Journal articles on the topic 'Freestream turbulence intensity'

To see the other types of publications on this topic, follow the link: Freestream turbulence intensity.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Freestream turbulence intensity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Chen, Yongxin, Kamal Djidjeli, and Zheng-Tong Xie. "Freestream Turbulence Effects on the Aerodynamics of an Oscillating Square Cylinder at the Resonant Frequency." Fluids 7, no. 10 (October 16, 2022): 329. http://dx.doi.org/10.3390/fluids7100329.

Full text
Abstract:
Flow past a bluff body in freestream turbulence can substantially change the flow behaviour compared to that in smooth inflow. This paper presents the study of wake flow and aerodynamics of an oscillating square cylinder at the resonant frequency in freestream turbulence, with the integral length not greater than the cylinder side and the turbulence intensity not greater than 10%. Large eddy simulations (LES) in the Cartesian grid using the Immersed Boundary Method (IBM) technique embedded in a FVM solver, together with an efficient synthetic turbulent inflow generator implemented in an in-house parallel FORTRAN code (Chen et al, 2020, Journal of Fluids and Structures 2020) are used for the study. The results are compared with those for smooth inflow, and relevant data published in the literature. The key findings are: the freestream turbulence conditions evidently reduces the local turbulent scales and fluctuations in the shear layer compared to in smooth flow, as small scale freestream turbulence breaks down cylinder-generated larger scale eddies and weakens them; but does not evidently affect the vortex shedding frequency, or the length of the recirculation region behind the cylinder. This suggests negligible change of drag coefficient compared to in smooth inflow. Moreover, this is because the vortex shedding is dominated by the forced oscillation at the resonance frequency, and the turbulence intensity is small.
APA, Harvard, Vancouver, ISO, and other styles
2

Murawski, C. G., and K. Vafai. "An Experimental Investigation of the Effect of Freestream Turbulence on the Wake of a Separated Low-Pressure Turbine Blade at Low Reynolds Numbers." Journal of Fluids Engineering 122, no. 2 (December 20, 1999): 431–33. http://dx.doi.org/10.1115/1.483281.

Full text
Abstract:
An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]
APA, Harvard, Vancouver, ISO, and other styles
3

Nix, A. C., T. E. Diller, and W. F. Ng. "Experimental Measurements and Modeling of the Effects of Large-Scale Freestream Turbulence on Heat Transfer." Journal of Turbomachinery 129, no. 3 (October 5, 2006): 542–50. http://dx.doi.org/10.1115/1.2515555.

Full text
Abstract:
The influence of freestream turbulence representative of the flow downstream of a modern gas turbine combustor and first stage vane on turbine blade heat transfer has been measured and analytically modeled in a linear, transonic turbine cascade. High-intensity, large length-scale freestream turbulence was generated using a passive turbulence-generating grid to simulate the turbulence generated in modern combustors after passing through the first stage vane row. The grid produced freestream turbulence with intensity of approximately 10–12% and an integral length scale of 2cm(Λx∕c=0.15) near the entrance of the cascade passages. Mean heat transfer results with high turbulence showed an increase in heat transfer coefficient over the baseline low turbulence case of approximately 8% on the suction surface of the blade, with increases on the pressure surface of approximately 17%. Time-resolved surface heat transfer and passage velocity measurements demonstrate strong coherence in velocity and heat flux at a frequency correlating with the most energetic eddies in the turbulence flow field (the integral length scale). An analytical model was developed to predict increases in surface heat transfer due to freestream turbulence based on local measurements of turbulent velocity fluctuations and length scale. The model was shown to predict measured increases in heat flux on both blade surfaces in the current data. The model also successfully predicted the increases in heat transfer measured in other work in the literature, encompassing different geometries (flat plate, cylinder, turbine vane, and turbine blade) and boundary layer conditions.
APA, Harvard, Vancouver, ISO, and other styles
4

Öztürk, Buğrahan, Abdelrahman Hassanein, M. Tuğrul Akpolat, Anas Abdulrahim, Mustafa Perçin, and Oğuz Uzol. "Effects of freestream turbulence on the wake growth rate of a model wind turbine and a porous disc." Journal of Physics: Conference Series 2265, no. 2 (May 1, 2022): 022042. http://dx.doi.org/10.1088/1742-6596/2265/2/022042.

Full text
Abstract:
Abstract This study presents the results of an experimental investigation that focuses on quantifying the differences between the spreading rates of a model wind turbine wake and a porous disc wake at different freestream turbulence intensity levels. Two-dimensional two-component particle image velocimetry (2D2C PIV) measurements are performed within the wakes of a model wind turbine and a porous disc (up to 7D downstream) of the same diameter and a matching thrust coefficient. The wind turbine is operated at a Tip Speed Ratio (TSR) of 2 in order to have matching thrust coefficient conditions for a consistent wake comparison. The results show that the mean wake flow field (both near and far wake) is significantly different for the wind turbine compared to the porous disc even if they are operating at similar, high or low, freestream turbulence levels. The wake of the wind turbine recovers much faster than that of a porous disc with a matching thrust coefficient especially in the far wake region at both low and high freestream turbulence levels. On the other hand, the data shows that the far wake of the turbine operating at low freestream turbulence is very similar to that of the disc operating at high freestream turbulence. This suggests caution and stresses the importance in choosing the freestream turbulence intensity level when using porous discs to represent wind turbines in wind tunnel studies.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Qiang, and Phillip M. Ligrani. "Wake Turbulence Structure Downstream of a Cambered Airfoil in Transonic Flow: Effects of Surface Roughness and Freestream Turbulence Intensity." International Journal of Rotating Machinery 2006 (2006): 1–12. http://dx.doi.org/10.1155/ijrm/2006/60234.

Full text
Abstract:
The wake turbulence structure of a cambered airfoil is studied experimentally, including the effects of surface roughness, at different freestream turbulence levels in a transonic flow. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Freestream turbulence has little effect on the wake velocity profiles, turbulence structure, and vortex shedding frequency, especially downstream of airfoils with rough surfaces. Compared with data from a symmetric airfoil, wake profiles produced by the cambered airfoils also have significant dependence on surface roughness, but are less sensitive to variations of freestream turbulence intensity. The cambered airfoil also produces larger streamwise velocity deficits, and broader wakes compared to the symmetric airfoil.
APA, Harvard, Vancouver, ISO, and other styles
6

Tangermann, Eike, and Markus Klein. "Controlled Synthetic Freestream Turbulence Intensity Introduced by a Local Volume Force." Fluids 5, no. 3 (August 7, 2020): 130. http://dx.doi.org/10.3390/fluids5030130.

Full text
Abstract:
Generating freestream turbulence within the computational domain instead of applying it as a boundary condition requires a method to introduce the turbulent fluctuations at a specific location. A method based on applying local volume forces has been adapted and supplemented with a control loop in order to compensate for alterations of the turbulence structure resulting from the numerical treatment and physical reasons. The criteria for the tuning of the controller have been developed and the performance of the approach has been assessed. The capabilities of the method are demonstrated for the flow around an airfoil at high angle of attack and with massive flow separation.
APA, Harvard, Vancouver, ISO, and other styles
7

Yokoyama, Hiroshi, Hiroshi Odawara, and Akiyoshi Iida. "Effects of Freestream Turbulence on Cavity Tone and Sound Source." International Journal of Aerospace Engineering 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/7347106.

Full text
Abstract:
To clarify the effects of freestream turbulence on cavity tones, flow and acoustic fields were directly predicted for cavity flows with various intensities of freestream turbulence. The freestream Mach number was 0.09 and the Reynolds number based on the cavity length was 4.0 × 104. The depth-to-length ratio of the cavity,D/L, was 0.5 and 2.5, where the acoustic resonance of a depth-mode occurs forD/L= 2.5. The incoming boundary layer was laminar. The results for the intensity of freestream turbulence of Tu = 2.3% revealed that the reduced level of cavity tones in a cavity flow with acoustic resonance(D/L=2.5)was greater than that without acoustic resonance(D/L=0.5). To clarify the reason for this, the sound source based on Lighthill’s acoustic analogy was computed, and the contributions of the intensity and spanwise coherence of the sound source to the reduction of the cavity tone were estimated. As a result, the effects of the reduction of spanwise coherence on the cavity tone were greater in the cavity flow with acoustic resonance than in that without resonance, while the effects of the intensity were comparable for both flows.
APA, Harvard, Vancouver, ISO, and other styles
8

Oo, Aung N., and Chan Y. Ching. "Stagnation Line Heat Transfer Augmentation Due to Freestream Vortical Structures and Vorticity." Journal of Heat Transfer 124, no. 3 (May 10, 2002): 583–87. http://dx.doi.org/10.1115/1.1471526.

Full text
Abstract:
An experimental study has been performed to investigate the effect of freestream vortical structures and vorticity on stagnation region heat transfer. A heat transfer model with a cylindrical leading edge was tested in a wind tunnel at Reynolds numbers ranging from 67,750 to 142,250 based on leading edge diameter of the model. Grids of parallel rods were placed at several locations upstream of the heat transfer model in orientations where the rods were perpendicular and parallel to the stagnation line to generate freestream turbulence with distinct vortical structures. All three components of turbulence intensity, integral length scale and the spanwise and transverse vorticity were measured to characterize the freestream turbulence. The measured heat transfer data and freestream turbulence characteristics were compared with existing empirical models for the stagnation line heat transfer. A new correlation for the stagnation line heat transfer has been developed that includes the spanwise fluctuating vorticity components.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Qiang, and Phillip M. Ligrani. "Aerodynamic Losses of a Cambered Turbine Vane: Influences of Surface Roughness and Freestream Turbulence Intensity." Journal of Turbomachinery 128, no. 3 (January 23, 2006): 536–46. http://dx.doi.org/10.1115/1.2185125.

Full text
Abstract:
The effects of surface roughness and freestream turbulence level on the aerodynamic performance of a turbine vane are experimentally investigated. Wake profiles are measured with three different freestream turbulence intensity levels (1.1%, 5.4%, and 7.7%) at two different locations downstream of the test vane trailing edge (1 and 0.25 axial chord lengths). Chord Reynolds number based on exit flow conditions is 0.9×106. The Mach number distribution and the test vane configuration both match arrangements employed in an industrial application. Four combered vanes with different surface roughness levels are employed in this study. Effects of surface roughness on the vane pressure side on the profile losses are relatively small compared to suction side roughness. Overall effects of turbulence on local wake deficits of total pressure, Mach number, and kinetic energy are almost negligible in most parts of the wake produced by the smooth test vane, except that higher freestream losses are present at higher turbulence intensity levels. Profiles produced by test vanes with rough surfaces show apparent lower peak values in the center of the wake. Integrated aerodynamic losses and area-averaged loss coefficient YA are also presented and compared to results from other research groups.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Meihong, Shengyang Nie, Xiaoxuan Meng, and Yingtao Zuo. "The Application of the γ-Reθt Transition Model Using Sustaining Turbulence." Energies 15, no. 17 (September 5, 2022): 6491. http://dx.doi.org/10.3390/en15176491.

Full text
Abstract:
The freestream turbulence intensity is an important parameter for Tollmien–Schlichting waves and is also used as one of the key variables for the local- and transport-equation-based transition model in the simulations. To obtain the similar turbulence level in the vicinity to the aircraft as the turbulence intensity measured in a wind tunnel or in free-flight conditions, the sustaining turbulence term can be used for the transition model. It is important to investigate the model behavior when the sustaining turbulence is coupled with the frequently used SST-variants for transitional flows. Additionally, it is essential to obtain a nearly independent solution using the same transition model for different users on different meshes with similar grid resolution for purposes of verification and validation. So far, the relevant work has not been performed sufficiently and the sustaining turbulence technology introduces non-independent results into the freestream values. Thus, a modified sustaining turbulence approach is adopted and investigated in several test cases, including a computational effort on NACA0021 test case at 10 angles of attack. The results indicate that the modified sustaining turbulence in conjunction with the SST-2003 turbulence model yields results nearly independent to the freestream value of ω for the prediction of both streamwise and crossflow transition for two-dimensional flows without increasing computational effort too much. For three-dimensional flow, the sensitivity to initial value of ω is reduced significantly as well in comparison to the SST-based transition model, and it is highly recommended to use present sustaining turbulence technology in conjunction with the SST-2003-based transition model for engineering applications.
APA, Harvard, Vancouver, ISO, and other styles
11

Kestoras, M. D., and T. W. Simon. "Turbulence Measurements in a Heated, Concave Boundary Layer Under High-Free-Stream Turbulence Conditions." Journal of Turbomachinery 118, no. 1 (January 1, 1996): 172–80. http://dx.doi.org/10.1115/1.2836598.

Full text
Abstract:
Turbulence measurements for both momentum and heat transfer are taken in a lowvelocity, turbulent boundary layer growing naturally over a concave wall. The experiments are conducted with negligible streamwise acceleration and a nominal freestream turbulence intensity of ∼8 percent. Comparisons are made with data taken in an earlier study in the same test facility but with a 0.6 percent free-stream turbulence intensity. Results show that elevated free-stream turbulence intensity enhances turbulence transport quantities like uv and vt in most of the boundary layer. In contrast to the low-turbulence cases, high levels of transport of momentum are measured outside the boundary layer. Stable, Go¨rtlerlike vortices, present in the flow under low-turbulence conditions, do not form when the free-stream turbulence intensity is elevated. Turbulent Prandtl numbers, Prt, within the log region of the boundary layer over the concave wall increase with streamwise distance to values as high as 1.2. Profiles of Prt suggest that the increase in momentum transport with increased free-stream turbulence intensity precedes the increase in heat transport. Distributions of near-wall mixing length for momentum remain unchanged on the concave wall when free-stream turbulence intensity is elevated. Both for this level of free-stream turbulence and for the lower level, mixing length distributions increase linearly with distance from the wall, following the standard slope. However, when free-stream turbulence intensity is elevated, this linear region extends farther into the boundary layer, indicating the emerging importance of larger eddies in the wake of the boundary layer with the high-turbulence free stream. Because these eddies are damped by the wall, the influence of the wall grows with eddy size.
APA, Harvard, Vancouver, ISO, and other styles
12

Taghavi-Zenouz, R., M. Salari, and M. Etemadi. "Prediction of laminar, transitional and turbulent flow regimes, based on three-equation k-ω turbulence model." Aeronautical Journal 112, no. 1134 (August 2008): 469–76. http://dx.doi.org/10.1017/s0001924000002438.

Full text
Abstract:
Abstract A recently developed transitional model for boundary-layer flows has been examined on a flat plate and the well-known S809 wind turbine blade. Proposed numerical model tries to simulate streamwise fluctuations, induced by freestream turbulence, in pre-transitional boundary-layer flows by introducing an additional transport equation for laminar kinetic energy term. This new approach can be used for modeling of transitional flows which are exposed to both the freestream turbulence intensity and streamwise pressure gradient, which are known as the most dominant factors in occurrence of transition. Computational method of this model is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. The model includes three transport equations of laminar kinetic energy, turbulent kinetic energy and dissipation rate frequency. The present model is capable of predicting either natural or bypass transitional mechanisms, which may occur in attached boundary-layer flows. In addition, the model can simulate transition in the separated free shear layers and the subsequent turbulent re-attachment to form a laminar separation bubble. Flat plate was exposed to different freestream turbulence intensities and streamwise pressure gradients. Wind turbine blade was examined under two different Reynolds numbers, with one of them suitable for the occurrence of laminar separation bubbles on its surfaces. To evaluate the performance of this new model in resolving transitional boundary-layer flows, final results have been compared to those obtained through application of conventional turbulence models. Comparison of final results for the flat plate and the S809 aerofoil with available experimental data show very close agreements.
APA, Harvard, Vancouver, ISO, and other styles
13

McAuliffe, Brian R., and Steen A. Sjolander. "Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade." Journal of Turbomachinery 126, no. 4 (October 1, 2004): 560–69. http://dx.doi.org/10.1115/1.1791291.

