Academic literature on the topic 'Free Surface Flow'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Free Surface Flow.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Free Surface Flow"

1

Minato, Akihiko, Nobuyuki Nakajima, and Takahide Nagahara. "SIMULATION OF FREE SURFACE FLOW BY SP-VOF MODEL(Numerical Simulation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 717–20. http://dx.doi.org/10.1299/jsmeicjwsf.2005.717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hoashi, Eiji, Hirokazu Sugiura, Sachiko Yoshihashi-Suzuki, Takuji Kanemura, Hiroo Kondo, Nobuo Yamaoka, and Hiroshi Horiike. "ICONE19-44185 Study on Surface Wave Characteristics of Free Surface Flow of Lithium for IFMIF." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1944. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1944_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yeh, Harry H., and Mandira Shrestha. "Free‐Surface Flow Through Screen." Journal of Hydraulic Engineering 115, no. 10 (October 1989): 1371–85. http://dx.doi.org/10.1061/(asce)0733-9429(1989)115:10(1371).

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Federico, Vittorio Di. "Free-surface flow of hyperconcentrations." Fluid Dynamics Research 24, no. 1 (January 1999): 23–36. http://dx.doi.org/10.1016/s0169-5983(98)00011-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gupta, Sanjay K. "Section: Free surface flow measurements." Flow Measurement and Instrumentation 54 (April 2017): 273. http://dx.doi.org/10.1016/j.flowmeasinst.2016.11.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, F. J., and G. A. Domoto. "Free-surface Taylor vortices." Journal of Fluid Mechanics 261 (February 25, 1994): 169–98. http://dx.doi.org/10.1017/s0022112094000303.

Full text
Abstract:
The hydrodynamic instability of a viscous incompressible flow with a free surface is studied both numerically and experimentally. While the free-surface flow is basically two-dimensional at low Reynolds numbers, a three-dimensional secondary flow pattern similar to the Taylor vorticies between two concentric cylinders appears at higher rotational speeds. The secondary flow has periodic velocity components in the axial direction and is characterized by a distinct spatially periodic variation in surface height similar to a standing wave. A numerical method, using boundary-fitted coordinates and multigrid methods to solve the Navier–Stokes equations in primitive variables, is developed to treat two-dimensional free-surface flows. A similar numerical technique is applied to the linearized three-dimensional perturbation equations to treat the onset of secondary flows. Experimental measurements have been obtained using light sheet techniques to visualize the secondary flow near the free surface. Photographs of streak lines were taken and compared to the numerical calculations. It has been shown that the solution of the linearized equations contains most of the important features of the nonlinear secondary flows at Reynolds number higher than the critical value. The experimental results also show that the numerical method predicts well the onset of instability in terms of the critical wavenumber and Reynolds number.
APA, Harvard, Vancouver, ISO, and other styles
7

Kamath, Arun, Gábor Fleit, and Hans Bihs. "Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows." Water 11, no. 3 (March 4, 2019): 456. http://dx.doi.org/10.3390/w11030456.

Full text
Abstract:
The modelling of complex free surface flows over weirs and in the vicinity of bridge piers is presented in a numerical model emulating open channel flow based on the Reynolds Averaged Navier-Stokes (RANS) equations. The importance of handling the turbulence at the free surface in the case of different flow regimes using an immiscible two-phase RANS Computational Fluid Dynamics (CFD) model is demonstrated. The free surface restricts the length scales of turbulence and this is generally not accounted for in standard two-equation turbulence modelling approaches. With the two-phase flow approach, large-velocity gradients across the free surface due to the large difference in the density of the fluids can lead to over-production of turbulence. In this paper, turbulence at the free surface is restricted with an additional boundary condition for the turbulent dissipation. The resulting difference in the free surface features and the consequences for the solution of the flow problem is discussed for different flow conditions. The numerical results for the free surface and stream-wise velocity gradients are compared to experimental data to show that turbulence damping at the free surface provides a better representation of the flow features in all the flow regimes and especially in cases with rapidly varying flow conditions.
APA, Harvard, Vancouver, ISO, and other styles
8

IZUMI, Norihiro, and Adriano Coutinho DE LIMA. "STABILITY OF FREE SURFACE FLOW REVISITED." Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)) 70, no. 2 (2014): I_801—I_806. http://dx.doi.org/10.2208/jscejam.70.i_801.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mazouchi, Ali, and G. M. Homsy. "Free surface Stokes flow over topography." Physics of Fluids 13, no. 10 (October 2001): 2751–61. http://dx.doi.org/10.1063/1.1401812.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hjorth, P. G. "Stability of free surface sediment flow." Journal of Geophysical Research 95, no. C11 (1990): 20363. http://dx.doi.org/10.1029/jc095ic11p20363.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Free Surface Flow"

1

陳彤{272b21} and Tong Chen. "Numerical computations on free-surface flow." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1999. http://hub.hku.hk/bib/B31238245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, Tong. "Numerical computations on free-surface flow /." Hong Kong : University of Hong Kong, 1999. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21020292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sellar, Alistair Alexander. "Free-surface rapid granular flows." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274642.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jesuthasan, Nirmalakanth. "Optical measurements of a free-surface granular flow." Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=83869.

Full text
Abstract:
The experimental investigation described in this thesis is primarily aimed at acquiring digital particle-tracking velocimetry (DPTV) measurements of a free-surface granular flow down the upper inclined surface of a wedge-shaped static pile of the same material, contained in a narrow channel between two parallel vertical glass plates. The glass plates are 610 mm long and 350 mm high. Three different values of the normal separation distance between them were investigated: 25.4 mm, 38.1 mm, and 50.8 mm. For each of these separation distances, the following three values (nominal) of the mass flow rate per unit width were considered: 0.81 kg/s-m, 1.85 kg/s-m, and 3.33 kg/s-m. The granular material used in this work consists of slightly polydisperse, almost spherical, ceramic (zirconium silicate) beads: mean effective diameter of 1.59 mm and mass density of 4071 kg/m3. For these ranges of dimensional parameters, statistically-steady fully developed flows were established in a reliable and repeatable manner. A high-speed camera system was used to acquire digital images of the granular flows of interest in the fully developed region. Image processing and a commercial PTV software package (DiaTrackPro 2.3) were used to obtain the particle trajectories. Special routines were written in Matlab to obtain the corresponding instantaneous and ensemble-averaged velocity distributions. These results were then used to compute the corresponding distributions of granular temperature and a related dimensionless parameter that is commonly referred to as the Savage-Jeffrey parameter. The aforementioned PTV and data processing procedures, the results in dimensional and dimensionless forms, and the applicability of some recently proposed scaling laws are discussed in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Robertson, Iain. "Free surface flow simulations using high order algorithms." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Tome, Murilo Francisco. "GENSMAC : a multiple free surface fluid flow solver." Thesis, University of Strathclyde, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.689607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Collins, Justin Andrew. "Velocity and free surface measurements of free plane jets." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gutiérrez-Matus, Pablo. "Effects on the free surface of a turbulent flow." Palaiseau, Ecole polytechnique, 2013. http://pastel.archives-ouvertes.fr/docs/00/92/19/54/PDF/PGutierrez-PhdThesis20131219.pdf.

Full text
Abstract:
Nous nous intéressons aux effets en surface induits par un écoulement turbulent, en utilisant une approche expérimentale. Nous étudions un écoulement turbulent de faible épaisseur avec une surface libre. L'écoulement est produit dans un métal liquide à l'aide d'une force électromagnétique. Il présente des tourbillons, des bandes de cisaillement et des ondes, dépendent des conditions de forçage. Trois aspects ont été considérées: la déformation de surface engendré par la turbulence; les effets de la turbulence sur la propagation des ondes; et les effets de la turbulence sur des particules qui flottent à la surface. Concernant la déformation de surface : à mesure que l'on augmente l'intensité du forçage, l'écart type de la déformation augmente de façon linéaire, jusqu'à atteindre le 10% de l'épaisseur du fluide. Les déformations extrêmes peuvent atteindre la moitié de l'épaisseur. A faible forçage, la déformation de surface est principalement liée à la présence des tourbillons, impliquant une distribution de l'hauteur avec un facteur d'asymétrie négatif. Cette observation contraste avec la turbulence d'onde, où une asymétrie est aussi observée, mais avec un facteur d'asymétrie positif, notamment à cause des crêtes pointues dans les ondes de gravité. Le spectre en fréquence de la déformation présente une loi de puissance avec un exposant -5, similaire au spectre de singularité de Phillips. Ainsi, nous avons présenté les empreintes statistiques des tourbillons. Deuxièmement, nous avons considéré un autre aspect de la relation onde-écoulement turbulent : nous avons induit mécaniquement des ondes monochromatiques à la surface de l'écoulement. Lorsque l'écoulement deviens plus intense, nous avons mesure la décroissance et l'élargissement du mode associé à l'onde. Nous avons calculé une moyenne cohérente que souligne l'onde para rapport aux fluctuations turbulentes. Ceci nous permet d'observer la décroissance spatial de l'onde lorsque l'écoulement deviens plus intense. Ces analyses nous ont permit de quantifier une augmentation de l'atténuation des ondes à cause de la turbulence. Si l'on considère des particules qui flottent à la surface du liquide, on s'aperçoit qu'elles ont tendance à former des amas. Ce phénomène est confirmé par une analyse statistique des aires définies par la position des trois particules voisines. Ce faisant, on peut identifier clairement les particules qui appartiennent aux amas. De plus, ces particules présentent une corrélation très forte des vitesses et d'orientation angulaire. Plusieurs mécanismes physiques peuvent induire cette formation des amas: (i) l'inertie des particules ; (ii) des mouvements verticaux secondaires et ; (iii) la déformation de surface. Nous avons construit des quantités pour corréler les effets de concentration de particules avec ses mécanismes. Les corrélations plus importantes sont celles que concernent les mouvements verticaux secondaires, qui l'on interprète comme le mécanisme responsable des effets de concentration
We study surface manifestations of a turbulent flow from an experimental point of view. Specifically we study a turbulent flow in a thin layer of fluid (a liquid metal) with free surface. The flow is generated with an electromagnetic force. It exhibits interacting vortices, shear bands and waves, depending on the forcing conditions. We explored three consequences of the horizontal turbulent motion as observed on the surface: Surface deformation itself; the effects on propagating waves; and the effects on floating particles. Concerning the surface deformation: when the forcing strength is increased, we observe a linear increase of the surface level r. M. S. Fluctuations up to 10% of the liquid layer thickness. Largest deformations, however, can reach a half of the layer thickness. Surface deformation is mainly produced by vortices, thus it is asymmetric through values under the mean. This contrast with observations in random sea waves and wave turbulence, were an asymmetry appears as well --this time through values above the mean--, as a consequence of sharp crests in steep gravity waves. The frequency spectrum of the deformation follows a power-law with an exponent close to -5, similar to the singularity spectrum of Phillips. Thus, we presented the statistical signature of vortical motion. We considered another aspect of the wave-turbulence relation: we mechanically induced a monochromatic wave over the turbulent flow. We measure a reduction and widening of the wave spectral peak that happens when turbulent motion is increased. Also, we computed coherent averages to emphasize the wavy part of the signal. We observe a spatial decay in wave content when turbulent motion is increased. Therefore, we quantified the enhancement of wave attenuation due to turbulence, and we observed its non trivial dependence on the wave frequency. Concerning dynamics of floating particles: We observe that particles have the tendency to form clusters, and we confirm this observation by developing a statistical method based on the areas defined by the position of three nearest neighbors. This tool allows us to clearly identify particles belonging to a cluster. Indeed, clustered particles exhibit much stronger velocity and angular correlations than the unconditioned case. Several mechanisms are susceptible to induce clustering of floating particles. We identify (i) particles' inertia, (ii) upwelling/downwelling flows and (iii) surface tension. For each mechanism we construct suitable quantities, which we correlate with the cumulated concentration of particles. These correlations suggest upwelling and downwelling motions as responsible for particles clustering
APA, Harvard, Vancouver, ISO, and other styles
9

Reichl, Paul 1973. "Flow past a cylinder close to a free surface." Monash University, Dept. of Mechanical Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/9212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Haegyun. "Level-set finite element simulation of free-surface flow." Diss., University of Iowa, 2007. http://ir.uiowa.edu/etd/168.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Free Surface Flow"

1

Blom, P. Turbulent free-surface flow over a sill. [Delft]: Faculty of Civil Engineering, Delft University of Technology, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

R, Wood Ian, ed. Air entrainment in free-surface flows. Rotterdam: A.A. Balkema, 1991.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Paterson, D. A. Depth-averaged equations for turbulent free-surface flow. St. Lucia: University of Queensland, Dept. of Civil Engineering, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Basco, David R. Computation of rapidly varied unsteady, free-surface flow. Reston, Va: Dept. of the Interior, U.S. Geological Survey, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Y, Wang S., and Environmental and Water Resources Institute (U.S.). Task Committee on 3D Free-Surface Flow Model Verification and Validation., eds. Verification and validation of 3D free-surface flow models. Reston, Va: American Society of Civil Engineers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Leendertse, Jan J. A new approach to three-dimensional free-surface flow modeling. Santa Monica, CA: Rand Corporation, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jr, N. C. Reis. Finite volume method to solve free surface fluid flow problems. Manchester: UMIST, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hydraulic gates and valves: In free surface flow and submerged outlets. London: T. Telford, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hydraulic gates and valves in free surface flow and submerged outlets. 2nd ed. London: Thomas Telford, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Naji, Ahmed. Optimization techniques and h-adaptive boundary elements for free surface flow problems. [Ashurst]: Wessex Institute of Technology, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Free Surface Flow"

1

Escher, Joachim, and Kazuo Ito. "On the Intermediate Surface Diffusion Flow." In Free Boundary Problems, 131–38. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-7893-7_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Massey, B. S. "Flow with a Free Surface." In Mechanics of Fluids, 349–409. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-3126-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Massey, B. S. "Flow with a Free Surface." In Mechanics of Fluids, 349–409. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7408-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Oguz, Hasan N., and Jun Zeng. "Numerical Implementation of Free Surface Flow Algorithms." In Drop-Surface Interactions, 259–82. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-2594-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Castro-Orgaz, Oscar, and Willi H. Hager. "Vertically Integrated Non-hydrostatic Free Surface Flow Equations." In Non-Hydrostatic Free Surface Flows, 17–79. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47971-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Blom, P., R. Booij, and J. A. Battjes. "Turbulent Free-Surface Flow Over a Sill." In Topics in Applied Mechanics, 189–96. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2090-6_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Akkerman, I., K. Benner, and Y. Bazilevs. "Free-Surface Flow and Fluid-Object Interaction." In Computational Methods in Applied Sciences, 49–63. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6143-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Finnie, John I. "Finite-Element Methods for Free-Surface Flow." In Computer Modeling of Free-Surface and Pressurized Flows, 115–46. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0964-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hansen, E. B. "Free Surface Stokes Flow Over an Obstacle." In Boundary Elements VIII, 783–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-22335-2_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Almeida, A. Betâmio, and A. Bento Franco. "Modeling of Dam-Break Flow." In Computer Modeling of Free-Surface and Pressurized Flows, 343–73. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0964-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Free Surface Flow"

1

Charlot, Lise, Stephane Etienne, Alexander Hay, and Dominique Pelletier. "Free-surface Flow Lagrangian Sensitivities." In 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-94.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

LOYOLA LAVIN, FRANCISCO ANTONIO, and HARRY EDMAR SCHULZ. "MASS TRANSFER THROUGH FREE SURFACE BOUNDARY LAYERS USING A STATISTICAL APPROACH." In MULTIPHASE FLOW 2019. Southampton UK: WIT Press, 2019. http://dx.doi.org/10.2495/mpf190081.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ji, Hua, Fue-Sang Lien, and Al B. Strong. "LARGE EDDY SIMULATION OF FREE SURFACE FLOW." In Fourth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2005. http://dx.doi.org/10.1615/tsfp4.940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kunugi, Tomoaki, Shin-ichi Satake, and Yasuo Ose. "DIRECT NUMERICAL SIMULATION OF TURBULENT FREE-SURFACE FLOW." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.1000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McKenna, Sean P., Wade R. McGillis, and Erik J. Bock. "FREE-SURFACE TURBULENCE AND AIR-WATER GAS TRANSFER." In First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hinton, Edward, Andrew Hogg, and Herbert Huppert. "Free-surface viscous flow over a depression." In 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/deaeb9f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yalpaniyan, A., and M. Goodarzi. "The Free Surface Flow Around a TLP." In ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2010. http://dx.doi.org/10.1115/omae2010-20021.

Full text
Abstract:
A TLP is a buoyant platform containing four cylindrical columns. The purpose of this study was to consider the effects of different model solvers in the numerical solution on the flow pattern around the TLP. The flow around the TLP was numerically simulated with inviscid, laminar, and turbulent solvers. Three Froude numbers were run for each case. There was a symmetry plane that allowed simulating just one half of the flow field. Therefore, two columns along the symmetry plane were considered in the results discussion. Beside the generated surface waves there was a pair of vortex behind each column none of them were actually symmetric. The vortex behind the first column significantly affected the flow pattern around the second one in the manner that the vortex behind the first column was larger than the next one. In all cases the outer vortex was larger than the inner one. The obtained results showed that the generated waves of the inviscid flow were smoother than the turbulent flow, and also those of the turbulent flow were smoother than the laminar ones. Compared to the mentioned results, the influence of the flow velocity on the wave heights was more significant.
APA, Harvard, Vancouver, ISO, and other styles
8

Darbani, M., A. Ouahsine, P. Villon, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Natural Elements Method for Free Surface Flow." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nakayama, Akihiko, Satoshi Yokojima, and Yukinori Nakase. "MODELING EQUATIONS FOR TURBULENT FLOWS WITH FREE-SURFACE FLUCTUATION." In Third Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2003. http://dx.doi.org/10.1615/tsfp3.670.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Golak, S., and R. Przyłucki. "A simulation of the coupled problem of magnetohydrodynamics and a free surface for liquid metals." In MULTIPHASE FLOW 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/mpf090061.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Free Surface Flow"

1

Stockstill, Richard, Christopher Kees, and Charlie Berger. Modeling Free-Surface Flow Over a Weir. Fort Belvoir, VA: Defense Technical Information Center, August 2006. http://dx.doi.org/10.21236/ada455417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Felder, Stefan, and Hubert Chanson. Air-water flow measurements in instationary free-surface flows: A triple decomposition technique. The University of Queensland, School of Civil Engineering, January 2012. http://dx.doi.org/10.14264/278532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Brooks, Carlton, F., Michael J. Brooks, Alan Lyman Graham, David F. Noble, )), Patrick K. Notz, Matthew Morgan Hopkins, et al. Wetting and free surface flow modeling for potting and encapsulation. Office of Scientific and Technical Information (OSTI), June 2007. http://dx.doi.org/10.2172/909911.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Leighton, R. I., T. F. Swean, Handler Jr., Swearingen R. A., and J. D. Interaction of Vorticity with a Free Surface in Turbulent Open Channel Flow. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada245328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hanks, Bradley Wright, and Allen C. Robinson. Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1147601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Okamoto, Koji, W. D. Schmidl, and O. G. Philip. Measurement of the interaction between the flow and the free surface of a liquid. Office of Scientific and Technical Information (OSTI), September 1995. http://dx.doi.org/10.2172/107008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ROBINSON, ALLEN C. Evaluation Techniques and Properties of an Exact Solution to a Subsonic Free Surface Jet Flow. Office of Scientific and Technical Information (OSTI), April 2002. http://dx.doi.org/10.2172/800816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Myers, J. E., and L. M. Jackson. Evaluation of Subsurface Flow and Free-water Surface Wetlands Treating NPR-3 Produced Water - Year No. 1. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/794470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Walker, Dave. Turbulence Modeling for Free-Surface Flows. Fort Belvoir, VA: Defense Technical Information Center, November 1997. http://dx.doi.org/10.21236/ada338778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Walker, David T. Development of Turbulence Models for Free-Surface Flows. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada416945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography