillan, 2012.
Find full textFreges Philosophie nach Frege. Münster: Mentis, 2014.
Find full textFrege: Philosophy of mathematics. London: Duckworth, 1991.
Find full textDummett, Michael. Frege: Philosophy of mathematics. London: Duckworth, 1991.
Find full textMendelsohn, Richard L. The philosophy of Gottlob Frege. Cambridge: Cambridge University Press, 2010.
Find full textKenny, Anthony John Patrick. Frege. London, England: Penguin Books, 1995.
Find full textBook chapters on the topic "Frege's philosophy"
Lavers, Gregory. "Frege the Carnapian and Carnap the Fregean." In Early Analytic Philosophy - New Perspectives on the Tradition, 353–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24214-9_15.
Full textWright, Crispin. "Neo-Fregean Foundations for Real Analysis: Some Reflections on Frege’s Constraint." In The Western Ontario Series in Philosophy of Science, 253–72. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-4265-2_14.
Full textFennell, John. "Frege’s Begriffsschrift." In A Critical Introduction to the Philosophy of Language, 49–70. New York: Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9780429026553-4.
Full textMiller, Alexander. "Frege." In Philosophy of Language, 8–33. Third edition. | New York : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781351265522-2.
Full textRayo, A. "Frege’s Unofficial Arithmetic." In The Western Ontario Series in Philosophy of Science, 155–72. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-4265-2_10.
Full textGönner, Gerhard. "Frege, Gottlob." In Philosophen, 67–68. Stuttgart: J.B. Metzler, 2004. http://dx.doi.org/10.1007/978-3-476-02949-2_18.
Full textHintikka, Jaakko. "Identity in Frege’s Shadow." In Early Analytic Philosophy - New Perspectives on the Tradition, 21–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24214-9_2.
Full textKitcher, Philip. "Frege, Dedekind, and the Philosophy of Mathematics." In Frege Synthesized, 299–343. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4552-4_11.
Full textKemp, Gary. "Fregean semantics." In What is this thing called philosophy of language?, 27–48. 2 [edition]. | New York: Routledge, 2018. | Series: What is this thing called?: Routledge, 2017. http://dx.doi.org/10.4324/9781315277486-3.
Full textCurrie, Gregory. "Continuity and Change in Frege’s Philosophy of Mathematics." In Frege Synthesized, 345–73. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4552-4_12.
Full text