To see the other types of publications on this topic, follow the link: Fractionnement de la lignocellulose.

Journal articles on the topic 'Fractionnement de la lignocellulose'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fractionnement de la lignocellulose.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Roulot, Jean-François. "Le crime contre l’humanité devant les juridictions répressives françaises : un exemple du fractionnement du droit international pénal." Revue française de criminologie et de droit pénal N° 4, no. 1 (April 1, 2015): 41–70. http://dx.doi.org/10.3917/rfcdp.004.0041.

Full text
Abstract:
Le crime contre l’humanité appliqué devant les juridictions françaises est un exemple du fractionnement du droit international pénal. Il y a 15 ans, il existait déjà plusieurs définitions de ce crime. Aujourd’hui, la situation s’est encore aggravée avec l’entrée en vigueur de nouvelles définitions qui se sont ajoutées aux précédentes. La pratique de cette règle du droit international est également marquée par un fractionnement. En effet, il apparaît un régime différent selon que la communauté internationale désigne, ou ne désigne pas, des crimes à poursuivre. Pour éviter ce phénomène de fractionnement en droit français (droit écrit), comment appréhender les caractères du droit international pénal (droit coutumier et impératif) ?
APA, Harvard, Vancouver, ISO, and other styles
2

Boulahdid, S., R. Alami, A. Benahadi, B. Adouani, A. Tazi-Mokha, A. Laouina, A. Soulaymani, A. Mokhtari, K. Hajjout, and M. Benajiba. "Le fractionnement plasmatique : expérience Marocaine." Transfusion Clinique et Biologique 21, no. 4-5 (November 2014): 276–77. http://dx.doi.org/10.1016/j.tracli.2014.08.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Funaoka, Masamitsu. "Lignocellulose." JAPAN TAPPI JOURNAL 67, no. 8 (2013): 875–80. http://dx.doi.org/10.2524/jtappij.67.875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Burnouf, T. "Fractionnement plasmatique international : état des lieux." Transfusion Clinique et Biologique 14, no. 1 (May 2007): 41–50. http://dx.doi.org/10.1016/j.tracli.2007.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Allirot, X., J. Graeppi-Dulac, L. Saulais, E. Disse, H. Roth, and M. Laville. "O21 Fractionnement alimentaire, satiété et métabolisme." Cahiers de Nutrition et de Diététique 46 (December 2011): S30—S31. http://dx.doi.org/10.1016/s0007-9960(11)70042-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Allirot, X., J. Graeppi-Dulac, L. Saulais, E. Disse, H. Roth, and M. Laville. "O21 Fractionnement alimentaire, satiété et métabolisme." Nutrition Clinique et Métabolisme 25 (December 2011): S30—S31. http://dx.doi.org/10.1016/s0985-0562(11)70025-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Linder, Michel, Jacques Fanni, and Michel Parmentier. "Extraction, fractionnement et concentration des huiles marines." Oléagineux, Corps gras, Lipides 11, no. 2 (March 2004): 123–30. http://dx.doi.org/10.1051/ocl.2004.0123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hannus, J., and G. Smets. "Méthodes de préparation et fractionnement du Polystyrène." Bulletin des Sociétés Chimiques Belges 60, no. 1-2 (September 1, 2010): 76–98. http://dx.doi.org/10.1002/bscb.19510600110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Akin, Danny E. "Grass lignocellulose." Applied Biochemistry and Biotechnology 137-140, no. 1-12 (April 2007): 3–15. http://dx.doi.org/10.1007/s12010-007-9035-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Huang, Jintian, Shaobo Zhang, Feiran Zhang, Zhiqing Guo, Liping Jin, Yefei Pan, Yu Wang, and Tongcheng Guo. "Enhancement of lignocellulose-carbon nanotubes composites by lignocellulose grafting." Carbohydrate Polymers 160 (March 2017): 115–22. http://dx.doi.org/10.1016/j.carbpol.2016.12.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

FranÇois, Alexandre. "La réduplication en mwotlap: les paradoxes du fractionnement." Faits de Langues 23, no. 1 (2004): 17–194. http://dx.doi.org/10.1163/19589514-023-024-01-900000015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Craenhals, E., and J. Léonis. "Fractionnement du lysozyme par distribution à contre-courant." Bulletin des Sociétés Chimiques Belges 64, no. 1-2 (September 1, 2010): 58–69. http://dx.doi.org/10.1002/bscb.19550640103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Ojo, Abidemi. "An Overview of Lignocellulose and Its Biotechnological Importance in High-Value Product Production." Fermentation 9, no. 11 (November 20, 2023): 990. http://dx.doi.org/10.3390/fermentation9110990.

Full text
Abstract:
Lignocellulose consists of cellulose, hemicellulose, and lignin and is a sustainable feedstock for a biorefinery to generate marketable biomaterials like biofuels and platform chemicals. Enormous tons of lignocellulose are obtained from agricultural waste, but a few tons are utilized due to a lack of awareness of the biotechnological importance of lignocellulose. Underutilizing lignocellulose could also be linked to the incomplete use of cellulose and hemicellulose in biotransformation into new products. Utilizing lignocellulose in producing value-added products alleviates agricultural waste disposal management challenges. It also reduces the emission of toxic substances into the environment, which promotes a sustainable development goal and contributes to circular economy development and economic growth. This review broadly focused on lignocellulose in the production of high-value products. The aspects that were discussed included: (i) sources of lignocellulosic biomass; (ii) conversion of lignocellulosic biomass into value-added products; and (iii) various bio-based products obtained from lignocellulose. Additionally, several challenges in upcycling lignocellulose and alleviation strategies were discussed. This review also suggested prospects using lignocellulose to replace polystyrene packaging with lignin-based packaging products, the production of crafts and interior decorations using lignin, nanolignin in producing environmental biosensors and biomimetic sensors, and processing cellulose and hemicellulose with the addition of nutritional supplements to meet dietary requirements in animal feeding.
APA, Harvard, Vancouver, ISO, and other styles
14

Adi, Danang Sudarwoko, Widya Fatriasari, Narto, Dimas Triwibowo, Teguh Darmawan, Yusup Amin, Imran Arra'd Sofianto, et al. "IDENTIFICATION OF LIGNOCELLULOSE-LIKE MATERIAL USING SPECTROSCOPY ANALYSIS." Indonesian Journal of Forestry Research 11, no. 2 (October 31, 2024): 299–306. http://dx.doi.org/10.59465/ijfr.2024.11.2.299-306.

Full text
Abstract:
Lignocellulose materials, such as bamboo, rattan, and wood, have been largely used for furniture and crafts. On the other hand, the utilization of lignocellulose-like materials, which have a similar texture and appearance to those from nature, has been increasing recently due to their superior durability. This research aimed to identify the lignocellulose-like material using spectroscopy analysis, such as Raman and Near Infrared (NIR) which is well-known as a non-destructive, quick, and accurate approach for material identification. We investigated 4 types of lignocellulose-like materials that were provided by Dewan Serat Indonesia (The Indonesian Fiber Council) from an industry that produces them. The NIR analysis was performed at wavenumbers 10,000-4,000 cm-1. The natural lignocellulose (bamboo and wood) and the polymers (polyethylene and polyproline) were used as standards. Raman analysis was further employed to identify the composition of selected lignocellulose-like materials by comparing their spectra with the library software. The results showed that the original NIR spectra of lignocellulose-like and those natural materials were different, indicating that the NIR analysis can differentiate those materials. The NIR spectra of lignocellulose-like materials were similar to those of polyethylene spectra. Those lignocellulose-like were also identified as polyethylene due to the similarity of the Raman spectra and their library spectra.
APA, Harvard, Vancouver, ISO, and other styles
15

Hu, Mingyang, Junyou Chen, Yanyan Yu, and Yun Liu. "Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery." Molecules 27, no. 19 (September 26, 2022): 6359. http://dx.doi.org/10.3390/molecules27196359.

Full text
Abstract:
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose fractionation by PAA for future research. As a novel promising pretreatment method towards lignocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzymatic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary, from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge topic research in the lignocellulose fractionation in future.
APA, Harvard, Vancouver, ISO, and other styles
16

McCarthy, A. J. "Lignocellulose-degrading actinomycetes." FEMS Microbiology Letters 46, no. 2 (June 1987): 145–63. http://dx.doi.org/10.1111/j.1574-6968.1987.tb02456.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Blumer-Schuette, Sara E., Steven D. Brown, Kyle B. Sander, Edward A. Bayer, Irina Kataeva, Jeffrey V. Zurawski, Jonathan M. Conway, Michael W. W. Adams, and Robert M. Kelly. "Thermophilic lignocellulose deconstruction." FEMS Microbiology Reviews 38, no. 3 (May 2014): 393–448. http://dx.doi.org/10.1111/1574-6976.12044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mansour, Olfat, Bothina Abd El-Hady, Samir K. Ibrahim, and Magda Goda. "Lignocellulose - polymer composites." Macromolecular Symposia 147, no. 1 (December 1999): 173–79. http://dx.doi.org/10.1002/masy.19991470117.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Ichikawa, Shunsuke, Ayami Nishida, Saori Yasui, and Shuichi Karita. "Characterization of lignocellulose particles during lignocellulose solubilization by Clostridium thermocellum." Bioscience, Biotechnology, and Biochemistry 81, no. 10 (August 23, 2017): 2028–33. http://dx.doi.org/10.1080/09168451.2017.1364619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pasti, Maria B., and Don L. Crawford. "Relationships between the abilities of streptomycetes to decolorize three anthron-type dyes and to degrade lignocellulose." Canadian Journal of Microbiology 37, no. 12 (December 1, 1991): 902–7. http://dx.doi.org/10.1139/m91-156.

Full text
Abstract:
Fourteen Streptomyces strains known to degrade lignocellulose were screened for their ability to decolorize three anthron-type dyes: Remazol Brilliant Blue R (RBBR), blue poly(vinylamine) sulfonate – anthraquinone dye (Poly B-411), and red poly(vinylamine) sulfonate – anthrapyridone dye (Poly R-478). The relationships between efficiency of dye decolorization and capacity to attack lignocellulose were examined. Good correlation was found between lignocellulose weight losses observed during previous solid-state fermentation assays and the ability to decolorize RBBR and Poly B-411. A poor correlation was observed between Poly R-478 decolorizing activity and lignocellulose-degrading ability. The presence of corn stover lignocellulose in the culture broth enhanced decolorization of the dye by all but one of the strains. The enhancement was thought to involve the increased production of extracellular peroxidases by cultures growing on lignocellulose. The results on oxidation of the three dyes by a commercial horseradish peroxidase indicate that RBBR and Poly B-411 are suitable substrates for analyzing production of peroxidases by Streptomyces spp., while no decolorization of Poly R-478 was observed under the conditions used. However, Poly R-478 decolorizing activity of the Streptomyces may reflect the activity of other enzymes involved in the complex process of lignocellulose degradation. Key words: Streptomyces, lignocellulose, degradation, dye, decolorization.
APA, Harvard, Vancouver, ISO, and other styles
21

Zeng, Guoming, Sijie He, Yan Li, Da Sun, Haonan Li, Xin Wen, and Jun Wang. "Pretreatment technology of lignocellulose." E3S Web of Conferences 271 (2021): 04010. http://dx.doi.org/10.1051/e3sconf/202127104010.

Full text
Abstract:
Lignocellulose is the most abundant renewable biomass resource in nature. Pretreatment of lignocellulose can improve the accessibility of cellulase to cellulose raw materials, reduce the ineffective adsorption of cellulase, reduce the crystallinity and obtain higher reducing sugar. In this paper, several practical pretreatment technologies of lignocellulose are summarized, and the methods, principles, advantages and disadvantages of each pretreatment technology are summarized, and then the development prospect of lignocellulose pretreatment methods is prospected.
APA, Harvard, Vancouver, ISO, and other styles
22

Wahlström, Ronny, Jaakko Hiltunen, Mariáh Pitaluga de Souza Nascente Sirkka, Sauli Vuoti, and Kristiina Kruus. "Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis." RSC Advances 6, no. 72 (2016): 68100–68110. http://dx.doi.org/10.1039/c6ra11719h.

Full text
Abstract:
The use of [EMIM]AcO and three DESs was compared in lignocellulose pretreatment with focus on cellulase stability, effects on lignocellulose and enzymatic hydrolysis of pretreated lignocellulose in both buffer and in solutions of ionic liquid or DES.
APA, Harvard, Vancouver, ISO, and other styles
23

Utomo, Suryadi Budi, Muhammad Ivan Fadillah, and Rika Yulianti. "Profile of the Adsorption Ability of Sulfonate-Modified Lignocellulose Based on Bagasse Waste to Some Batik Textile Dyes." Key Engineering Materials 963 (October 13, 2023): 61–70. http://dx.doi.org/10.4028/p-b9ukxd.

Full text
Abstract:
The presence of synthetic dye contamination produced from the batik industry encourages research to overcome it through the adsorption method using a smart adsorbent, in this case an adsorbent that has several active groups. This study aims to examine the adsorbent of lignocellulose sulfonate based on bagasse waste for some textile dyes used in the batik industry. The synthesis of lignocellulose sulfonate was carried out through several steps such as extraction and activation using Na2SO3 and NaHCO3. The resulting products were then characterized using FTIR and SEM apparatures and applied them as an adsorbent for Remazol Red RB and Indanthrene Blue RS dyes. The adsorption test was carried out using bagasse, lignocellulose, and lignocellulose sulfonate adsorbents at a solution concentration of 50 ppm with variations in contact time of 5, 10, 20, 40, 80, and 160 minutes. The remaining dye content in the solution was then tested using a UV-Vis Spectrophotometer. From the experimental results, it is known that lignocellulose sulfonate, lignocellulose, and bagasse are able to absorb Remazol Red RB dye, respectively, by 84.41%, 63.87% and 61.52%. While for Indanthrene Blue RS dye, the largest absorption was found in lignocellulose sulfonate adsorbents of 56.35%, lignocellulose 50.72%, and baggase 45.93%. The highest adsorption capacity was found in the lignocellulosic sulfonate adsorbent, namely 42.2081 ppm for Remazol Red RB adsorption and 28.1771 ppm for Indanthrene Blue RS dye.
APA, Harvard, Vancouver, ISO, and other styles
24

Vreysen, Marc J. B., and A. M. V. Van Der Vloedt. "Stérilisation par irradiation de Glossina tachinoides Westw. pupae. I. Effet des doses fractionnées et de l’azote pendant l’irradiation à mi-course de la phase pupale." Revue d’élevage et de médecine vétérinaire des pays tropicaux 48, no. 1 (January 1, 1995): 45–51. http://dx.doi.org/10.19182/remvt.9487.

Full text
Abstract:
L'effet de l'azote pendant l'irradiation de pupes de Glossina tachinoides ainsi que le fractionnement des doses d'irradiation, ont été étudiés au milieu de la phase pupale. L'effet protecteur de l'azote contre des irradiations de 10 à 80 Gy de pupes âgées de 15 à 20 jours a été démontré par l'accroissement du taux global d'éclosion, par des niveaux plus élevés de fertilité résiduelle chez les mâles et par des durées de vie plus longues. La stérilité des màles traités par doses fractionnées séparées par 1 ou 2 jours a été identique à celle des mâles traités par une dose unique au 15e j après larviposition ; mais le taux de mutations létales induites était diminué pour des doses fractionnées séparées par un intervalle de 5 jours. La fécondité des femelles a été réduite lors du fractionnement de la dose d'irradiation à intervalle de 1 et 2 jours. Une stérilité complète a été obtenue chez les pupes femelles lorsque l'intervalle entre les doses fractionnées était de 5 jours, indépendamment de la dose utilisée.
APA, Harvard, Vancouver, ISO, and other styles
25

Pourtier, Roland. "L’inéluctable défi des transports." Politique africaine 41, no. 1 (1991): 22–31. http://dx.doi.org/10.3406/polaf.1991.5444.

Full text
Abstract:
La déliquescence des transports zaïrois conduit à la raréfaction des échanges et au fractionnement de l’espace national. La réhabilitation de réseaux n’est envisagée que pour permettre l’acheminement des produits du sous-sol. La crise des transports renvoie aux dysfonctionnements principaux du système zaïrois, et pose un problème essentiel pour le développement du pays.
APA, Harvard, Vancouver, ISO, and other styles
26

Chouinard, Daniel. "La culture des adolescents et le fractionnement des certitudes." Nouveaux c@hiers de la recherche en éducation 7, no. 1 (2000): 91. http://dx.doi.org/10.7202/1016946ar.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Barth, Danielle. "Fractionnement par le dioxyde de carbone supercritique et urée." Oléagineux, Corps gras, Lipides 11, no. 2 (March 2004): 131–32. http://dx.doi.org/10.1051/ocl.2004.0131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Garraud, Olivier. "Plasma, fractionnement et parties prenantes : « Pourquoi tant de haine » ?" Transfusion Clinique et Biologique 26, no. 3 (September 2019): S22—S23. http://dx.doi.org/10.1016/j.tracli.2019.06.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Pailhes, F., M. Alliot-Lugaz, N. Duveau, and Et J. Kyritsos. "Fractionnement du polyterephthalate d'ethylene par une methode en continu." Journal of Polymer Science Part C: Polymer Symposia 16, no. 2 (March 7, 2007): 1177–90. http://dx.doi.org/10.1002/polc.5070160251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Muryanto, M., F. Amelia, M. N. Izzah, R. Maryana, E. Triwahyuni, T. B. Bardant, E. Filailla, Y. Sudiyani, and M. Gozan. "Delignification of empty fruit bunch using deep eutectic solvent for biobased-chemical production." IOP Conference Series: Earth and Environmental Science 1108, no. 1 (November 1, 2022): 012013. http://dx.doi.org/10.1088/1755-1315/1108/1/012013.

Full text
Abstract:
Abstract Lignocellulose biomass was a potential feedstock for biobased chemicals substituting fossil-based chemicals. Oil Palm Empty Fruit Bunch (EFB) is the largest lignocellulose biomass from oil palm waste. Lignocellulose contains cellulose, hemicellulose and lignin. Pretreatment is one of the steps in the bioconversion of lignocellulose material. Pretreatment aims to reduce lignin in lignocellulose because lignin can inhibit biomass conversion. The objection of this research is to conduct pretreatment by deep eutectic solvent (DES). DES is the green solvent widely used for biomass conversion. The pretreatment process was conducted at various temperatures and processing times. The delignification of EFB by using DES in 100°C, 120°C, and 150°C pretreatment temperature was 30.67%, 40.60%, and 44.05% respectively. This pretreated-EFB can be used further for biobased chemicals such as glucose, ethanol, or furfural.
APA, Harvard, Vancouver, ISO, and other styles
31

Filledier, J., and P. Mérot. "Etude de l'attractivité de solutions isolées par fractionnement de l'urine de bovin Baoulé pour <em>Glossina tachinoides </em> Westwood, 1850 au Burkina Faso." Revue d’élevage et de médecine vétérinaire des pays tropicaux 42, no. 3 (March 1, 1989): 453–55. http://dx.doi.org/10.19182/remvt.8813.

Full text
Abstract:
La comparaison des urines de Zébu et de Baoulé comme attractif ayant montré la supériorité de l'urine de Baoulé pour Glossina tachinoides, le fractionnement de cette urine est réalisé et les différentes fractions sont testées en les comparant à l'urine brute. La fraction phénolique donne les résultats les plus proches de ceux obtenus avec l'urine brute.
APA, Harvard, Vancouver, ISO, and other styles
32

Séby, Fabienne, Jean Dumont, Christine Gleyzes, Mathieu Menta, Véronique Vacchina, and Maïté Bueno. "Analyse de formes chimiques et de nanoparticules dans les échantillons d’eau : méthodes analytiques, préconcentration et validation." Revue des sciences de l’eau 28, no. 1 (April 21, 2015): 27–32. http://dx.doi.org/10.7202/1030004ar.

Full text
Abstract:
Il est maintenant reconnu que la mesure de la concentration totale d’un élément ne permet pas d’obtenir d’information fiable sur son impact environnemental et sa toxicité, ces éléments pouvant être présents sous différentes formes chimiques ou à l’état de nanoparticules (NPs). Il est alors nécessaire de faire appel à des techniques de fractionnement en taille pour les NPs ou à des analyses de spéciation permettant d'identifier et doser les différentes formes chimiques des éléments. Cette approche nécessite de disposer de protocoles d’échantillonnage, de conservation et de préparation d’échantillon stricts qui ne modifient pas la répartition des formes chimiques, notamment. Étant donné les nouvelles exigences des normes, cette approche nécessite également des outils analytiques de plus en plus précis, sensibles et robustes. Le couplage de techniques séparatives basées sur la chromatographie (liquide ou gazeuse) ou le fractionnement de flux, d’une part, et la spectrométrie de masse à plasma induit (ICP MS), d’autre part, présente un réel potentiel pour ces analyses. Ces approches sont détaillées d’une manière générale en termes de potentiels et de performances analytiques et des applications sont présentées pour différents éléments (As, Hg, Sn, Cr ou Sb). Au travers de ces différents exemples, sont particulièrement abordés :
APA, Harvard, Vancouver, ISO, and other styles
33

Wang, Xiaohui, and Runcang Sun. "Self-assembled lignocellulose micelles: A new generation of value-added functional nanostructures." BioResources 6, no. 3 (2011): 2288–90. http://dx.doi.org/10.15376/biores.6.3.2288-2290.

Full text
Abstract:
Lignocellulose-based self-assembled micelles have emerged as a new generation of value-added functional nanostructures that show promise to address issues concerning the depletion of non-renewable resources; also these materials may contribute to the growing enthusiasm of utilizing biomass resources. Lignocellulose micelles can be conveniently prepared by self-assembly of amphiphilic lignocellulose derivatives in aqueous solution. They show great potential for applications in disparate fields, e.g. drug delivery, bioimaging diagnosis, sensing, nanoreacting, and so on. However, as a new research topic, a lot of research work would be needed to find out the critical structural factors that correlate with the formation, stability, morphology, and flexibility of lignocellulose micelles.
APA, Harvard, Vancouver, ISO, and other styles
34

Liu, Wujun, Weifeng Mao, Cuili Zhang, Xi Lu, Xujie Xiao, Zinan Zhao, and Jintao Lin. "Co-fermentation of a sugar mixture for microbial lipid production in a two-stage fermentation mode under non-sterile conditions." Sustainable Energy & Fuels 4, no. 5 (2020): 2380–85. http://dx.doi.org/10.1039/d0se00003e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Hou, Linyue, Baosheng Sun, and Yu Yang. "Effects of Added Dietary Fiber and Rearing System on the Gut Microbial Diversity and Gut Health of Chickens." Animals 10, no. 1 (January 8, 2020): 107. http://dx.doi.org/10.3390/ani10010107.

Full text
Abstract:
It is of merit to study the appropriate amount of dietary fiber to add to free-range chickens’ feed to improve their microbial diversity and gut health in times of plant fiber deprivation. Lignocellulose is a useful source of dietary fiber, and its positive effects on the growth performance and laying performance of chickens has already been proven. However, few researchers have researched the effects of adding it on the gut microbiota of chickens. In this research, we added three different levels of eubiotic lignocellulose (0%, 2%, and 4%) to the feed of caged and free-range Bian chickens from September to November, aiming to observe the effects of added dietary fiber and different rearing systems on the gut microbial diversity and gut health of chickens, as well as to determine an appropriate amount of lignocellulose. The results showed that adding dietary fiber increased the thickness of the cecum mucus layer and the abundance of Akkermansia and Faecalibacterium in caged chickens, and 4% lignocellulose was appropriate. In addition, adding lignocellulose increased the microbial diversity and the abundance of the butyrate-producing bacteria Faecalibacterium and Roseburia in fee-range chickens. The α-diversity and the length of the small intestine with 2% lignocellulose in free-range chickens were better than with 2% lignocellulose in caged chickens. Maybe it is necessary to add dietary fiber to the feed of free-range chickens when plant fibers are lacking, and 2% lignocellulose was found to be appropriate in this experiment. In addition, compared with caged chickens, the free-range chickens had a longer small intestine and a lower glucagon like peptide-1 (GLP-1) level. The significant difference of GLP-1 levels was mainly driven by energy rather than short chain fatty acids (SCFAs). There was no interaction between added dietary fiber and the rearing system on SCFAs, cecum inner mucus layer, and GLP-1.
APA, Harvard, Vancouver, ISO, and other styles
36

Heeger, Felix, Elizabeth C. Bourne, Christian Wurzbacher, Elisabeth Funke, Anna Lipzen, Guifen He, Vivian Ng, Igor V. Grigoriev, Dietmar Schlosser, and Michael T. Monaghan. "Evidence for Lignocellulose-Decomposing Enzymes in the Genome and Transcriptome of the Aquatic Hyphomycete Clavariopsis aquatica." Journal of Fungi 7, no. 10 (October 12, 2021): 854. http://dx.doi.org/10.3390/jof7100854.

Full text
Abstract:
Fungi are ecologically outstanding decomposers of lignocellulose. Fungal lignocellulose degradation is prominent in saprotrophic Ascomycota and Basidiomycota of the subkingdom Dikarya. Despite ascomycetes dominating the Dikarya inventory of aquatic environments, genome and transcriptome data relating to enzymes involved in lignocellulose decay remain limited to terrestrial representatives of these phyla. We sequenced the genome of an exclusively aquatic ascomycete (the aquatic hyphomycete Clavariopsis aquatica), documented the presence of genes for the modification of lignocellulose and its constituents, and compared differential gene expression between C. aquatica cultivated on lignocellulosic and sugar-rich substrates. We identified potential peroxidases, laccases, and cytochrome P450 monooxygenases, several of which were differentially expressed when experimentally grown on different substrates. Additionally, we found indications for the regulation of pathways for cellulose and hemicellulose degradation. Our results suggest that C. aquatica is able to modify lignin to some extent, detoxify aromatic lignin constituents, or both. Such characteristics would be expected to facilitate the use of carbohydrate components of lignocellulose as carbon and energy sources.
APA, Harvard, Vancouver, ISO, and other styles
37

Pothiraj, C., P. Kanmani, and P. Balaji. "Bioconversion of Lignocellulose Materials." Mycobiology 34, no. 4 (2006): 159. http://dx.doi.org/10.4489/myco.2006.34.4.159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

FUNAOKA, MASAMITSU. "Lignocellulose -Advanced Utilization System-." FIBER 65, no. 11 (2009): P.422—P.427. http://dx.doi.org/10.2115/fiber.65.p_422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Mansour, Olfat, Bothina Abd El-Hady, Samir K. Ibrahim, and Magda Goda. "LIGNOCELLULOSE-POLYMER COMPOSITES. V." Polymer-Plastics Technology and Engineering 40, no. 3 (May 31, 2001): 311–20. http://dx.doi.org/10.1081/ppt-100000251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Álvarez, P., C. Blanco, R. Santamaría, and M. Granda. "Lignocellulose/pitch based composites." Composites Part A: Applied Science and Manufacturing 36, no. 5 (May 2005): 649–57. http://dx.doi.org/10.1016/j.compositesa.2004.07.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Sanderson, Katharine. "Lignocellulose: A chewy problem." Nature 474, no. 7352 (June 2011): S12—S14. http://dx.doi.org/10.1038/474s012a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Hongoh, Yuichi. "Who digests the lignocellulose?" Environmental Microbiology 16, no. 9 (April 4, 2014): 2644–45. http://dx.doi.org/10.1111/1462-2920.12449.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Pointing, S. B., and K. D. Hyde. "Lignocellulose‐degrading marine fungi." Biofouling 15, no. 1-3 (May 2000): 221–29. http://dx.doi.org/10.1080/08927010009386312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Kuehnel, Moritz F., and Erwin Reisner. "Sonnengetriebene Wasserstofferzeugung aus Lignocellulose." Angewandte Chemie 130, no. 13 (February 5, 2018): 3346–53. http://dx.doi.org/10.1002/ange.201710133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Mansour, Olfat Y. "Lignocellulose–polymer composite. III." Journal of Applied Polymer Science 47, no. 5 (February 5, 1993): 839–46. http://dx.doi.org/10.1002/app.1993.070470511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Tian, Baoyu, Chunxiang Wang, Ruirui Lv, Junxiong Zhou, Xin Li, Yi Zheng, Xiangyu Jin, et al. "Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass." Scientific World Journal 2014 (2014): 1–9. http://dx.doi.org/10.1155/2014/845721.

Full text
Abstract:
The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex.
APA, Harvard, Vancouver, ISO, and other styles
47

Zhang, Congqiang, and Heng-Phon Too. "Revalorizing Lignocellulose for the Production of Natural Pharmaceuticals and Other High Value Bioproducts." Current Medicinal Chemistry 26, no. 14 (July 24, 2019): 2475–84. http://dx.doi.org/10.2174/0929867324666170912095755.

Full text
Abstract:
Lignocellulose is the most abundant renewable natural resource on earth and has been successfully used for the production of biofuels. A significant challenge is to develop cost-effective, environmentally friendly and efficient processes for the conversion of lignocellulose materials into suitable substrates for biotransformation. A number of approaches have been explored to convert lignocellulose into sugars, e.g. combining chemical pretreatment and enzymatic hydrolysis. In nature, there are organisms that can transform the complex lignocellulose efficiently, such as wood-degrading fungi (brown rot and white rot fungi), bacteria (e.g. Clostridium thermocellum), arthropods (e.g. termite) and certain animals (e.g. ruminant). Here, we highlight recent case studies of the natural degraders and the mechanisms involved, providing new utilities in biotechnology. The sugars produced from such biotransformations can be used in metabolic engineering and synthetic biology for the complete biosynthesis of natural medicine. The unique opportunities in using lignocellulose directly to produce natural drug molecules with either using mushroom and/or ‘industrial workhorse’ organisms (Escherichia coli and Saccharomyces cerevisiae) will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
48

Grant-Young, Sean, and Katie Rogers. "Planification fiscale personnelle : L'évolution du fractionnement du revenu." Canadian Tax Journal/Revue fiscale canadienne 67, no. 1 (April 2019): 235–62. http://dx.doi.org/10.32721/ctj.2019.67.1.pfp.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Hanne, Olivier. "Les frontières en Islam – Entre unification impérialiste et fractionnement opportuniste." Communio N° 266, no. 6 (November 1, 2019): 33–45. http://dx.doi.org/10.3917/commun.266.0033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Neel, J., and R. CLément. "La pervaporation : Un nouveau procédé de fractionnement des mélanges liquides." La Houille Blanche, no. 7-8 (November 1986): 619–40. http://dx.doi.org/10.1051/lhb/1986059.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography