Academic literature on the topic 'Fractional-order ordinary differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractional-order ordinary differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractional-order ordinary differential equations"
Zhao, Ting Gang, Zi Lang Zhan, Jin Xia Huo, and Zi Guang Yang. "Legendre Collocation Solution to Fractional Ordinary Differential Equations." Applied Mechanics and Materials 687-691 (November 2014): 601–5. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.601.
Full textCampos, L. M. B. C. "On the solution of some simple fractional differential equations." International Journal of Mathematics and Mathematical Sciences 13, no. 3 (1990): 481–96. http://dx.doi.org/10.1155/s0161171290000709.
Full textSingh, Karanveer, and R. N. Prajapati. "Fractional differential equation with uncertainty." Journal of University of Shanghai for Science and Technology 23, no. 08 (August 7, 2021): 181–85. http://dx.doi.org/10.51201/jusst/21/08364.
Full textVondra, Alexandr. "Geometry of second-order connections and ordinary differential equations." Mathematica Bohemica 120, no. 2 (1995): 145–67. http://dx.doi.org/10.21136/mb.1995.126226.
Full textAfuwape, Anthony Uyi, and M. O. Omeike. "Ultimate boundedness of some third order ordinary differential equations." Mathematica Bohemica 137, no. 3 (2012): 355–64. http://dx.doi.org/10.21136/mb.2012.142900.
Full textWU, CONG. "A GENERAL COMPARISON PRINCIPLE FOR CAPUTO FRACTIONAL-ORDER ORDINARY DIFFERENTIAL EQUATIONS." Fractals 28, no. 04 (June 2020): 2050070. http://dx.doi.org/10.1142/s0218348x2050070x.
Full textHuang, X., and X. Lu. "The Use of Fractional B-Splines Wavelets in Multiterms Fractional Ordinary Differential Equations." International Journal of Differential Equations 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/968186.
Full textGusu, Daba Meshesha, Dechasa Wegi, Girma Gemechu, and Diriba Gemechu. "Fractional Order Airy’s Type Differential Equations of Its Models Using RDTM." Mathematical Problems in Engineering 2021 (September 10, 2021): 1–21. http://dx.doi.org/10.1155/2021/3719206.
Full textKhan, Hassan, Shoaib Barak, Poom Kumam, and Muhammad Arif. "Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the (G′/G)-Expansion Method." Symmetry 11, no. 4 (April 19, 2019): 566. http://dx.doi.org/10.3390/sym11040566.
Full textCevikel, Adem. "New exact solutions of the space-time fractional KdV-burgers and nonlinear fractional foam drainage equation." Thermal Science 22, Suppl. 1 (2018): 15–24. http://dx.doi.org/10.2298/tsci170615267c.
Full textDissertations / Theses on the topic "Fractional-order ordinary differential equations"
Woods, Patrick Daniel. "Localisation in reversible fourth-order ordinary differential equations." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299269.
Full textJenab, Bita. "Asymptotic theory of second-order nonlinear ordinary differential equations." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Sun, Xun. "Twin solutions of even order boundary value problems for ordinary differential equations and finite difference equations." [Huntington, WV : Marshall University Libraries], 2009. http://www.marshall.edu/etd/descript.asp?ref=1014.
Full textBoutayeb, Abdesslam. "Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems." Thesis, Brunel University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278244.
Full textGray, Michael Jeffery Henderson Johnny L. "Uniqueness implies uniqueness and existence for nonlocal boundary value problems for third order ordinary differential equations." Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/4185.
Full textKoike, Tatsuya. "On the exact WKB analysis of second order linear ordinary differential equations with simple poles." 京都大学 (Kyoto University), 2000. http://hdl.handle.net/2433/181093.
Full textGranström, Frida. "Symmetry methods and some nonlinear differential equations : Background and illustrative examples." Thesis, Karlstads universitet, Institutionen för matematik och datavetenskap (from 2013), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-48020.
Full textDifferentialekvationer, framförallt icke-linjära, används ofta vid formulering av fundamentala naturlagar liksom många tekniska problem. Därmed finns det ett stort behov av metoder där det går att hitta lösningar i sluten form till sådana ekvationer. I det här arbetet studerar vi Lie symmetrimetoder för några icke-linjära ordinära differentialekvationer (ODE). Studien fokuserar på att identifiera och använda de underliggande symmetrierna av den givna första ordningens icke-linjära ordinära differentialekvationen. En utvidgning av metoden till högre ordningens ODE diskuteras också. Ett flertal illustrativa exempel presenteras.
Charoenphon, Sutthirut. "Green's Functions of Discrete Fractional Calculus Boundary Value Problems and an Application of Discrete Fractional Calculus to a Pharmacokinetic Model." TopSCHOLAR®, 2014. http://digitalcommons.wku.edu/theses/1327.
Full textŠustková, Apolena. "Řešení obyčejných diferenciálních rovnic neceločíselného řádu metodou Adomianova rozkladu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445455.
Full textShu, Yupeng. "Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.
Full textBooks on the topic "Fractional-order ordinary differential equations"
Paris, R. B. Asymptotics of high-order ordinary differential equations. Boston, (Mass.): Pitman Advanced, 1985.
Find full textD, Wood A., ed. Asymptotics of high-order ordinary differential equations. Boston: Pitman Pub., 1986.
Find full textZhukova, Galina. Differential equations. ru: INFRA-M Academic Publishing LLC., 2020. http://dx.doi.org/10.12737/1072180.
Full textBoutayeb, Abdesslam. Numerical methods for high-order ordinary differential equations with applications to eigenvalue problems. Uxbridge: Brunel University, 1990.
Find full textHartley, T. T. A solution to the fundamental linear fractional order differential equation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textSpectral analysis, differential equations, and mathematical physics: A festschrift in honor of Fritz Gesztesy's 60th birthday. Providence, Rhode Island: American Mathematical Society, 2013.
Find full text1954-, Sickel Winfried, ed. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. Berlin: Walter de Gruyter, 1996.
Find full textHartley, T. T. Fractional system identification: An approach using continuous order-distributions. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Find full textHartley, T. T. Insights into the fractional order initial value problem via semi-infinite systems. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Find full textKalinin, Sergey, and Larisa Pankratova. Ordinary differential equations of the first order. Science and Innovation Center Publishing House, 2020. http://dx.doi.org/10.12731/978-5-907208-23-0.
Full textBook chapters on the topic "Fractional-order ordinary differential equations"
Kubica, Adam, Katarzyna Ryszewska, and Masahiro Yamamoto. "Fractional Ordinary Differential Equations." In Time-Fractional Differential Equations, 47–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9066-5_3.
Full textLuchko, Yuri. "Operational method for fractional ordinary differential equations." In Fractional Differential Equations, edited by Anatoly Kochubei and Yuri Luchko, 91–118. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-005.
Full textWalter, Wolfgang. "First Order Systems. Equations of Higher Order." In Ordinary Differential Equations, 105–57. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_4.
Full textAdkins, William A., and Mark G. Davidson. "First Order Differential Equations." In Ordinary Differential Equations, 1–100. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_1.
Full textGazizov, Rafail K., Alexey A. Kasatkin, and Stanislav Yu Lukashchuk. "Symmetries and group invariant solutions of fractional ordinary differential equations." In Fractional Differential Equations, edited by Anatoly Kochubei and Yuri Luchko, 65–90. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110571660-004.
Full textAdkins, William A., and Mark G. Davidson. "Second Order Linear Differential Equations." In Ordinary Differential Equations, 331–81. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_5.
Full textWalter, Wolfgang. "First Order Equations: Some Integrable Cases." In Ordinary Differential Equations, 9–52. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_2.
Full textWalter, Wolfgang. "Theory of First Order Differential Equations." In Ordinary Differential Equations, 53–104. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0601-9_3.
Full textAdkins, William A., and Mark G. Davidson. "Second Order Constant Coefficient Linear Differential Equations." In Ordinary Differential Equations, 203–73. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3618-8_3.
Full textGoodwine, Bill. "First-Order Ordinary Differential Equations." In Engineering Differential Equations, 57–90. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7919-3_2.
Full textConference papers on the topic "Fractional-order ordinary differential equations"
Damasceno, Berenice C., and Luciano Barbanti. "Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904589.
Full textGazizov, Rafail K., Alexey A. Kasatkin, and Stanislav Yu Lukashchuk. "Linearly autonomous symmetries of the ordinary fractional differential equations." In 2014 International Conference on Fractional Differentiation and its Applications (ICFDA). IEEE, 2014. http://dx.doi.org/10.1109/icfda.2014.6967419.
Full textBONHEURE, D., J. M. GOMES, and L. SANCHEZ. "POSITIVE SOLUTIONS OF A SECOND ORDER SINGULAR ORDINARY DIFFERENTIAL EQUATION." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0028.
Full textPodlubny, Igor, Tomas Skovranek, and Blas M. Vinagre Jara. "Matrix Approach to Discretization of Ordinary and Partial Differential Equations of Arbitrary Real Order: The Matlab Toolbox." In ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/detc2009-86944.
Full textSchwarz, Fritz. "Janet bases of 2nd order ordinary differential equations." In the 1996 international symposium. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/236869.240354.
Full textTakahashi, Masatomo. "On completely integrable first order ordinary differential equations." In Proceedings of the Australian-Japanese Workshop. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812706898_0018.
Full textZainuddin, Nooraini, and Zarina Bibi Ibrahim. "Block method for third order ordinary differential equations." In PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Mathematical Sciences Exploration for the Universal Preservation. Author(s), 2017. http://dx.doi.org/10.1063/1.4995919.
Full textKLOKOV, Y. A., and F. SADYRBAEV. "SHARP CONDITIONS FOR THE SUPERLINEARITY OF THE SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS." In Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0030.
Full textYarman, Ahmad Fauzan, Armiati, and Lufri. "Hypothetical Learning Trajectory for First-Order Ordinary Differential Equations." In 2nd International Conference Innovation in Education (ICoIE 2020). Paris, France: Atlantis Press, 2020. http://dx.doi.org/10.2991/assehr.k.201209.245.
Full textYap, Lee Ken, and Fudziah Ismail. "Ninth order block hybrid collocation method for second order ordinary differential equations." In PROGRESS IN APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING PROCEEDINGS. AIP Publishing LLC, 2016. http://dx.doi.org/10.1063/1.4940254.
Full text