Books on the topic 'Fractal dimensions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Fractal dimensions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Rosenberg, Eric. Fractal Dimensions of Networks. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3.
Full textE, Ugalde, and Urías J, eds. Fractal dimensions for Poincaré recurrences. Amsterdam: Elsevier, 2006.
Find full textKaye, Brian H. A random walk through fractal dimensions. 2nd ed. Weinheim: VCH, 1994.
Find full textKaye, Brian H. A random walk through fractal dimensions. Weinheim, Germany: VCH Verlagsgesellschaft, 1989.
Find full textKaye, Brian H. A random walk through fractal dimensions. Weinheim: VCH, 1989.
Find full textBanerjee, Santo, D. Easwaramoorthy, and A. Gowrisankar. Fractal Functions, Dimensions and Signal Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62672-3.
Full textA random walk through fractal dimensions. Weinheim: VCH, 1989.
Find full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35208-4.
Full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-2176-4.
Full textRosenberg, Eric. A Survey of Fractal Dimensions of Networks. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90047-6.
Full textNiemeyer, Robert, Erin Pearse, John Rock, and Tony Samuel, eds. Horizons of Fractal Geometry and Complex Dimensions. Providence, Rhode Island: American Mathematical Society, 2019. http://dx.doi.org/10.1090/conm/731.
Full textLapidus, Michel L. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. 2nd ed. New York, NY: Springer New York, 2013.
Find full text1967-, Van Frankenhuysen Machiel, ed. Fractal geometry and number theory: Complex dimensions of fractal strings and zeros of zeta functions. Boston: Birkhäuser, 2000.
Find full textDi li kong jian xin xi de fen xing yu fen wei: Fractal and fractal dimensions of spatial geo-information. Beijing: Ce hui chu ban she, 2007.
Find full textMantzaras, John. Three-dimensional visualization of premixed-charge engine flames: Islands of reactants and products, fractal dimensions, and homogeneity. Warrendale, PA: Society of Automotive Engineers, 1988.
Find full textFloris, Takens, ed. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: Fractal dimensions and infinitely many attractors. Cambridge: Cambridge University Press, 1993.
Find full textPalis, Jacob. Hyperbolicity, stability and chaos at homoclinic bifurcations: Fractal dimensions and infinitely many attractors in dynamics. Cambridge: Cambridge University Press, 1995.
Find full textFernández-Martínez, Manuel, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, and Juan Evangelista Trinidad Segovia. Fractal Dimension for Fractal Structures. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16645-8.
Full textTricot, Claude. Curves and fractal dimension. New York: Springer-Verlag, 1995.
Find full textTricot, Claude. Curves and Fractal Dimension. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4170-6.
Full textCollins, Patricia Jacqueline. Three-dimensional fractal mountains. Monterey, Calif: Naval Postgraduate School, 1988.
Find full textOstwald, Michael J., and Josephine Vaughan. The Fractal Dimension of Architecture. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32426-5.
Full textTricot, Claude. Courbes et dimension fractale. Paris: Springer-Verlag, 1993.
Find full textKasprzak, Wacław. Measurements, dimensions, invariant models and fractals. Wrocław: "SPOLOM", 2004.
Find full textNeil, Ross, Rife Christopher, Chater John, WGBH Educational Foundation, Quest Productions, Kikim Media (Firm), Catticus Corporation, and PBS Home Video, eds. Hunting the hidden dimension. Boston, MA: WGBH Educational Foundation, 2009.
Find full textCentre, Bhabha Atomic Research, ed. Seismic signal detection by fractal dimension approach. Mumbai: Bhabha Atomic Research Centre, 2003.
Find full textO, Gustavo N. Rubiano. Fractales para profanos. Bogotá, D.C: Universidad Nacional de Colombia, 2000.
Find full textFractals and universal spaces in dimension theory. New York, NY: Springer, 2009.
Find full textMandelbrot, Benoit B. Les objets fractals: Forme, hasard et dimension. 3rd ed. [Paris]: Flammarion, 1989.
Find full textLipscomb, Stephen. Fractals and universal spaces in dimension theory. New York, NY: Springer, 2009.
Find full textLipscomb, Stephen. Fractals and Universal Spaces in Dimension Theory. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-85494-6.
Full textKapit︠s︡a, S. P. (Sergeĭ Petrovich), 1928-2012, ed. Fraktalʹnai︠a︡ logika. Moskva: "Progress-tradit︠s︡ii︠a︡", 2002.
Find full textMason, Lewis Gerhard. Computer graphics interactive workshop for two-dimensional fractals. Monterey, California: Naval Postgraduate School, 1987.
Find full text1945-, Kauffman Louis H., and Sandin Daniel J, eds. Hypercomplex iterations: Distance estimation and higher dimensional fractals. River Edge, NJ: World Scientific, 2002.
Find full textAl-Badri, Ali M. A. Microstructure investigation of TMPed microalloyed low carbon steel and fractal dimension. Manchester: UMIST, 1996.
Find full textPreece, Jayne Mullen. The influence of aggregation conditions on aggregate size, fractal dimension and susceptibility to disruption in capillary flow. Birmingham: University of Birmingham, 1999.
Find full textDonato, Franco. L' ordine nascosto dell'organizzazione urbana: Un'applicazione della geometria frattale e della teoria dei sistemi auto-organizzati alla dimensione spaziale degli insediamenti. Milano: F. Angeli, 1996.
Find full textTsao, Jeffrey. A three-dimensional fractal model of the dog kidney cortex with application to multiple indicator dilution tomography. Ottawa: National Library of Canada, 1997.
Find full textMcAuley, Sean Anthony. An investigation of the possibility for using fractal based methods in the compression of one-dimensional data. [s.l: The author], 1992.
Find full textPISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics (2011 Messina, Italy). Fractal geometry and dynamical systems in pure and applied mathematics. Edited by Carfi David 1971-, Lapidus, Michel L. (Michel Laurent), 1956-, Pearse, Erin P. J., 1975-, Van Frankenhuysen Machiel 1967-, and Mandelbrot Benoit B. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textRosenberg, Eric. Fractal Dimensions of Networks. Springer, 2020.
Find full textLapidus, Michel L., Darko Žubrinić, and Goran Radunović. Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of Complex Dimensions. Springer, 2018.
Find full textKaye, Brian H. Random Walk Through Fractal Dimensions. Wiley & Sons, Incorporated, John, 2008.
Find full textMotsenigos, Xenofon S. Fractal Dimensions and Dynamical Systems. Hadronic Press, 2001.
Find full textKaye, Brian H. Random Walk Through Fractal Dimensions. Wiley & Sons, Limited, John, 2007.
Find full textFractal Dimensions for Poincaré Recurrences. Elsevier, 2006. http://dx.doi.org/10.1016/s1574-6917(06)x0200-3.
Full textRosenberg, Eric. A Survey of Fractal Dimensions of Networks. Springer, 2018.
Find full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer, 2012.
Find full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings. Springer, 2012.
Find full textFractal Geometry and Number Theory: Complex Dimensions of Fractal Strings and Zeros of Zeta Functions. Birkhäuser, 2011.
Find full text