Dissertations / Theses on the topic 'Fractal dimensions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Fractal dimensions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Leifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.
Full textFractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.
In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.
A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Barros, Marcelo Miranda. "Identification of Fractal Dimensions from a Dynamical Analogy." Laboratório Nacional de Computação Científica, 2007. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=145.
Full textDiversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido. Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal. A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade. Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Alrud, Beng Oscar. "Fractal spectral measures in two dimensions." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4834.
Full textID: 030422913; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 75-76).
Ph.D.
Doctorate
Mathematics
Sciences
Schönwetter, Moritz. "Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215747.
Full textEs ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben
Wu, Shi-Ching. "Fractal analyses of some natural systems." Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322455.
Full textBrock, S. T. H. "Fractal dimensions and their relationship to filtration characteristics." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/13486.
Full textCroft, Jonathan. "Some generalisations of nested fractal constructions and associated diffusions." Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340483.
Full textPatuano, Agnès. "Fractal dimensions of landscape images as predictors of landscape preference." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31380.
Full textAšeriškytė, Dovilė. "Fraktalinių dimensijų skaičiavimas kai kurioms žmogaus organizmo fiziologinių procesų realizacijoms." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_171232-14237.
Full textKilps, John Russel 1965. "Fractal dimensions of aggregates formed under natural and engineered fluid environments." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/278282.
Full textBarros, Marcelo Miranda. "Identificação de dimensões fractais a partir de uma analogia dinâmica." Laboratório Nacional de Computação Científica, 2007. https://tede.lncc.br/handle/tede/74.
Full textSeveral areas of knowledge use fractal geometry to help to understand natural objects and phenomena. Irregular self-similar - in which parts resemble the whole - objects may be better understood through fractal dimensions which provide how a property varies with resolution or scale. We present a new approach to calculate fractal dimensions that, instead of the frequently used methods based on covering, seeks geometry information from physical characteristics. Here, we treat the element of a fractal sequence as structures. Imposing constraints on the structures, we build simple harmonic oscillators. The variation of the period of these oscillators with respect to a determined measure of length provides a fractal dimension. This techinique was tested for a family of continuous self-similar plane curves, including the classical Koch triadic. We show that this dynamical dimension may be related to Hausdorff-Besicovitch dimension. With random geometry, the techinique besides providing a fractal dimension, identifies randomness. A new kind of fractal is also presented. The ideia is to use more than one generator in the generation process of a fractal to obtain mixed fractals.
Diversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido. Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal. A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade. Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Inui, Kanji. "Study of the fractals generated by contractive mappings and their dimensions." Kyoto University, 2020. http://hdl.handle.net/2433/253370.
Full text0048
新制・課程博士
博士(人間・環境学)
甲第22534号
人博第937号
新制||人||223(附属図書館)
2019||人博||937(吉田南総合図書館)
京都大学大学院人間・環境学研究科共生人間学専攻
(主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史
学位規則第4条第1項該当
Mougin, Pascal. "Diffusion et réaction catalytique à l'interface d'un objet fractal en deux dimensions : le peigne du diable." Vandoeuvre-les-Nancy, INPL, 1996. http://docnum.univ-lorraine.fr/public/INPL_T_1996_MOUGIN_P.pdf.
Full textMucheroni, Laís Fernandes [UNESP]. "Dimensão de Hausdorff e algumas aplicações." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Full textApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Gioveli, Izabel. "Análise e simulação de padrões de fraturas geológicas." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2010. http://hdl.handle.net/10183/29053.
Full textThe fracture patterns are subject of large investigations in a number of knowledge areas. The mathematical methods research to simulate fractures patterns in geological media is also intense. This work aims to contribute for such investigations and presents the results of geological fracture pattern analysis (structural and fractal analysis) and an analytical procedure to simulate such fracture pattern. The fracture analysis was conducted in structurally homogeneous areas in Central Brazil. The fractal dimensions were computed by both Box-counting and Cantor’s Dust methods, in order to characterize each geological area. Box-counting fractal dimensions showed values in the range 1 and 2, but did not enable to evaluate fracture anisotropies, such as fracture length, frequency and orientation. On the other hand, Cantor’s Dust fractal dimensions showed values between 0 and 1, so it is able to determine fracture anisotropies, since orthogonal grid rotation defined different fractal dimensions. The structural analysis of the fracture patterns was conducted taking into account fracture directions, length and frequency. In this way, it is possible to correlate fracture frequency and Cantor’s Dust fractal dimensions. The achieved results for the fracture lineament map simulation are reasonable good, because it did not consider the fracture length according each direction.
Caby, Théophile. "Extreme value theory for dynamical systems, with applications in climate and neuroscience." Thesis, Toulon, 2019. http://www.theses.fr/2019TOUL0017.
Full textThroughout the thesis, we will discuss, improve and provide a conceptual framework in which methods based on recurrence properties of chaotic dynamics can be understood. We will also provide new EVT-based methods to compute quantities of interest and introduce new useful indicators associated to the dynamics. Our results will have full mathematical rigor, although emphasis will be placed on physical applications and numerical computations, as the use of such methods is developing rapidly. We will start by an introductory chapter to the dynamical theory of extreme events, in which we will describe the principal results of the theory that will be used throughout the thesis. After a small chapter where we introduce some abjects that are characteristic of the invariant measure of the system, namely local dimensions and generalized dimensions, w1 devote the following chapters to the use of EVT to compute such dimensional quantities. One of these method defines naturally a navel global indicator on the hyperbolic properties of the system. ln these chapters, we will present several numerical applications of the methods, bath in real world and idealized systems, and study the influence of different kinds of noise on these indicators. We will then investigate a matter of physical importanc related to EVT: the statistics of visits in some particular small target subsets of the phase-space, in particular for partly random, noisy systems. The results presented in this section are mostly numerical and conjectural, but reveal some universal behavior of the statistics of visits. The eighth chapter makes the connection betweer several local quantities associated to the dynamics and computed using a finite amount of data (local dimensions, hitting times, return times) and the generalized dimensions of the system, that are computable by EVT methods. These relations, stated in the language of large deviation theory (that we will briefly present), have profound physical implications, and constitute a conceptual framework in which the distribution of such computed local quantities can be understood. We then take advantage of these connections to design further methods to compute the generalized dimensions of a system. Finally, in the last part of the thesis, which is more experimental, we extend the dynamical theory of extreme events to more complex observables, which will allow us to study phenomena evolving over long temporal scales. We will consider the example of firing cascades in a model of neural network. Through this example, we will introduce a navel approach to study such complex systems
Lottin, Delphine. "Dimensions fractales, morphologie et caractéristiques dimensionnelles 2D et 3D d'agrégats de nanoparticules de suie aéronautique : Etude par microscopie électronique en transmission et tomographie électronique." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4012/document.
Full textSoot aggregates emitted by aircraft engines' combustion processes are involved in the modification of the global radiative budget and the air quality. The knowledge of their physical and chemical characteristics is a prerequisite to any evaluation of the way they may act in the atmospheric physical and chemical processes and their impact on the environment and public health. In this context, our study aims at determining the size and morphological characteristics of aircraft soot aggregates on the basis of experimental measurements by transmission electron microscopy (TEM) and electron tomography.We have acquired TEM pictures of soot aggregates emitted by aircraft engines. We have established a method to characterize the morphology of these aggregates by determining their elongation, their compacity and the tortuosity of their edge. This method is based on the analysis of their TEM projection. Besides, we have developed a software to process and analyse TEM pictures. It allows to reconstruct aggregates from their projections and to determine their size and morphological characteristics. Our results have lead us to study the validity of the relationships linking the 2D and 3D microphysical characteristics presented in the literature and to suggest new ones for the studied aggregates.These results constitute the first 3D morphological and size characterizations of aircraft soot aggregates using TEM and electron tomography. They highlight the fact that the morphological properties of these aggregates do not fulfil the hypotheses required for the use of the collective method to determine the mass fractal dimension
Ferreira, Filho José Roberto. "Geometria fractal : da natureza para a sala de aula." Universidade Federal de Sergipe, 2015. https://ri.ufs.br/handle/riufs/6515.
Full textThis work deals with the study of fractal geometry, emphasizing its main features included on natural systems that motivate them. Here some names that contributed to the emergence and development of mathematical fractals, emphasizing examples of natural fractals and the pioneer of Benoit B. Mandelbrot contribution .
Este trabalho trata do estudo da geometria fractal, enfatizando suas principais caracter sticas compreendidas com base nos sistemas naturais que as motivam. Apresentamos alguns nomes que contribuiram para o surgimento e desenvolvimento dos fractais matem aticos, enfatizando os exemplos de fractais naturais e a contribui c~ao do pioneiro Benoit B. Mandelbrot.
Ben, Ohoud Mohsine. "Etude comparative de l'organisation des materiaux argileux en termes de dimensions fractales." Orléans, 1988. http://www.theses.fr/1988ORLE2002.
Full textSchönwetter, Moritz [Verfasser], Roland [Akademischer Betreuer] [Gutachter] Ketzmerick, Eduardo [Akademischer Betreuer] [Gutachter] Altmann, and Jan [Gutachter] Wiersig. "Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems / Moritz Schönwetter ; Gutachter: Jan Wiersig, Roland Ketzmerick, Eduardo Altmann ; Roland Ketzmerick, Eduardo Altmann." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://d-nb.info/1123931259/34.
Full textSchönwetter, Moritz [Verfasser], Roland [Akademischer Betreuer] Ketzmerick, Eduardo [Akademischer Betreuer] [Gutachter] Altmann, and Jan [Gutachter] Wiersig. "Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems / Moritz Schönwetter ; Gutachter: Jan Wiersig, Roland Ketzmerick, Eduardo Altmann ; Roland Ketzmerick, Eduardo Altmann." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215747.
Full textAlmeida, Filho Valdez Arag?o de. "Arranjos Log-Peri?dicos Compactos em Microfita com Elementos Fractais de Koch." Universidade Federal do Rio Grande do Norte, 2010. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15315.
Full textCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
This work aims to present how the application of fractal geometry to the elements of a log-periodic array can become a good alternative when one wants to reduce the size of the array. Two types of log-periodic arrays were proposed: one with fed by microstrip line and other fed by electromagnetic coupling. To the elements of these arrays were applied fractal Koch contours, at two levels. In order to validate the results obtained some prototypes were built, which were measured on a vector network analyzer and simulated in a software, for comparison. The results presented reductions of 60% in the total area of the arrays, for both types. By analyzing the graphs of return loss, it was observed that the application of fractal contours made different resonant frequencies appear in the arrays. Furthermore, a good agreement was observed between simulated and measured results. The array with feeding by electromagnetic coupling presented, after application of fractal contours, radiation pattern with more smooth forms than the array with feeding by microstrip line
Este trabalho tem como objetivo apresentar como a aplica??o de contornos fractais aos elementos de um arranjo log-peri?dico se torna uma alternativa bastante interessante quando se deseja reduzir as dimens?es do arranjo. Foram propostos dois tipos de arranjos log-peri?dicos: um com alimenta??o por linha de microfita e outro com alimenta??o por acoplamento eletromagn?tico. Aos elementos desses arranjos foram aplicados contornos fractais de Koch, em dois n?veis. Com a finalidade de validar os resultados obtidos foram constru?dos prot?tipos, que foram caracterizados experimentalmente em um analisador de rede vetorial e simulados em software, para compara??o. Os resultados mostraram redu??es de 60% nas dimens?es dos arranjos, para ambos os tipos. Atrav?s da an?lise dos gr?ficos da perda de retorno, p?de-se observar que a aplica??o dos contornos fractais fez com que aparecessem diferentes frequ?ncias de resson?ncia nos arranjos. Al?m disso, observa-se uma boa concord?ncia entre os resultados medidos e simulados. O arranjo com alimenta??o por acoplamento eletromagn?tico apresentou, ap?s aplica??o dos contornos fractais, menores valores de diretividade do que o arranjo com alimenta??o por linha de microfita
Caputo, Jean-Guy. "Dimension et entropie des attracteurs associés à des écoulements réels : estimation et analyse de la méthode." Grenoble 1, 1986. http://www.theses.fr/1986GRE10057.
Full textAzizi, Mohammed. "Simulations numériques du modèle d'Ising de 1,5 à 4 dimensions détermination des quantités critiques sur fractal, D=1,5 et en théorie des champs, D=2,3, 4." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb37595627z.
Full textPhillips, Jason D. "Intersections of Deleted Digits Cantor Sets With Their Translates." Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1308100597.
Full textCamesasca, Marco. "MULTISCALING ANALYSIS OF FLUIDIC SYSTEMS: MIXING AND MICROSTRUCTURE CHARACTERIZATION." online version, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=case1144350255.
Full textBerbiche, Amine. "Propagation d'ondes acoustiques dans les milieux poreux fractals." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4758.
Full textThe action integral minimization method (variational principle) provides the wave propagation equations. This method has been generalized to fractal dimensional porous media to study the acoustic propagation in the time domain, based on the equivalent fluid model. The resulting equation rewritten in the frequency domain represents a generalization for the Helmholtz equation. As part of the Allard-Johnson model, the propagation equation was solved analytically in the time domain, for both high and low frequencies fields. The resolution was made by the method of the Laplace transform, and focused on a semi-infinite porous medium. It was found that the wave velocity depends on the fractal dimension.For a fractal porous material of finite thickness which receives an acoustic wave at normal incidence, the Euler conditions were used to determine the reflected and transmitted fields. The resolution of the direct problem was made in the time domain by the method of the Laplace transform, and through the use of the Mittag-Leffler functions. The inverse problem was solved by the method of minimizing the least squares sense. Tests have been performed successfully on experimental data; programs written from the formalism developed in this work have allowed finding the acoustic parameters of porous foams, in the fields of high and low frequencies
Dubuc, Benoit. "On estimating fractal dimension." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63968.
Full textMaurer, Karine. "Étude rhéologique et texturale de dispersions alimentaires : essai de quantification de leur complexité structurale au moyen du concept de géométrie fractale." Vandoeuvre-les-Nancy, INPL, 1996. http://docnum.univ-lorraine.fr/public/INPL_T_1996_MAURER_K.pdf.
Full textCarneiro, Josà Carlos de Souza. "Study of metal transfer process in MIG / MAG through the fractal dimension of the signal voltage." Universidade Federal do CearÃ, 2005. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=15742.
Full textAs tÃcnicas de estimativa da dimensÃo fractal de sinais tÃm sido amplamente aplicadas na descriÃÃo de inÃmeros sistemas fÃsicos, desde estudos sobre turbulÃncia atmosfÃrica, sinais de eletroencefalograma, sistemas hidrolÃgicos atà estudos sobre o comportamento fractal de superfÃcies fraturadas por impacto. A anÃlise da dimensÃo fractal de fenÃmenos complexos passou a ser uma ferramenta importante para quantificar o grau de irregularidade de fenÃmenos artificias ou naturais. Neste trabalho investigou-se a dimensÃo fractal dos sinais de tensÃo do arco voltaico do processode soldagem MIG/MAG. A tÃcnica de estimativa empregada para o cÃlculo da dimensÃo fractal no estudo dos sinais foi o mÃtodo box couting. PÃde-se verificar que variaÃÃes bruscas nos valores da dimensÃo fractal estavam associadas com o fenÃmeno da transferÃncia metÃlica. SÃo apresentados os sinais analisados, no domÃnio do tempo, os quadros fotogrÃficos da transferÃncia metÃlica, obtidos pela tÃcnica de shadowgrafia, e os programas utilizados para obtenÃÃo dos grÃficos, cÃlculo da dimensÃo fractal e tambÃm de dados estatÃsticos dos sinais de soldagem. Na revisÃo bibliogrÃfica à feita uma apresentaÃÃo do arco elÃtrico de soldagem considerando-se apenas seus aspectos fÃsicos. à apresentado o mÃtodo empregado no cÃlculo da dimensÃo fractal dos sinais. SÃo tratados tambÃm os mecanismos de emissÃo eletrÃnica, o processo de soldagem MIG/MAG, o fenÃmeno da transferÃncia metÃlica no processo MIG/MAG e as forÃas envolvidas durante a transferÃncia metÃlica.
Joanpere, Salvadó Meritxell. "Fractals and Computer Graphics." Thesis, Linköpings universitet, Matematiska institutionen, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-68876.
Full textCollins, Patricia Jacqueline. "Three-dimensional fractal mountains." Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23427.
Full textFraser, Jonathan M. "Dimension theory and fractal constructions based on self-affine carpets." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3869.
Full textKhalil, André. "Exploration of the fractal dimension." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0005/MQ39464.pdf.
Full textTate, Nicholas J. "The fractal dimension of topography." Thesis, University of East Anglia, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318094.
Full textCohen, Dolav. "An exploration of fractal dimension." Kansas State University, 2013. http://hdl.handle.net/2097/16194.
Full textDepartment of Mathematics
Hrant Hakobyan
When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 30 years, this small branch of mathematics has developed extensively. Fractals can be de fined as those sets which have non-integral Hausdor ff dimension. In this thesis, we take a look at some basic measure theory needed to introduce certain de finitions of fractal dimensions, which can be used to measure a set's fractal degree. We introduce Minkowski dimension and Hausdor ff dimension as well as explore some examples where they coincide. Then we look at the dimension of a measure and some very useful applications. We conclude with a well known result of Bedford and McMullen about the Hausdor ff dimension of self-a ffine sets.
Florindo, João Batista. "Descritores fractais aplicados à análise de texturas." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-02052013-161100/.
Full textThis project describes the development, study and application of fractal descriptors to texture analysis. Recently, the literature has shown fractal geometry as a powerful tool for image analysis, with applications to several areas of science. Most of these works use fractal dimension as a descriptor of the object depicted in the image. However, due to the complexity of many problems in this context, some solutions have been proposed to improve this analysis. These proposed methods use not only the value of fractal dimension, but a set of measures which could be extracted by fractal geometry to describe the textures with greater richness and accuracy. Among such techniques, we emphasize the multifractal methodology, multiscale fractal dimension and, more recently, fractal descriptors. This latter technique has demonstrated to be efficient in solving problems related to the discrimination of texture and shape images. This is possible as the extracted descriptors provide a direct representation of the complexity (the details distribution along the scales of observation) in the image. Thus, this solution allows for a rich description of the image studied by analyzing the spatial/spectral distribution of pixels and intensity of colors/gray-levels, with a model which can approximate the human visual perception, generating an automatic and precise method. However, the works about fractal descriptors presented in the literature focus on classical methods to estimate fractal dimension, such as Bouligand-Minkowski and Box-counting. This project aims at studying more deeply the concept, generalizing to other approaches in fractal dimension, as well as exploring different ways of extracting the key features from the logarithmic curve associated with the dimension. The developed methods are applied to texture analysis, in classification problems over public databases, whose results can be compared with literature methods, as well as to the segmentation of satellite images and automatically identifying samples obtained from studies on nanotechnology. The results demonstrate the potential of the methodology developed to solve such problems, showing that this is a new frontier to be explored and used in image analysis and computer vision at all.
Morse, D. R. "Fractals in ecology : The effect of the fractal dimension of trees on the body length distribution of arboreal arthropods." Thesis, University of York, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234971.
Full textMartins, Bruna de Castro Lobo Sousa. "Os fractais no urbanismo." Master's thesis, Universidade de Lisboa. Faculdade de Arquitetura, 2014. http://hdl.handle.net/10400.5/12226.
Full textO objetivo desta dissertação é o de, recorrendo à geometria fractal e às suas ferramentas de cálculo, comparar malhas urbanas que definem a cidade de Lisboa, relativamente, aos espaços que a compõem – construídos, privados e públicos – com o propósito de compreender como as dimensões fractais variam e se essas variações refletem o tipo de vivência característico de cada zona. Para cumprir este objetivo apresentam-se cinco capítulos. No primeiro, faz-se uma breve apresentação dos fundamentos da geometria euclidiana e das geometrias não euclidianas, bem como da geometria fractal, explicando em que consiste, como se caracteriza, como se medem os objetos fractais e como estes se aplicam na natureza, arquitetura e urbanismo. O segundo, corresponde à análise de três trabalhos práticos que servem de exemplo de como a geometria fractal é aplicada ao urbanismo. O terceiro, que consiste na apresentação do conceito de Dimensão Fractal, da Dimensão de Hausdorff e do método de Contagem de Quadrículas (Box-Counting), dos programas de cálculo testados e, de alguns conceitos estatísticos relevantes para o trabalho. O quarto, é composto pelos casos de estudo, bem como as análises comparativas feitas entre eles. O quinto, no qual se apresentam as conclusões finais e perspetivas de desenvolvimento futuro.
ABSTRACT: The objective of this dissertation is to, using fractal geometry and its calculation tools, compare urban meshes which define the city of Lisbon, according to the spaces that compose them – built, private and public – with the purpose of understanding how the fractal dimensions vary and how those variations reflect the type of life which characterizes each zone. To achieve this goal five chapters are presented. The first, consisting of a brief presentation of the fundamentals of Euclidian geometry and non-euclidian geometries, as well as fractal geometry, explaining what it consists on, how it is characterized, how to measure fractal objects and how it is applied to nature, architecture and urban planning; the second, corresponding to the study of three practical papers which serve as examples on how fractal geometry is applied to urban planning; the third, consisting on the presentation of the concept of Fractal Dimension, the Hausdorff Dimension and the Box- Counting method, the calculation programs studied and, a few statistical concepts relevant for this work; the fourth, composed by the case studies, as well as the comparative analyses made between them; and, the fifth, in which the conclusions are presented along with some future development prospects for the work.
Pesquet-Popescu, Béatrice. "Modélisation bidimensionnelle de processus non stationnaires et application à l'étude du fond sous-marin." Cachan, Ecole normale supérieure, 1998. http://www.theses.fr/1998DENS0021.
Full textBrandão, Daniela Teresa Quaresma Santos. "Dimensões fractais e dimensão de correlação." Master's thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/17740.
Full textMcClure, Mark. "Fractal measures on infinite-dimensional sets /." The Ohio State University, 1994. http://rave.ohiolink.edu/etdc/view?acc_num=osu148785391310164.
Full textCAMPOS, CLAUDENIZE FRANCISCA JAPIASSU. "AN ALGORITHM FOR COMPUTING IMAGE FRACTAL DIMENSION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1996. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19751@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Neste trabalho, é apresentado um algoritmo eficiente de cálculo da Dimensão Fractal (DF) de imagens digitais. Este algoritmo fornece valores em toda a região teoricamente admissível (DF E [2,3]). É investigada a possibilidade de utilização deste método como uma ferramenta para identificação de falhas em tecidos. A DF caracteriza o grau de complexidade de um objeto. Esta característica têm sido usada recentemente na segmentação e classificação de texturas, na análise de formas e outros problemas. Este trabalho apresenta uma nova possibilidade de uso deste parâmetro, ainda não observado em outro trabalho. Foram realizados experimentos para verificar a eficiência do algoritmo desenvolvido: em imagens reais e sintéticas; na identificação de parâmetros de variação do cálculo; e verificação da influência da posição e da rotação do padrão da imagem na estimativa da imperfeição.
In this work an efficient algorithm for estimation of the Fractal Dimension (FD) of images is presented. At first, the approach is tested on the synthetic images. It is expected that the PD range is 2.0 – 3.0. A good method, as this approach, should reflect this desirable feature. The utilization of such algorithm on textile imperfection identification is investigated. The FD is a feature proposed recently to characterize roughness, self-similiarity and the complexity degree in a picture. This characteristic has been used in textures segmentation and classification, shape analysis and other problems. However, its utilization on image change characterization is a new feacture. Experiments has been done, not only on synthetic images, but also on real textile. The relation of a picture scanned at various different orientation and relative rotation of digital images are also discussed.
Araújo, Anderson Tadeu Gonçalves de. "Noções de geometria fractal elementar." Mestrado Profissional em Matemática, 2014. http://ri.ufs.br/jspui/handle/riufs/7383.
Full textIn this work we present some of the main elemental fractals, highlighting some Math patterns and their autosimilarities. We make suggestions of activities that can be applied in the classroom of Elementary and / or High School in order to awaken the interest of students and teachers for Math, showing its applicability in the day to day, in addition to providing students with the creation and elaboration of concepts from a di erent view of the traditional one. In addition to this presentation, we analyzed basic mathematical tools studied on the Cartesian plane and used linear algebra in order to understand the initial concepts necessary for Elemental Fractal Geometry. Finally, we have developed a brief study about one of the fundamental characteristics of a fractal, the dimension of elemental fractals.
Neste trabalho apresentamos alguns dos principais fractais elementares, ressaltando alguns padrões matemáticos e suas autossimilaridades. Fazemos sugestões de atividades que podem ser aplicadas em sala de aula do Ensino Fundamental e/ou Ensino Médio com nalidade de despertar o interesse de alunos e professores pela matemática, evidenciando sua aplicabilidade no dia-a-dia, além de proporcionar aos alunos a criação e elaboração de conceitos a partir de uma visão diferente da tradicional. Além dessa apresentação, analisamos ferramentas matemáticas básicas estudadas no plano cartesiano e recorremos à álgebra linear a m de compreender conceitos iniciais necessários à Geometria Fractal elementar. Por m, desenvolvemos um breve estudo sobre uma das características fundamentais que um fractal possui, a dimensão de fractais elementares.
São Cristóvão, SE
Iwai, Marceli Megumi Hamazi. "Geometria fractal." reponame:Repositório Institucional da UFABC, 2015.
Find full textKaiser, Tashniba. "Node Localization using Fractal Signal Preprocessing and Artificial Neural Network." WorldComp, International Conference on Security and Management, 2012, 2012. http://hdl.handle.net/1993/22730.
Full textPaxitzis, James T. Jr. "Entropy and Fractal Dimension of Swallow Acceleration Signals." University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1313410479.
Full textWang, Nancy. "Fractal Sets: Dynamical, Dimensional and Topological Properties." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233147.
Full textFraktaler är ett relativt nytt ämne inom matematik som fick sitt stora genomslag först efter 60-talet. En fraktal är ett självliknande mönster med struktur i alla skalor. Några vardagliga exempel på fraktaler är spiralkaktus, romanescobroccoli, mänskliga hjärnan, blodkärlen och Sveriges fastlandskust. Bråktalsdimension är en typ av dimension där dimensionsindexet tillåts att anta alla icke-negativa reella tal. Inom fraktalgeometri kan dimensionsindexet betraktas som ett komplexitetsindex av mönstret med avseende på hur den lokala geometrin förändras beroende på vilken skala mönstret betraktas i. Under det senaste decenniet har fraktalanalysen använts alltmer flitigt inom tekniska och vetenskapliga tillämpningar. Bland annat har fraktalanalysen använts i signal- och bildkompression, dator- och videoformgivning, neurovetenskap och fraktalbaserad cancerdiagnos. Denna studie består av två huvuddelar. Den första delen fokuserar på att förstår hur en fraktal kan uppstå i ett kaotiskt dynamiskt system. För att vara mer specifik studerades den logistiska funktionen och hur denna ickelinjära avbildning genererar en oregelbunden Cantormängd på intervalet [0,1]. Vidare, för att förstå den oregelbundna Cantormängden studerades Cantormängden (eng. the Cantor Middle-Thirds set) och de generaliserade Cantormängderna, vilka alla har noll längd. För att kunna jämföra de olika Cantormängderna med avseende på storlek, leds denna studie vidare till dimensionsanalys av fraktaler som är huvudämnet i den andra delen av denna studie. Olika topologiska fraktaler presenterades, tre olika definitioner av dimension introducerades, bland annat lådräkningsdimensionen och Hausdorffdimensionen. Slutligen approximerades dimensionen av den oregelbundna Cantormängden med hjälp av Hausdorffdimensionen. Denna studie demonstrerar att Hausdorffdimensionen har större omfattning och mer flexibilitet för fraktalstudier.
Cooper, Jonathan Craig. "The potential of chaos and fractal analysis in urban design." Thesis, Oxford Brookes University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325285.
Full textChagroune, Lakhdar. "Modélisation de l'émissivité d'une surface en utilisant une approche fractale." Vandoeuvre-les-Nancy, INPL, 1995. http://www.theses.fr/1995INPL115N.
Full text