Academic literature on the topic 'Fractal dimensions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Fractal dimensions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Fractal dimensions"
Chen, Yanguang. "Characterizing Growth and Form of Fractal Cities with Allometric Scaling Exponents." Discrete Dynamics in Nature and Society 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/194715.
Full textCHEN, YAN-GUANG. "FRACTAL TEXTURE AND STRUCTURE OF CENTRAL PLACE SYSTEMS." Fractals 28, no. 01 (February 2020): 2050008. http://dx.doi.org/10.1142/s0218348x20500085.
Full textLIAW, SY-SANG, and FENG-YUAN CHIU. "CONSTRUCTING CROSSOVER-FRACTALS USING INTRINSIC MODE FUNCTIONS." Advances in Adaptive Data Analysis 02, no. 04 (October 2010): 509–20. http://dx.doi.org/10.1142/s1793536910000598.
Full textChen, Yanguang. "Fractal Modeling and Fractal Dimension Description of Urban Morphology." Entropy 22, no. 9 (August 30, 2020): 961. http://dx.doi.org/10.3390/e22090961.
Full textIversen, P. O., and G. Nicolaysen. "High correlation of fractals for regional blood flows among resting and exercising skeletal muscles." American Journal of Physiology-Heart and Circulatory Physiology 269, no. 1 (July 1, 1995): H7—H13. http://dx.doi.org/10.1152/ajpheart.1995.269.1.h7.
Full textSreenivasan, K. R., and C. Meneveau. "The fractal facets of turbulence." Journal of Fluid Mechanics 173 (December 1986): 357–86. http://dx.doi.org/10.1017/s0022112086001209.
Full textLutz, Neil. "Fractal Intersections and Products via Algorithmic Dimension." ACM Transactions on Computation Theory 13, no. 3 (September 30, 2021): 1–15. http://dx.doi.org/10.1145/3460948.
Full textMCGINLEY, PATTON, ROBIN G. SMITH, and JEROME C. LANDRY. "FRACTAL DIMENSIONS OF MYCOSIS FUNGOIDES." Fractals 02, no. 04 (December 1994): 493–501. http://dx.doi.org/10.1142/s0218348x94000715.
Full textZhang, Pei-Lin, Bing Li, Shuang-Shan Mi, Ying-Tang Zhang, and Dong-Sheng Liu. "Bearing Fault Detection Using Multi-Scale Fractal Dimensions Based on Morphological Covers." Shock and Vibration 19, no. 6 (2012): 1373–83. http://dx.doi.org/10.1155/2012/438789.
Full textXIA, YUXUAN, JIANCHAO CAI, WEI WEI, XIANGYUN HU, XIN WANG, and XINMIN GE. "A NEW METHOD FOR CALCULATING FRACTAL DIMENSIONS OF POROUS MEDIA BASED ON PORE SIZE DISTRIBUTION." Fractals 26, no. 01 (February 2018): 1850006. http://dx.doi.org/10.1142/s0218348x18500068.
Full textDissertations / Theses on the topic "Fractal dimensions"
Leifsson, Patrik. "Fractal sets and dimensions." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7320.
Full textFractal analysis is an important tool when we need to study geometrical objects less regular than ordinary ones, e.g. a set with a non-integer dimension value. It has developed intensively over the last 30 years which gives a hint to its young age as a branch within mathematics.
In this thesis we take a look at some basic measure theory needed to introduce certain definitions of fractal dimensions, which can be used to measure a set's fractal degree. Comparisons of these definitions are done and we investigate when they coincide. With these tools different fractals are studied and compared.
A key idea in this thesis has been to sum up different names and definitions referring to similar concepts.
Barros, Marcelo Miranda. "Identification of Fractal Dimensions from a Dynamical Analogy." Laboratório Nacional de Computação Científica, 2007. http://www.lncc.br/tdmc/tde_busca/arquivo.php?codArquivo=145.
Full textDiversas áreas do conhecimento têm utilizado a geometria fractal para melhor entender muitos objetos e fenômenos naturais. Objetos irregulares com padrão auto-similar onde as partes se assemelham ao todo podem ser melhor compreendidos através de dimensões fractais que fornecem como o valor de uma propriedade varia dependendo da resolução, ou escala, em que o objeto é observado ou medido. Apresentamos uma nova abordagem para calcular dimensões fractais através de características físicas. Neste trabalho busca-se uma caracterização da dinâmica de estruturas lineares com geometria fractal. Trata-se os elementos de uma sequência geradora de um fractal como estruturas. Osciladores harmônicos simples são construídos com tais estruturas. A variação do período de vibração desses osciladores com uma determinada medida de comprimento nos fornece uma dimensão fractal. A técnica foi testada para a família de curvas contínuas e auto-similares no plano, onde está incluída a clássica triádica de Koch. Mostramos que essa dimensão dinâmica pode ser relacionada à dimensão de Hausdorff-Besicovitch. Com geometria aleatória, a técnica além de fornecer a dimensão fractal, identifica a aleatoriedade. Um novo tipo de fractal é apresentado. A idéia é usar mais de um gerador no processo de geração de um fractal para obter os fractais mistos.
Alrud, Beng Oscar. "Fractal spectral measures in two dimensions." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4834.
Full textID: 030422913; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 75-76).
Ph.D.
Doctorate
Mathematics
Sciences
Schönwetter, Moritz. "Fractal Dimensions in Classical and Quantum Mechanical Open Chaotic Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-215747.
Full textEs ist seit langem bekannt, dass Fraktale eine charakteristische Begleiterscheinung chaotischer Dynamik sind. Sie treten in Form von seltsamen Attraktoren, von fraktalen Begrenzungen der Einzugsbereiche von Attraktoren oder von fraktalen und multifraktalen Verteilungen asymptotischer Maße in offenen Systemen auf. In dieser Arbeit betrachten wir fraktal und multifraktal verteilte Maße in geöffneten hamiltonschen Systemen. Geöffnete Systeme werden dadurch erzeugt, dass man ein völlig oder teilweise transparentes Loch im Phasenraum definiert, durch das Trajektorien entkommen können oder in dem sie einen Teil ihrer Intensität verlieren. Die Dynamik in solchen Systemen erzeugt komplexe (multi)fraktale Verteilungen der verbleibenden Trajektorien, beziehungsweise ihrer Intensitäten. Diese Systeme sind zur Modellierung experimenteller Aufbauten, wie zum Beispiel optischer Mikrokavitäten oder Mikrowellenresonatoren, geeignet. In dieser Arbeit führen wir eine verbesserte Untersuchung der Fraktalität in derartigen Systemen durch, die auf dem Konzept der effektiven Dimensionen beruht. Diese sind als die Dimensionen definiert, die weit weg von den üblicherweise betrachteten Limites unendlicher Iterationszeit $t$, unendlicher Stichprobengröße $S$ und unendlicher Auflösung, also infinitesimaler Boxgröße $varepsilon$ auftreten. Dennoch können effektive Dimensionen, wie wir zeigen, als der Dynamik des Systems inhärent angesehen werden. Wir führen eine detaillierte Diskussion der numerisch beobachteten Dimension $D_mathrm{obs}(S,t,varepsilon)$ durch und zeigen, dass die drei Parameter $S$, $t$ und $varepsilon$ in Form grenzwertiger Längenskalen ausgedrückt werden können, die die Parameterbereiche definieren, in denen $D_mathrm{obs}(S,t,varepsilon)$ den Wert einer effektiven Dimension des Systems annimmt. Wir beschreiben das Verhalten dieser Längenskalen in stark chaotischen Systemen als Funktionen von $S$, $t$ und $varepsilon$ anhand statistischer Überlegungen und anhand von auf der Dynamik basierenden Aussagen. Weiterhin zeigen wir, dass das Wissen um diese Längenskalen die Definition aussagekräftiger effektiver Dimensionen ermöglicht. Wir wenden unsere Ergebnisse hauptsächlich in drei Bereichen an: Im Kontext numerischer Algorithmen zur Dimensionsberechnung zeigen wir, dass unsere Ergebnisse es erlauben, diejenigen $varepsilon$-Bereiche zu finden, die zu korrekten Ergebnissen führen. Weiterhin zeigen wir, dass sie es uns erlauben, den Rechenaufwand zu minimieren, indem sie uns eine Abschätzung der benötigten Stichprobengröße und Iterationszeit ermöglichen. Ein zweiter Anwendungsbereich sind Systeme, die sich durch eine nichttriviale Abhängigkeit von $D_mathrm{eff}$ von $t$ und $varepsilon$ auszeichnen. Hier ermöglichen unsere Ergebnisse ein besseres Verständnis der Systeme, da Abweichungen von den Vorhersagen basierend auf der Annahme von starker Chaotizität ein Anzeichen dafür sind, dass im entsprechenden Parameterbereich die Eigenschaft dieser Systeme, dass Bereiche in ihrem Phasenraum Trajektorien für eine begrenzte Zeit einfangen können, relevant ist. Zuletzt zeigen wir, dass in quantenmechanischen Analoga chaotischer Abbildungen mit partiellen Öffnungen eine verwandte effektive Dimension genutzt werden kann, um die numerisch beobachteten Abweichungen vom fraktalen weyl'schen Gesetz für völlig transparente Öffnungen zu erklären. In diesem Zusammenhang zeigen wir eine analytische Beschreibung des erwarteten Skalierungsverhaltens auf, die auf der klassischen Dynamik des Systems basiert, und vergleichen sie mit numerischen Erkenntnissen, die wir über die Quantenabbildungen gewonnen haben
Wu, Shi-Ching. "Fractal analyses of some natural systems." Thesis, University of Hull, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322455.
Full textBrock, S. T. H. "Fractal dimensions and their relationship to filtration characteristics." Thesis, Loughborough University, 2000. https://dspace.lboro.ac.uk/2134/13486.
Full textCroft, Jonathan. "Some generalisations of nested fractal constructions and associated diffusions." Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340483.
Full textPatuano, Agnès. "Fractal dimensions of landscape images as predictors of landscape preference." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/31380.
Full textAšeriškytė, Dovilė. "Fraktalinių dimensijų skaičiavimas kai kurioms žmogaus organizmo fiziologinių procesų realizacijoms." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050608_171232-14237.
Full textKilps, John Russel 1965. "Fractal dimensions of aggregates formed under natural and engineered fluid environments." Thesis, The University of Arizona, 1993. http://hdl.handle.net/10150/278282.
Full textBooks on the topic "Fractal dimensions"
Rosenberg, Eric. Fractal Dimensions of Networks. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3.
Full textE, Ugalde, and Urías J, eds. Fractal dimensions for Poincaré recurrences. Amsterdam: Elsevier, 2006.
Find full textKaye, Brian H. A random walk through fractal dimensions. 2nd ed. Weinheim: VCH, 1994.
Find full textKaye, Brian H. A random walk through fractal dimensions. Weinheim, Germany: VCH Verlagsgesellschaft, 1989.
Find full textKaye, Brian H. A random walk through fractal dimensions. Weinheim: VCH, 1989.
Find full textBanerjee, Santo, D. Easwaramoorthy, and A. Gowrisankar. Fractal Functions, Dimensions and Signal Analysis. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62672-3.
Full textA random walk through fractal dimensions. Weinheim: VCH, 1989.
Find full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-35208-4.
Full textLapidus, Michel L., and Machiel van Frankenhuijsen. Fractal Geometry, Complex Dimensions and Zeta Functions. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-2176-4.
Full textRosenberg, Eric. A Survey of Fractal Dimensions of Networks. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-90047-6.
Full textBook chapters on the topic "Fractal dimensions"
Rosenberg, Eric. "Other Dimensions." In Fractal Dimensions of Networks, 425–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_20.
Full textFernández-Martínez, Manuel, Juan Luis García Guirao, Miguel Ángel Sánchez-Granero, and Juan Evangelista Trinidad Segovia. "A Middle Definition Between Hausdorff and Box Dimensions." In Fractal Dimension for Fractal Structures, 85–147. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16645-8_3.
Full textRosenberg, Eric. "Other Network Dimensions." In Fractal Dimensions of Networks, 455–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_22.
Full textRosenberg, Eric. "Dimensions of Infinite Networks." In Fractal Dimensions of Networks, 247–66. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_12.
Full textRosenberg, Eric. "Generalized Dimensions and Multifractals." In Fractal Dimensions of Networks, 325–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_16.
Full textRosenberg, Eric. "Introduction." In Fractal Dimensions of Networks, 1–15. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_1.
Full textRosenberg, Eric. "Computing the Correlation Dimension." In Fractal Dimensions of Networks, 195–219. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_10.
Full textRosenberg, Eric. "Network Correlation Dimension." In Fractal Dimensions of Networks, 221–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_11.
Full textRosenberg, Eric. "Similarity Dimension of Infinite Networks." In Fractal Dimensions of Networks, 267–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_13.
Full textRosenberg, Eric. "Information Dimension." In Fractal Dimensions of Networks, 279–303. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43169-3_14.
Full textConference papers on the topic "Fractal dimensions"
Hornbogen, E. "Fractal Dimensions of Martensitic Microstructures." In ESOMAT 1989 - Ist European Symposium on Martensitic Transformations in Science and Technology. Les Ulis, France: EDP Sciences, 1989. http://dx.doi.org/10.1051/esomat/198902008.
Full textTang, Y. Y., and Yu Tao. "Feature extraction by fractal dimensions." In Proceedings of the Fifth International Conference on Document Analysis and Recognition. ICDAR '99 (Cat. No.PR00318). IEEE, 1999. http://dx.doi.org/10.1109/icdar.1999.791763.
Full textWada, Yukari, and Kazunori Kuwana. "Flame Fractal Dimension Induced by Hydrodynamic Instability." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44222.
Full textPink, David, Arun S. Moorthy, and Fernanda Peyronel. "Computing the Fractal Dimensions of Aggregates." In Virtual 2020 AOCS Annual Meeting & Expo. American Oil Chemists’ Society (AOCS), 2020. http://dx.doi.org/10.21748/am20.43.
Full textKinsner, W. "A unified approach to fractal dimensions." In Fourth IEEE Conference on Cognitive Informatics, 2005. (ICCI 2005). IEEE, 2005. http://dx.doi.org/10.1109/coginf.2005.1532616.
Full textLiu, Jing, Weicai Zhong, Fang Liu, and Licheng Jiao. "Image retrieval algorithm using fractal dimensions." In Second International Conference on Image and Graphics, edited by Wei Sui. SPIE, 2002. http://dx.doi.org/10.1117/12.477114.
Full textSymonds, P. S., and Jae-Yeong Lee. "Fractal Dimensions in Elastic-Plastic Beam Dynamics." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0285.
Full textAngulo, R. F., V. Alvarado, and H. Gonzalez. "Fractal Dimensions from Mercury Intrusion Capillary Tests." In SPE Latin America Petroleum Engineering Conference. Society of Petroleum Engineers, 1992. http://dx.doi.org/10.2118/23695-ms.
Full textLiu, Weiqiang, Jinzhe Xie, Jiulong Xiong, and Ying Li. "Analysis of Fractal Dimensions against Noise Interference." In 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2018. http://dx.doi.org/10.1109/iaeac.2018.8577812.
Full textTumer, Irem Y., R. S. Srinivasan, Kristin L. Wood, and Ilene Busch-Vishniac. "Fractal Precision Models of Lathe-Type Turning Machines." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0425.
Full textReports on the topic "Fractal dimensions"
Friesen, W. I., and R. J. Mikula. Fractal dimensions of coal particles. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304962.
Full textLoehle, C. Estimation of fractal dimensions from transect data. Office of Scientific and Technical Information (OSTI), April 1994. http://dx.doi.org/10.2172/10141758.
Full textEngland, A. W. The Fractal Dimension of Diverse Topographies and the Effect of Spatial Windowing. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1992. http://dx.doi.org/10.4095/133648.
Full textGureghian, A. B. FRACVAL: Validation (nonlinear least squares method) of the solution of one-dimensional transport of decaying species in a discrete planar fracture with rock matrix diffusion. Office of Scientific and Technical Information (OSTI), August 1990. http://dx.doi.org/10.2172/6468991.
Full text