Full text
Abstract:
The paper presents mid-span measurements for a turbine cascade with active flow control. Steady blowing through an inclined plane wall jet has been used to control the separation characteristics of a high-lift low-pressure turbine airfoil at low Reynolds numbers. Measurements were made at design incidence for blowing ratios from approximately 0.25 to 2.0 (ratio of jet-to-local freestream velocity), for Reynolds numbers of 25,000 and 50,000 (based on axial chord and inlet velocity), and for freestream turbulence intensities of 0.4% and 4%. Detailed flow field measurements were made downstream of the cascade using a three-hole pressure probe, static pressure distributions were measured on the airfoil suction surface, and hot-wire measurements were made to characterize the interaction between the wall jet and boundary layer. The primary focus of the study is on the low-Reynolds number and low-freestream turbulence intensity cases, where the baseline airfoil stalls and high profile losses result. For low freestream turbulence (0.4%), the examined method of flow control was effective at preventing stall and reducing the profile losses. At a Reynolds number of 25,000, a blowing ratio greater than 1.0 was required to suppress stall. At a Reynolds number of 50,000, a closed separation bubble formed at a very low blowing ratio (0.25) resulting in a significant reduction in the profile loss. For high freestream turbulence intensity (4%), where the baseline airfoil has a closed separation bubble and low profile losses, blowing ratios below 1.0 resulted in a larger separation bubble and higher losses. The mechanism by which the wall jet affects the separation characteristics of the airfoil is examined through hot-wire traverse measurements in the vicinity of the slot.
APA, Harvard, Vancouver, ISO, and other styles
14

Johnson, Mark W. "Predicting Transition Without Empiricism or DNS." Journal of Turbomachinery 124, no. 4 (October 1, 2002): 665–69. http://dx.doi.org/10.1115/1.1506940.

Full text
Abstract:
A numerical procedure for predicting the receptivity of laminar boundary layers to freestream turbulence consisting of vortex arrays with arbitrary orientation has been developed. Results show that the boundary layer is most receptivity to those vortices which have their axes approximately in the streamwise direction and vortex wavelengths of approximately 1.2 δ. The computed near wall gains for isotropic turbulence are similar in magnitude to previously published experimental values used to predict transition. The new procedure is therefore capable of predicting the development of the fluctuations in the laminar boundary layer from values of the freestream turbulence intensity and length scale, and hence determining the start of transition without resorting to any empirical correlation.
APA, Harvard, Vancouver, ISO, and other styles
15

Matsunuma, Takayuki. "Effects of Reynolds Number and Freestream Turbulence on Turbine Tip Clearance Flow." Journal of Turbomachinery 128, no. 1 (February 1, 2005): 166–77. http://dx.doi.org/10.1115/1.2103091.

Full text
Abstract:
Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4×104 to 26.6×104 by changing the velocity of fluid flow. The freestream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and freestream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.
APA, Harvard, Vancouver, ISO, and other styles
16

Shu, ZR, and QS Li. "Wind tunnel study of separated and reattaching flows by particle image velocimetry and pressure measurements." Advances in Structural Engineering 22, no. 7 (January 25, 2019): 1769–82. http://dx.doi.org/10.1177/1369433218824918.

Full text
Abstract:
This article presents a comprehensive investigation on the separated and reattaching flows over a blunt flat plate with different leading-edge shapes by means of particle image velocimetry and surface pressure measurements. Wind tunnel tests are performed in both smooth and various turbulent flow conditions, and the separated and reattaching flows are examined as a function of Reynolds number ( Re), leading-edge shape, turbulence intensity, and turbulence integral length scale. It is shown through the particle image velocimetry and pressure measurements that the Reynolds number effect is significant regarding the mean vorticity field, but with little effect on the mean velocity field. For the effects of leading-edge shape, the distributions of pressure coefficients respond strongly to the change in leading-edge angle, and both the velocity (streamwise and vertical) and vorticity fields have a clear dependence on the leading-edge shape. For the effects of freestream turbulence, the mean pressure coefficient responds strongly to turbulence intensity, whereas the fluctuating and peak suction pressure coefficients are dependent on both turbulence intensity and integral length scale. The size of the separation bubble contracts aggressively with increasing turbulence intensity, but it remains approximately invariant in response to the change in turbulence scale in the tested range.
APA, Harvard, Vancouver, ISO, and other styles
17

Diemuodeke, Ogheneruona E., and Ilai Sher. "Analytical modelling of laminar drag and freestream turbulence eddies on droplet breakup criterion for internal combustion engines." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 235, no. 7 (January 14, 2021): 1956–65. http://dx.doi.org/10.1177/0954407020980845.

Full text
Abstract:
The paper presents novel analytical droplet breakup criteria, on Weber number (We)-relative turbulence intensity and We-Ohnesorge (Oh) representations, based on the critical Weber number. The We-Oh analytical criterion stressed the importance of turbulence effects on We-Oh breakup criterion at high We-Oh applications. In developing the analytical models the energy criterion for a disturbed parent droplet to disintegrate and the dual-timescale for turbulent shear in droplet dispersion were considered. The present model has an advantage over to two popular droplet breakup criterion models (Pilch-Erdman and Kolev) because the present model has the ability to support a parametric investigation of droplet breakup characteristics in turbulent flow fields. The Weber-relative turbulence intensity and We-Oh analytical breakup criteria are in good agreement with published experimental data. It is envisaged that the analytical model will be incorporated into larger CFD codes for spray simulation. The continuous research in this important area will present the next generation fuel injectors for improved fuel economy of internal combustion engines, especially high-pressure direct injection engines. The model has the potential to be applied in other natural and engineering systems.
APA, Harvard, Vancouver, ISO, and other styles
18

Canbolat, Gökhan, Alperen Yıldızeli, Haluk Anıl Köse, and Sertaç Çadırcı. "Numerical Investigation of Transitional Flow over a Flat Plate under Constant Heat Fluxes." Academic Perspective Procedia 1, no. 1 (November 9, 2018): 187–95. http://dx.doi.org/10.33793/acperpro.01.01.39.

Full text
Abstract:
In this study, a boundary layer flow over a flat plate is investigated numerically at constant inlet freestream velocity and turbulence intensity. After intensive mesh refinements, an adequate computational domain is determined. Four turbulence models (k-epsilon, k-omega, k-omega SST, Transition SST) are used to analyze the boundary layer flow. Local surface friction coefficient distribution is obtained and compared to each other to assess the most convenient turbulence model. The Computational Fluid Dynamics (CFD) results show that the Transition SST turbulence model demonstrates the most realistic surface friction coefficient (Cf) distribution in agreement with the experimental data. Additionally; the effects of constant heat fluxes on Cf values are investigated and it is found that the heating process moves transition backward compared to isothermal case. Moreover, it is fount that Cf values in the turbulent region decrease compared to isothermal case.
APA, Harvard, Vancouver, ISO, and other styles
19

Cação Ferreira, Arts, and Croner. "On the Influence of High Turbulence on the Convective Heat Flux on the High-Pressure Turbine Vane LS89." International Journal of Turbomachinery, Propulsion and Power 4, no. 4 (November 8, 2019): 37. http://dx.doi.org/10.3390/ijtpp4040037.

Full text
Abstract:
High-pressure turbine vanes and blades are subjected to a turbulent combustor flow affecting the heat transfer and boundary layer transition, hence, the temperature distribution. The accurate prediction of the temperature distribution is crucial for a reliable design and cooling implementation. Engine-representative measurements are hence mandatory for improving design tools. Recently, convective heat transfer measurements were conducted on a high-pressure turbine inlet guide vane (VKI LS89 airfoil) in the Isentropic Compression Tube (CT-2) facility at the von Karman Institute. This contribution focuses on the effect of high freestream turbulence generated by a new turbulence grid allowing a range of turbulence intensities in excess of 10% with representative length scales of the order of 1–2 cm. Three cases with varying turbulence levels are discussed in this paper. The different flow conditions are exit isentropic Mach numbers of 0.70–0.97, Reynolds numbers of 0.53∙× 106 and 1.15∙× 106 and a constant temperature ratio equal to 1.36. The heat transfer distributions along the vane suction side indicate a clear link between boundary layer transition and the stream-wise pressure gradients even at high levels of freestream turbulence intensity. Differences are put in evidence in the dynamics of the transition development. Future developments will focus also on the contribution of the other flow parameters under high turbulence. Heat transfer predictions from the boundary layer code TEXSTAN and Reynolds-Averaged Navier–Stokes code elsA (ensemble logiciel pour la simulation en Aérodynamique) are additionally compared to the experiments. Inherent difficulties associated with high turbulence modelling are clear from this early numerical work.
APA, Harvard, Vancouver, ISO, and other styles
20

Sakamoto, H., and H. Haniu. "Effect of Free-Stream Turbulence on Characteristics of Fluctuating Forces Acting on Two Square Prisms in Tandem Arrangement." Journal of Fluids Engineering 110, no. 2 (June 1, 1988): 140–46. http://dx.doi.org/10.1115/1.3243526.

Full text
Abstract:
The effect of the addition of the turbulence intensity to the free stream on the characteristics of the bistable flow which takes place around two square prisms in tandem arrangement was studied experimentally at a Reynolds number of 3.32 × 104. A method of obtaining the fluid forces acting on two prisms in the bistable flow regimes where two flow patterns appear intermittently was introduced, and then the characteristics of the fluid forces, the Strouhal number, and the switching frequency of the switch phenomenon with the variation of the freestream turbulence intensity were investigated. Furthermore, the behavior of the fluid forces and the vortex shedding for other spacings between the two prisms were presented for the variation of the turbulence intensity.
APA, Harvard, Vancouver, ISO, and other styles
21

Hwang, Jong-Yeon, Kyung-Soo Yang, Sungsu Lee, Joon Sik Lee, and Sangsan Lee. "Effects of Freestream Turbulence Intensity on the Flow Past a Circular Cylinder." Transactions of the Korean Society of Mechanical Engineers B 28, no. 8 (August 1, 2004): 953–60. http://dx.doi.org/10.3795/ksme-b.2004.28.8.953.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Procházka, Pavel, and Václav Uruba. "On the Recirculation Zone Behind a Cylinder of Finite Length with Subcritical Aspect Ratio." MATEC Web of Conferences 328 (2020): 05004. http://dx.doi.org/10.1051/matecconf/202032805004.

Full text
Abstract:
The Particle Image Velocimetry is utilized to investigate flow behind a cylinder of finite length with subcritical value of Aspect Ratio (AR). The cylinder is submitted to uniform freestream with very low intensity of turbulence and thin laminar boundary layer. The flow field cannot be expected as 2D even for time-averaged quantities. The Strouhal number is evaluated in various planes of measurement. The wake is fully turbulent and is composed of many streamwise and spanwise-oriented structures. Such complex flow is very convenient to be subjected to dynamical decomposition analysis.
APA, Harvard, Vancouver, ISO, and other styles
23

Hobson, Garth V., Bryce E. Wakefield, and William B. Roberts. "Turbulence Amplification with Incidence at the Leading Edge of a Compressor Cascade." International Journal of Rotating Machinery 5, no. 2 (1999): 89–98. http://dx.doi.org/10.1155/s1023621x99000081.

Full text
Abstract:
Detailed measurements, with a two-component laser-Doppler velocimeter and a thermal anemometer were made near the suction surface leading edge of controlled-diffusion airfoils in cascade. The Reynolds number was near 700,000, Mach number equal to 0.25, and freestream turbulence was at 1.5% ahead of the cascade.It was found that there was a localized region of high turbulence near the suction surface leading edge at high incidence. This turbulence amplification is thought to be due to the interaction of the free-shear layer with the freestream inlet turbulence. The presence of the local high turbulence affects the development of the short laminar separation bubble that forms very near the suction side leading edge of these blades. Calculations indicate that the local high levels of turbulence can cause rapid transition in the laminar bubble allowing it to reattach as a short “non-burst” type.The high turbulence, which can reach point values greater than 25% at high incidence, is the reason that leading edge laminar separation bubbles can reattach in the high pressure gradient regions near the leading edge. Two variations for inlet turbulence intensity were measured for this cascade. The first is the variation ofmaximum inlet turbulence with respect to inlet-flow angle; and the second is the variation of leading edge turbulence with respect to upstream distance from the leading edge of the blades.
APA, Harvard, Vancouver, ISO, and other styles
24

Ding, F., C. B. Shen, W. Huang, and J. Liu. "Numerical validation and back-pressure effect on internal compression flows of typical supersonic inlet." Aeronautical Journal 119, no. 1215 (May 2015): 631–45. http://dx.doi.org/10.1017/s0001924000010721.

Full text
Abstract:
AbstractA numerical study was conducted to analyse the performance of different turbulence models and different turbulence intensities and turbulence length scales specified for the boundary condition of the inflow to the internal compression flow field of a typical supersonic inlet. The effect of the back-pressure ratio on the properties of the flow field was also investigated. Computational results obtained by the commercial software FLUENT, which is used to solve the full two-dimensional Reynolds-averaged Navier-Stokes equations, were validated through both graphical and quantitative comparisons with previously published experimental data. The two-equation models that were considered in this study are the RNGk-ε, realisablek-ε, standardk-ε, and SSTk-ω turbulence models. The RNGk-ε model had the best performance among the four models and predicted good wall pressure distributions. The best agreement between the predicted results and experimental data was obtained when either the default values of the freestream turbulence intensity and length scale in the FLUENT solver were used, or the empirical formula was used to calculate the two parameters of the freestream turbulence properties. The shock wave pattern varied between the oblique mode and the fully developed normal mode with increasing back-pressure ratio, and the unstart phenomenon occurred when the back-pressure ratio was sufficiently high.
APA, Harvard, Vancouver, ISO, and other styles
25

Fraser, C. J., J. S. Milne, and ID Gardiner. "The Effect of Pressure Gradient and Freestream Turbulence Intensity on the Length of Transitional Boundary Layers." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 202, no. 3 (May 1988): 195–203. http://dx.doi.org/10.1243/pime_proc_1988_202_107_02.

Full text
Abstract:
The paper presents the results of an experimental investigation aimed at an elucidation of the individual and collective influence of freestream turbulence intensity and pressure gradient on the length of the transitional boundary layer. A correlation for the transition length Reynolds number is developed and used, in an intermittency-based computational scheme, to predict the transitional boundary layer behaviour in a number of practical flows representative of the suction surface of gas turbine blading.
APA, Harvard, Vancouver, ISO, and other styles
26

Lidtke, Artur K., Maarten Klapwijk, and Thomas Lloyd. "Scale-Resolving Simulations of a Circular Cylinder Subjected to Low Mach Number Turbulent Inflow." Journal of Marine Science and Engineering 9, no. 11 (November 16, 2021): 1274. http://dx.doi.org/10.3390/jmse9111274.

Full text
Abstract:
Inflow turbulence is relevant for many engineering applications relating to noise generation, including aircraft wings, landing gears, and non-cavitating marine propellers. While modelling of this phenomenon is well-established for higher Mach number aerospace problems, lower Mach number applications, which include marine propellers, still lack validated numerical tools. For this purpose, simplified cases for which extensive measurement data are available can be used. This paper investigates the effect of inflow turbulence on a circular cylinder at a Reynolds number of 14,700, a Mach number of 0.029, and with inflow turbulence intensities ranging between 0% and 22%. In the present work focus is put on the hydrodynamics aspect, with the aim of addressing radiated noise in a later study. The flow is simulated using the partially averaged Navier Stokes equations, with turbulence inserted using a synthetic inflow turbulence generator. Results show that the proposed method can successfully replicate nearfield pressure variations and relevant flow features in the wake of the body. In agreement with the literature, increasing inflow turbulence intensity adds broadband frequency content to all the presented fluctuating flow quantities. In addition, the applied variations in inflow turbulence intensity result in a major shift in flow dynamics around a turbulence intensity of 15%, when the dominant effect of von Kármán vortices on the dominant flow dynamics becomes superseded by freestream turbulence.
APA, Harvard, Vancouver, ISO, and other styles
27

Öztürk, B., and M. T. Schobeiri. "Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Reattachment Along the Suction Surface of a Low-Pressure Turbine Blade." Journal of Fluids Engineering 129, no. 6 (October 31, 2006): 747–63. http://dx.doi.org/10.1115/1.2734188.

Full text
Abstract:
This paper experimentally investigates the individual and combined effects of periodic unsteady wake flows and freestream turbulence intensity (FSTI) on flow separation along the suction surface of a low-pressure turbine blade. The experiments were carried out at a Reynolds number of 110,000 based on the suction surface length and the cascade exit velocity. The experimental matrix includes freestream turbulence intensities of 1.9%, 3.0%, 8.0%, and 13.0%, and three different unsteady wake frequencies with the steady inlet flow as the reference configuration. Detailed boundary layer measurements are performed along the suction surface of a highly loaded turbine blade with a separation zone. Particular attention is paid to the aerodynamic behavior of the separation zone at different FSTIs at steady and periodic unsteady flow conditions. The objective of the research is (i) to quantify the effect of FSTIs on the dynamics of the separation bubble at steady inlet flow conditions and (ii) to investigate the combined effects of Tuin and the unsteady wake flow on the behavior of the separation bubble.
APA, Harvard, Vancouver, ISO, and other styles
28

Takahashi, Hidemi, Hidetoshi Iijima, Mitsuru Kurita, and Seigo Koga. "Evaluation of Skin Friction Drag Reduction in the Turbulent Boundary Layer Using Riblets." Applied Sciences 9, no. 23 (November 29, 2019): 5199. http://dx.doi.org/10.3390/app9235199.

Full text
Abstract:
A unique approach to evaluate the reduction of skin friction drag by riblets was applied to boundary layer profiles measured in wind tunnel experiments. The proposed approach emphasized the turbulent scales based on hot-wire anemometry data obtained at a sampling frequency of 20 kHz in the turbulent boundary layer to evaluate the skin friction drag reduction. Three-dimensional riblet surfaces were fabricated using aviation paint and were applied to a flat-plate model surface. The turbulent statistics, such as the turbulent scales and intensities, in the boundary layer were identified based on the freestream velocity data obtained from the hot-wire anemometry. Those turbulent statistics obtained for the riblet surface were compared to those obtained for a smooth flat plate without riblets. Results indicated that the riblet surface increased the integral scales and decreased the turbulence intensity, which indicated that the turbulent structure became favorable for reducing skin friction drag. The proposed method showed that the current three-dimensional riblet surface reduced skin friction drag by about 2.8% at a chord length of 67% downstream of the model’s leading edge and at a freestream velocity of 41.7 m/s (Mach 0.12). This result is consistent with that obtained by the momentum integration method based on the pitot-rake measurement, which provided a reference dataset of the boundary layer profile.
APA, Harvard, Vancouver, ISO, and other styles
29

McIlroy, Hugh M., and Ralph S. Budwig. "The Boundary Layer Over Turbine Blade Models With Realistic Rough Surfaces." Journal of Turbomachinery 129, no. 2 (February 1, 2005): 318–30. http://dx.doi.org/10.1115/1.2218572.

Full text
Abstract:
Results are presented of extensive boundary layer measurements taken over a flat, smooth plate model of the front one-third of a turbine blade and over the model with an embedded strip of realistic rough surface. The turbine blade model also included elevated freestream turbulence and an accelerating freestream in order to simulate conditions on the suction side of a high-pressure turbine blade. The realistic rough surface was developed by scaling actual turbine blade surface data provided by U.S. Air Force Research Laboratory. The rough patch can be considered to be an idealized area of distributed spalls with realistic surface roughness. The results indicate that bypass transition occurred very early in the flow over the model and that the boundary layer remained unstable (transitional) throughout the entire length of the test plate. Results from the rough patch study indicate the boundary layer thickness and momentum thickness Reynolds numbers increased over the rough patch and the shape factor increased over the rough patch but then decreased downstream of the patch. It was also found that flow downstream of the patch experienced a gradual retransition to laminar-like behavior but in less time and distance than in the smooth plate case. Additionally, the rough patch caused a significant increase in streamwise turbulence intensity and normal turbulence intensity over the rough patch and downstream of the patch. In addition, the skin friction coefficient over the rough patch increased by nearly 2.5 times the smooth plate value. Finally, the rough patch caused the Reynolds shear stresses to increase in the region close the plate surface.
APA, Harvard, Vancouver, ISO, and other styles
30

Oo, Aung N., and Chan Y. Ching. "Effect of Turbulence With Different Vortical Structures on Stagnation Region Heat Transfer." Journal of Heat Transfer 123, no. 4 (January 20, 2001): 665–74. http://dx.doi.org/10.1115/1.1375165.

Full text
Abstract:
The effect of freestream turbulence with different vortical structures on the stagnation region heat transfer was experimentally studied. Reynolds numbers, based on leading edge diameter of the heat transfer model with a cylindrical leading edge, ranged from 67,750 to 142,250. Turbulence generating grids of parallel rods were placed at several positions upstream of the heat transfer model in orientations where the rods were perpendicular and parallel to the stagnation line. The turbulence intensity and ratio of integral length scale to leading edge diameter were in the range 3.93 to 11.78 percent and 0.07 to 0.70, respectively. The grids with rods perpendicular to the stagnation line, where the primary vortical structures are expected to be perpendicular to the stagnation line, result in higher heat transfer than those with rods parallel to the stagnation line. The measured heat transfer data and turbulence characteristics are compared with existing correlation models.
APA, Harvard, Vancouver, ISO, and other styles
31

Suzen, Y. B., and P. G. Huang. "Comprehensive validation of an intermittency transport model for transitional low-pressure turbine flows." Aeronautical Journal 109, no. 1093 (March 2005): 101–18. http://dx.doi.org/10.1017/s0001924000000610.

Full text
Abstract:
Abstract A transport equation for the intermittency factor is employed to predict transitional flows under the effects of pressure gradients, freestream turbulence intensities, Reynolds number variations, flow separation and reattachment, and unsteady wake-blade interactions representing diverse operating conditions encountered in low-pressure turbines. The intermittent behaviour of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, μτ with the intermittency factor, γ. Turbulent quantities are predicted by using Menter’s two-equation turbulence model (SST). The onset location of transition is obtained from correlations based on boundary-layer momentum thickness, accelaration parameter, and turbulence intensity. The intermittency factor is obtained from a transport model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The intermittency transport model is tested and validated against several well documented low pressure turbine experiments ranging from flat plate cases to unsteady wake-blade interaction experiments. Overall, good agreement between the experimental data and computational results is obtained illustrating the predicting capabilities of the model and the current intermittency transport modelling approach for transitional flow simulations.
APA, Harvard, Vancouver, ISO, and other styles
32

LI, S. C., S. H. LIU, and Y. L. WU. "A NEW TYPE OF CAVITATION DAMAGE TRIGGERED BY BOUNDARY-LAYER TURBULENT PRODUCTION." Modern Physics Letters B 21, no. 20 (August 30, 2007): 1285–96. http://dx.doi.org/10.1142/s0217984907013456.

Full text
Abstract:
A new type of cavitation damage has been observed on the turbines installed at the Three Gorges Power Station despite no cavitation detected during model tests. Metallurgical and fluid dynamic analysis suggests that this cavitation is triggered by boundary-layer turbulent production; the damaged (roughened) spot in turn triggers subsequent cavitation (damage) immediately down stream. This forms a sustainable dynamic process, resulting in long and equal-width streamwise damage-strips with spanwise regularity reflecting the spanwise stochastic characteristics of turbulent production. Owing to the heat effect of cavitation, intergranular corrosion takes place through sensitization process, leaving the damaged surface with a corrosion appearance. Also, bluing presents at the damaged tails, owing to the nature of low-intensity damage. Extremely large turbines are much more susceptible to this type of cavitation (damage) owing to the similarity laws currently employed for turbine development not concerning the freestream turbulence and the boundary-layer dynamics.
APA, Harvard, Vancouver, ISO, and other styles
33

Vasnev, I. R., and N. N. Fedorova. "Numerical modeling of heating a heat flux gauge in a supersonic flow." Journal of Physics: Conference Series 2389, no. 1 (December 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2389/1/012010.

Full text
Abstract:
Abstract This paper has developed a mathematical model for calculating the conjugate heat transfer between a supersonic airflow at the freestream Mach numbers M ∞ = 3, 4, 5, and a copper plate simulating the sensitive thermocouple element. The calculation results are compared with the experiment. The calculations show the effect of turbulence intensity, temperature boundary condition, and flow rate on sensor heating. The results of the sensor's initial heat fluxes, maximum temperatures, and heating times in different flow regimes are presented. Also, the flow regimes with an adiabatic wall are considered. As a result of calculations, it is shown that for the given freestream Mach numbers under "cold" wall temperature conditions, the sensor warms up to the maximum temperature in 1.5-3 seconds and reaches temperatures from 789 to 1076 K. If the adiabatic conditions are assumed at the channel walls, depending on the Mach number at the channel entrance, the sensor is heated from 1600 to 2250 K.
APA, Harvard, Vancouver, ISO, and other styles
34

Govindarajan, Rama, and R. Narasimha. "The Role of Residual Nonturbulent Disturbances on Transition Onset in Two-Dimensional Boundary Layers." Journal of Fluids Engineering 113, no. 1 (March 1, 1991): 147–49. http://dx.doi.org/10.1115/1.2926488.

Full text
Abstract:
An analysis of procedures in current use for prediction of transition onset location shows that they are generally in poor agreement with data obtained in test facilities at low freestream turbulence levels. It has been shown elsewhere that under such conditions transition is driven by residual nonturbulent disturbances in the facility. A method is developed for taking such disturbances into account by defining an equivalent free-stream turbulence intensity; values for this parameter are derived for each facility from which onset data are available. A new correlation incorporating this effect is shown to be in good agreement with all available data on two-dimensional flows with pressure gradient. The correlation suggests that the onset Reynolds number (based on boundary-layer thickness) depends inversely on the total disturbance level when the latter is low.
APA, Harvard, Vancouver, ISO, and other styles
35

Houtermans, Re´gis, Thomas Coton, and Tony Arts. "Aerodynamic Performance of a Very High Lift Low Pressure Turbine Blade With Emphasis on Separation Prediction." Journal of Turbomachinery 126, no. 3 (July 1, 2004): 406–13. http://dx.doi.org/10.1115/1.1748416.

Full text
Abstract:
The present paper is based on an experimental study of a front-loaded very high lift, low pressure turbine blade designed at the VKI. The experiments have been carried out in a low-speed wind tunnel over a wide operating range of incidence and Reynolds number. The aim of the study is to characterize the flow through the cascade in terms of losses, mean outlet flow angle, and secondary flows. At low inlet freestream turbulence intensity, a laminar separation bubble is present, and a prediction model for a separated flow mode of transition has been developed.
APA, Harvard, Vancouver, ISO, and other styles
36

Chen, Yu, and Nick Gibbons. "Simulations of Hypersonic Boundary-Layer Transition over a Flat Plate with the Spalart-Allmaras One-Equation BCM Transitional Model." Mathematics 10, no. 19 (September 21, 2022): 3431. http://dx.doi.org/10.3390/math10193431.

Full text
Abstract:
Transitional flow has a significant impact on vehicles operating at supersonic and hypersonic speeds. An economic way to simulate this problem is to use computational fluid dynamics (CFD) codes. However, not all CFD codes can solve transitional flows. This paper examines the ability of the Spalart–Allmaras one-equation BCM (SA-BCM) transitional model to solve hypersonic transitional flow, implemented in the open-source CFD code Eilmer. Its performance is validated via existing wind tunnel data. Eight different hypersonic flow conditions are applied. A flat plate model is built for the numerical tests. The results indicate that the existing SA-BCM model is sensitive to the freestream turbulence intensity and the grid size. It is not accurate in all the test cases, though the transitional length can be matched by tuning the freestream intensity. This is likely due to the intermittency term of the SA-BCM model not being appropriately calibrated for high-velocity flow, though if the model can be recalibrated it may be able to solve the general high-velocity flows. Although the current SA-BCM model is only accurate under certain flow conditions after one calibration process, it remains attractive to CFD applications. As a one-equation model, the SA-BCM model runs much faster than multiple-equation flow models.
APA, Harvard, Vancouver, ISO, and other styles
37

Suzen, Y. B., P. G. Huang, Lennart S. Hultgren, and David E. Ashpis. "Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation." Journal of Turbomachinery 125, no. 3 (July 1, 2003): 455–64. http://dx.doi.org/10.1115/1.1580159.

Full text
Abstract:
A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, μt, with the intermittency factor, γ. Turbulent quantities are predicted by using Menter’s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.
APA, Harvard, Vancouver, ISO, and other styles
38

Ruan, Xiaodong, Xu Zhang, Pengfei Wang, Jiaming Wang, and Zhongbin Xu. "Numerical Investigation of the Turbulent Wake-Boundary Interaction in a Translational Cascade of Airfoils and Flat Plate." Energies 13, no. 17 (August 31, 2020): 4478. http://dx.doi.org/10.3390/en13174478.

Full text
Abstract:
Rotor stator interaction (RSI) is an important phenomenon influencing performances in the pump, turbine, and compressor. In this paper, the correlation-based transition model is used to study the RSI phenomenon between a translational cascade of airfoils and a flat plat. A comparison was made between computational results and experimental results. The computational boundary layer velocity is in reasonable agreement with the experimental velocity. The thickness of boundary layer decreases as the RSI frequency increases and it increases as the fluid flows downstream. The spectral plots of velocity fluctuations at leading edge x/c = 2 under RSI partial flow condition f = 20 Hz and f = 30 Hz are dominated by a narrowband component. RSI frequency mainly affects the turbulence intensity in the freestream region. However, it has little influence on the turbulence intensity of boundary layer near the wall. A secondary vortex is induced by the wake–boundary layer interaction and it leads to the formation of a thickened laminar boundary layer. The negative-vorticity wake also facilitates the formation of a thickened boundary layer while the positive-vorticity wake has a similar effect, like a calmed region which makes the boundary layer thinner.
APA, Harvard, Vancouver, ISO, and other styles
39

Higazy, M. G. "Numerical prediction of transition boundary-layer flows using new intermittency transport equation." Aeronautical Journal 106, no. 1060 (June 2002): 337–47. http://dx.doi.org/10.1017/s000192400009610x.

Full text
Abstract:
AbstractIn this paper, a new transport equation for the intermittency factor is proposed to model the transition flows. The intermittency behaviour of the transition flows is incorporated into the differential methods for solving the boundary-layer equations, which deal numerically with the basic partial differential equations. The present model accuracy and validity have been tested against a series of recent published experiments, for low Reynolds number, including flows with different freestream turbulence intensities and different pressure-gradients, such as aerofoil and flat plate flows. A comparison of the present method and two different prediction techniques is also given.The significance of the proposed transport intermittency equation is to reproduce the streamwise variation of the intermittency factor in the transition zone. This method is found suitable and reliable to predict flows with positive or favourable pressure-gradient cases and with turbulence intensity level up to 6%.The method also confirmed the importance of estimating the start of transition, present formula. The present formula is suitable and straightforward to use. For all test cases good agreement between the computed results and the experimental data are observed.
APA, Harvard, Vancouver, ISO, and other styles
40

Chung, Ping-Han, Chin-Cheng Chou, Ray-Yeng Yang, and Cheng-Yang Chung. "Wind Loads on a PV Array." Applied Sciences 9, no. 12 (June 17, 2019): 2466. http://dx.doi.org/10.3390/app9122466.

Full text
Abstract:
This study experimentally determines the wind loads on a stand-alone solar array (length-to-width ratio of 0.19; 1/10-scale commercial modules). The freestream velocity in a uniform flow is 14.5 ± 0.1 m/s, and the turbulence intensity is 0.3%. The angle of tilt ranges from 10° to 80° and the wind is incident at angle of 0°–180°. Mean surface pressure measurements on the upper and the lower surface of the inclined solar panels are used to calculate the lift coefficient. For the angle of incidence of 0°–60° for the wind, the variation in the lift coefficient with the angle of tilt is U-shaped. The formation of a strong windward corner vortex results in greater lift force on the right half of the inclined plate for the angle of incidence of 30°–45° for the wind.
APA, Harvard, Vancouver, ISO, and other styles
41

Lu, Xingen, Yanfeng Zhang, Wei Li, Shuzhen Hu, and Junqiang Zhu. "Effects of periodic wakes on boundary layer development on an ultra-high-lift low pressure turbine airfoil." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 231, no. 1 (September 29, 2016): 25–38. http://dx.doi.org/10.1177/0957650916671421.

Full text
Abstract:
The laminar-turbulent transition process in the boundary layer is of significant practical interest because the behavior of this boundary layer largely determines the overall efficiency of a low pressure turbine. This article presents complementary experimental and computational studies of the boundary layer development on an ultra-high-lift low pressure turbine airfoil under periodically unsteady incoming flow conditions. Particular emphasis is placed on the influence of the periodic wake on the laminar-turbulent transition process on the blade suction surface. The measurements were distinctive in that a closely spaced array of hot-film sensors allowed a very detailed examination of the suction surface boundary layer behavior. Measurements were made in a low-speed linear cascade facility at a freestream turbulence intensity level of 1.5%, a reduced frequency of 1.28, a flow coefficient of 0.70, and Reynolds numbers of 50,000 and 100,000, based on the cascade inlet velocity and the airfoil axial chord length. Experimental data were supplemented with numerical predictions from a commercially available Computational Fluid Dynamics code. The wake had a significant influence on the boundary layer of the ultra-high-lift low pressure turbine blade. Both the wake’s high turbulence and the negative jet behavior of the wake dominated the interaction between the unsteady wake and the separated boundary layer on the suction surface of the ultra-high-lift low pressure turbine airfoil. The upstream unsteady wake segments convecting through the blade passage behaved as a negative jet, with the highest turbulence occurring above the suction surface around the wake center. Transition of the unsteady boundary layer on the blade suction surface was initiated by the wake turbulence. The incoming wakes promoted transition onset upstream, which led to a periodic suppression of the separation bubble. The loss reduction was a compromise between the positive effect of the separation reduction and the negative effect of the larger turbulent-wetted area after reattachment due to the earlier boundary layer transition caused by the unsteady wakes. It appeared that the successful application of ultra-high-lift low pressure turbine blades required additional loss reduction mechanisms other than “simple” wake-blade interaction.
APA, Harvard, Vancouver, ISO, and other styles
42

Wang, Ting, and Matthew C. Rice. "Effect of Elevated Free-Stream Turbulence on Transitional Flow Heat Transfer Over Dual-Scaled Rough Surfaces." Journal of Heat Transfer 127, no. 4 (March 30, 2005): 393–403. http://dx.doi.org/10.1115/1.1861920.

Full text
Abstract:
The surface roughness over a serviced turbine airfoil is usually multiscaled with varying features that are difficult to be universally characterized. However, it was previously discovered in low free-stream turbulence conditions that the height of larger roughness produces separation and vortex shedding, which trigger early transition and exert a dominant effect on flow pattern and heat transfer. The geometry of the roughness and smaller roughness scales played secondary roles. This paper extends the previous study to elevated turbulence conditions with free-stream turbulence intensity ranging from 0.2% to 6.0%. A simplified test condition on a flat plate is conducted with two discrete regions having different surface roughness. The leading-edge roughness is comprised of a sandpaper strip or a single cylinder. The downstream surface is either smooth or covered with sandpaper of grit sizes ranging from 100 to 40 Ra=37-119 μm. Hot wire measurements are conducted in the boundary layer to study the flow structure. The results of this study verify that the height of the largest-scale roughness triggers an earlier transition even under elevated turbulence conditions and exerts a more dominant effect on flow and heat transfer than does the geometry of the roughness. Heat transfer enhancements of about 30–40%-over the entire test surface are observed. The vortical motion, generated by the backward facing step at the joint of two roughness regions, is believed to significantly increase momentum transport across the boundary layer and bring the elevated turbulence from the freestream towards the wall. No such long-lasting heat transfer phenomenon is observed in low free-stream turbulence cases even though vortex shedding also exists in the low turbulence cases. The heat transfer enhancement decreases, instead of increases, as the downstream roughness height increases.
APA, Harvard, Vancouver, ISO, and other styles
43

Ligrani, Phil. "Aerodynamic Losses in Turbines with and without Film Cooling, as Influenced by Mainstream Turbulence, Surface Roughness, Airfoil Shape, and Mach Number." International Journal of Rotating Machinery 2012 (2012): 1–28. http://dx.doi.org/10.1155/2012/957421.

Full text
Abstract:
The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i) symmetric airfoils with no film cooling, (ii) symmetric airfoils with film cooling, (iii) cambered vanes with no film cooling, and (iv) cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.
APA, Harvard, Vancouver, ISO, and other styles
44

French, Aaron, Wilhelm Friess, Andrew Goupee, and Keith Berube. "Design, Construction and Evaluation of an Oscillating Vane Gust Generator for Atmospheric Flow Simulation." Wind 1, no. 1 (November 11, 2021): 63–76. http://dx.doi.org/10.3390/wind1010004.

Full text
Abstract:
The study of unsteady aerodynamic phenomena in wind tunnels is supported by gust-generating devices capable of generating adjustable magnitude and periodicity velocity fluctuations in a flowfield. Gusts are typically generated actively by introducing moving vanes to direct the flow, or passively by tailoring the boundary layer growth and shape in the tunnel. The flow facility used here is a student-built closed-return low-speed wind tunnel, with a test section size of 750 mm × 750 mm and a maximum speed of 25 m/s. A two-vane gust generator utilizing NACA0018 airfoil sections of 150 mm chord length was designed and installed upstream of the test section. The flowfield was mapped with the installed vanes with and without gust actuation, utilizing a hot wire system. The tunnel with gust vanes exhibits a spatially uniform baseline turbulence intensity of 5%, with a steady state velocity deficit of 1 m/s in the vane–wake region. Upon introducing the gusting conditions at vane deflection angles of up to ±45°, velocity differences of up to 4 m/s were attained at 18 m/s freestream velocity at oscillation frequencies ranging between 1 Hz and 2 Hz.
APA, Harvard, Vancouver, ISO, and other styles
45

Yu, Qiuyang, Xintao Li, Weiwei Zhang, and Shengjin Xu. "Stability analysis for laminar separation flutter of an airfoil in the transitional flow regime." Physics of Fluids 34, no. 3 (March 2022): 034118. http://dx.doi.org/10.1063/5.0085621.

Full text
Abstract:
Laminar separation flutter (LSF) is a type of aeroelastic instability phenomenon characterized by small-amplitude low-frequency pitching oscillations of the airfoil. The present study aims to gain insight into the intrinsic dynamics of LSF via data-driven stability analysis. The proposed data-driven approach relies on the autoregressive with exogenous input (ARX) technique to design reduced-order models (ROMs) of unsteady aerodynamics in a state-space format. First, high-fidelity full-order numerical simulations of the LSF phenomenon are performed using the incompressible Unsteady Reynolds-Averaged Navier–Stokes equations and the Shear-Stress Transport [Formula: see text] turbulence model with Low-Reynolds-number correction. The calculated LSF responses show good agreement with previous experimental data in the literature. Then, linear stability analysis (LSA) of the aeroelastic system is carried out to reveal the underlying fluid-structure interaction mechanism. The LSA model is developed by coupling the ROM with the structure motion equation. LSA results indicate that the LSF phenomenon is primarily caused by the instability of the structure mode (SM), which is induced by the mutual repulsion effect between one static fluid mode (FM) and the SM. The presence of laminar separation near the trailing-edge of the airfoil can significantly reduce the stability of the static FM, which ultimately strengthens the fluid-structure coupling effect and leads to LSF. We would like to emphasize that LSF is essentially different from other flow-induced vibration phenomena, such as transonic buffeting of an airfoil and vortex-induced vibration of bluff bodies, for which the instabilities are triggered by the coupling between one dynamic FM and the SM. Finally, the effects of the mass ratio, structural damping ratio, and freestream turbulence intensity on the aeroelastic system are also investigated.
APA, Harvard, Vancouver, ISO, and other styles
46

Saumweber, Christian. "Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes." Journal of Turbomachinery 126, no. 2 (April 1, 2004): 237–46. http://dx.doi.org/10.1115/1.1731395.

Full text
Abstract:
A comprehensive set of generic experiments is conducted to investigate the interaction of film cooling rows. Five different film cooling configurations are considered on a large-scale basis each consisting of two rows of film cooling holes in staggered arrangement. The hole pitch to diameter ratio within each row is kept constant at P/D=4. The spacing between the rows is either x/D=10, 20, or 30. Fan-shaped holes or simple cylindrical holes with an inclination angle of 30 deg and a hole length of 6-hole diameters are used. With a hot gas Mach number of Mam=0.3, an engine like density ratio of ρc/ρm=1.75, and a freestream turbulence intensity of Tu=5.1% are established. Operating conditions are varied in terms of blowing ratio for the upstream and, independently, the downstream row in the range 0.5<M<2.0. The results illustrate the importance of considering ejection into an already film-cooled boundary layer. Adiabatic film cooling effectiveness and heat transfer coefficients are significantly increased. The decay of effectiveness with streamwise distance is much less pronounced downstream of the second row primarily due to pre-cooling of the boundary layer by the first row of holes. Additionally, a comparison of measured effectiveness data with predictions according to the widely used superposition model of Sellers is given for two rows of fanshaped holes.
APA, Harvard, Vancouver, ISO, and other styles
47

Sutardi, S., and Agung E. Nurcahya. "Experimental Study on the Effect of Vortex Generator on the Aerodynamic Characteristics of NASA LS-0417 Airfoil." Applied Mechanics and Materials 758 (April 2015): 63–69. http://dx.doi.org/10.4028/www.scientific.net/amm.758.63.

Full text
Abstract:
Boundary layer flow structure developing on an airfoil surfaces strongly affects drag and lift forces acting on the body. Many studies have been done to reduce drag, such as introducing surface roughness on the airfoil surface, gas injection, attachment of vortex generators, or moving surface on the airfoil. Previous results showed that the attachment of vortex generators has potentially been able to control boundary layer separation compared to other controlling devices. This study is focused on the evaluation of the effect of vortex generator attachment on the NASA LS-0417 airfoil profile as this profile is commonly used in wind turbine blade application. The models of this experimental study are NASA LS-0417 profiles, with and without vortex generator. The chord length of the profile is 110 mm, while the span is 210 mm. Profile of the vortex generator is a symmetrical profile of NACA 0012 configured in counter rotating and attached on the upper surface of the main profile. The chord length of the vortex generator is 7 mm with two different values of the height (h): 1 mm and 2 mm. The experiment was conducted in an open loop wind tunnel with maximum attainable freestream velocity of approximately 19 m/s and the turbulence intensity at the tunnel centerline is approximately 0.8%. The wind tunnel cross section is octagonal of 30 cm x 30 cm and of 45 cm to 60 cm adjustable length. The study was performed at two different freestream velocities of 12 m/s and 17 m/s corresponding with Reynolds numbers (Re) of 0.83 x 105 and 1.18 x 105 based on the airfoil chord length and the freestream velocity. Angle of attact (α) was varied from 0o to 24o. Drag and lift were measured using a force balance with measurement uncertainty of approximately 0.77% and 2.47% at measured drag of 0.65N and at measured lift of 0.202N, respectively. A flow visualization study using oil flow method was conducted to obtain qualitaive picture of flow structure on the airfoil surface. Results of this study showed that attachment of the vortex generator on the NASA LS-0417 profile has not been able to improve the profile performance compared to that of unmodified profile. There, however, seems Reynolds number effect on the airfoil performance flow conditions performed in this study. At lager Re, there is an increase in CL/CD of approximately 36% at angle of attack (α) 6o. Next, based on the flow visualization results, attachment of the 2mm vortex generator on the airfoil NASA LS-0417 surface results in an advancement of boundary layer separation at the two Re’s conducted in this study. Finally, the 2mm vortex generator accelerates airfoil stall at approximately 16o, while the 1mm vortex generator is relatively no effect on the airfoil stall angle.
APA, Harvard, Vancouver, ISO, and other styles
48

Dong, M., J. Liao, Z. Du, and W. Huang. "Influences of lateral jet location and its number on the drag reduction of a blunted body in supersonic flows." Aeronautical Journal 124, no. 1277 (February 13, 2020): 1055–69. http://dx.doi.org/10.1017/aer.2020.4.

Full text
Abstract:
ABSTRACTThe analysis of the aerodynamic environment of the re-entry vehicle attaches great importance to the design of the novel drag reduction strategies, and the combinational spike and jet concept has shown promising application for the drag reduction in supersonic flows. In this paper, the drag force reduction mechanism induced by the combinational spike and lateral jet concept with the freestream Mach number being 5.9332 has been investigated numerically by means of the two-dimensional axisymmetric Navier-Stokes equations coupled with the shear stress transport (SST) k-ω turbulence model, and the effects of the lateral jet location and its number on the drag reduction of the blunt body have been evaluated. The obtained results show that the drag force of the blunt body can be reduced more profoundly when employing the dual lateral jets, and its maximum percentage is 38.81%, with the locations of the first and second lateral jets arranged suitably. The interaction between the leading shock wave and the first lateral jet has a great impact on the drag force reduction. The drag force reduction is more evident when the interaction is stronger. Due to the inclusion of the lateral jet, the pressure intensity at the reattachment point of the blunt body decreases sharply, as well as the temperature near the walls of the spike and the blunt body, and this implies that the multi-lateral jet is beneficial for the drag reduction.
APA, Harvard, Vancouver, ISO, and other styles
49

Schroeder, Robert P., and Karen A. Thole. "Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity." Journal of Turbomachinery 139, no. 2 (November 2, 2016). http://dx.doi.org/10.1115/1.4034798.

Full text
Abstract:
Shaped holes are increasingly selected for airfoil cooling in gas turbines due to their superior performance over that of cylindrical holes, especially at high blowing ratios. The performance of shaped holes is regarded to be the result of the diffused outlet, which slows and laterally spreads coolant, causing coolant to remain close to the wall. However, few thermal field measurements exist to verify this behavior at high blowing ratio or to evaluate how high freestream turbulence alters the coolant distribution in jets from shaped holes. The present study reports measured thermal fields, along with measured flowfields, for a shaped hole at blowing ratios up to three at both low and high freestream turbulence intensities of 0.5% and 13.2%. Thermal fields at low freestream turbulence intensity showed that the coolant jet was initially attached, but far downstream of the hole the jet lifted away from the surface due to the counter-rotating vortex pair. Elevated freestream turbulence intensity was found to cause strong dilution of the coolant jet and also increased dispersion, almost exclusively in the lateral as opposed to the vertical direction. Dominance of lateral dispersion was due to the influence of the wall on freestream eddies, as indicated from changes in turbulent shear stress between the low and high freestream turbulence cases.
APA, Harvard, Vancouver, ISO, and other styles
50

Albiez, Holger, Christoph Gramespacher, Matthias Stripf, and Hans-Jörg Bauer. "High-Resolution Measurements of Heat Transfer, Near-Wall Intermittency, and Reynolds-Stresses Along a Flat Plate Boundary Layer Undergoing Bypass Transition." Journal of Heat Transfer 142, no. 4 (February 27, 2020). http://dx.doi.org/10.1115/1.4045756.

Full text
Abstract:
Abstract A new experimental dataset focusing on the influence of high freestream turbulence and large pressure gradients on boundary layer transition is presented. The experiments are conducted in a new wind tunnel equipped with a flat plate test section and a new kind of turbulence generator, which allows for a continuous variation of turbulence intensity. The flat plate is mounted midway between contoured top and bottom walls. Two different wall contours can be implemented to create pressure distributions on the flat plate that are typical for the pressure and suction side of high pressure turbine cascades. A large variation of Reynolds number from 3.0 × 105 to 7.5 × 105 and inlet turbulence intensity between 1.1% and 8% is realized, resulting in more than 100 test cases. Measurements comprise highly resolved heat transfer, near-wall intermittency and freestream Reynolds stress distributions. Near-wall intermittency is measured using a traversable hotfilm sensor while freestream Reynolds stresses are measured simultaneously at the same position with a revolvable X-wire probe. Additionally, turbulent length scales are analyzed using the X-wire signal along the flat plate. Results show that heat transfer and near-wall intermittency distributions are in good agreement and that heat transfer at high turbulence levels increases prior to the formation of first turbulence spots. Transition onset is found to be influenced by the turbulence Reynolds number, i.e., turbulent length scales. At constant inlet turbulence intensity, transition onset moves upstream, when the turbulent Reynolds number is decreased.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography