Dissertations / Theses on the topic 'FOV PREDICTION'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'FOV PREDICTION.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Björsell, Joachim. "Long Range Channel Predictions for Broadband Systems : Predictor antenna experiments and interpolation of Kalman predictions." Thesis, Uppsala universitet, Signaler och System, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281058.
Full textKock, Peter. "Prediction and predictive control for economic optimisation of vehicle operation." Thesis, Kingston University, 2013. http://eprints.kingston.ac.uk/35861/.
Full textSchön, Tomas. "Identification for Predictive Control : A Multiple Model Approach." Thesis, Linköping University, Department of Electrical Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-1050.
Full textPredictive control relies on predictions of the future behaviour of the system to be controlled. These predictions are calculated from a model of this system, thus making the model the cornerstone of the predictive controller. Furthermore predictive control is the only advanced control methodology that has managed to become widely used in the industry. The necessity of good models in the predictive control context can thus be motivated both from the very nature of predictive control and from its widespread use in industry.
This thesis is concerned with examining the use of multiple models in the predictive controller. In order to do this the standard predictive control formulation has been extended to incorporate the use of multiple models. The most general case of this new formulation allows the use of an individual model for each prediction horizon.
The models are estimated using measurements of the input and output sequences from the true system. When using this data to find a good model of the system it is important to remember the intended purpose of the model. In this case the model is going to be used in a predictive controller and the most important feature of the models is to deliver good k-step ahead predictions. The identification algorithms used to estimate the models thus strives for estimating models good at calculating these predictions.
Finally this thesis presents some complete simulations of these ideas showing the potential of using multiple models in the predictive control framework.
Shrestha, Rakshya. "Deep soil mixing and predictive neural network models for strength prediction." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607735.
Full textBangalore, Narendranath Rao Amith Kaushal. "Online Message Delay Prediction for Model Predictive Control over Controller Area Network." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78626.
Full textMaster of Science
Chen, Yutao. "Algorithms and Applications for Nonlinear Model Predictive Control with Long Prediction Horizon." Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3421957.
Full textImplementazioni rapide di NMPC sono importanti quando si affronta il controllo in tempo reale di sistemi che presentano caratteristiche come dinamica veloce, ampie dimensioni e orizzonte di predizione lungo, poiché in tali situazioni il carico di calcolo dell'MNPC può limitare la larghezza di banda di controllo ottenibile. A tale scopo, questa tesi riguarda sia gli algoritmi che le applicazioni. In primo luogo, sono stati sviluppati algoritmi veloci NMPC per il controllo di sistemi dinamici a tempo continuo che utilizzano un orizzonte di previsione lungo. Un ponte tra MPC lineare e non lineare viene costruito utilizzando linearizzazioni parziali o aggiornamento della sensibilità. Al fine di aggiornare la sensibilità solo quando necessario, è stata introdotta una misura simile alla curva di non linearità (CMoN) per i sistemi dinamici e applicata agli algoritmi NMPC esistenti. Basato su CMoN, sono state sviluppate logiche di aggiornamento intuitive e avanzate per diverse prestazioni numeriche e di controllo. Pertanto, il CMoN, insieme alla logica di aggiornamento, formula uno schema di aggiornamento della sensibilità parziale per NMPC veloce, denominato CMoN-RTI. Gli esempi di simulazione sono utilizzati per dimostrare l'efficacia e l'efficienza di CMoN-RTI. Inoltre, un'analisi rigorosa sull'ottimalità e sulla convergenza locale di CMoN-RTI viene fornita ed illustrata utilizzando esempi numerici. Algoritmi di condensazione parziale sono stati sviluppati quando si utilizza lo schema di aggiornamento della sensibilità parziale proposto. La complessità computazionale è stata ridotta poiché parte delle informazioni di condensazione sono sfruttate da precedenti istanti di campionamento. Una logica di aggiornamento della sensibilità insieme alla condensazione parziale viene proposta con una complessità lineare nella lunghezza della previsione, che porta a una velocità di un fattore dieci. Sono anche proposti algoritmi di fattorizzazione parziale della matrice per sfruttare l'aggiornamento della sensibilità parziale. Applicando metodi di suddivisione a problemi a più stadi, è necessario aggiornare solo parte del sistema KKT risultante, che è computazionalmente dominante nell'ottimizzazione online. Un miglioramento significativo è stato dimostrato dando operazioni in virgola mobile (flop). In secondo luogo, sono state realizzate implementazioni efficienti di NMPC sviluppando un pacchetto basato su Matlab chiamato MATMPC. MATMPC ha due modalità operative: quella si basa completamente su Matlab e l'altra utilizza l'API del linguaggio MATLAB C. I vantaggi di MATMPC sono che gli algoritmi sono facili da sviluppare e eseguire il debug grazie a Matlab e le librerie e le toolbox di Matlab possono essere utilizzate direttamente. Quando si lavora nella seconda modalità, l'efficienza computazionale di MATMPC è paragonabile a quella del software che utilizza la generazione di codice ottimizzata. Le realizzazioni in tempo reale sono ottenute per un simulatore di guida dinamica di nove gradi di libertà e per il movimento multisensoriale con sedile attivo.
Ge, Esther. "The query based learning system for lifetime prediction of metallic components." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/18345/4/Esther_Ting_Ge_Thesis.pdf.
Full textGe, Esther. "The query based learning system for lifetime prediction of metallic components." Queensland University of Technology, 2008. http://eprints.qut.edu.au/18345/.
Full textZhu, Zheng. "A Unified Exposure Prediction Approach for Multivariate Spatial Data: From Predictions to Health Analysis." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin155437434818942.
Full textAldars, García Laila. "Predictive mycology as a tool for controlling and preventing the aflatoxin risk in postharvest." Doctoral thesis, Universitat de Lleida, 2017. http://hdl.handle.net/10803/418806.
Full textLas aflatoxinas son potentes carcinógenos que representan una amenaza significativa para la salud humana. La incidencia de estas micotoxinas en los alimentos es alta, por lo que su control y prevención es obligatoria en la industria alimentaria. El desarrollo de modelos predictivos apropiados que nos permitan predecir el crecimiento fúngico y la producción de micotoxinas es de gran utilidad como herramienta para controlar, predecir y prevenir el riesgo de micotoxinas en alimentos. Es importante que los modelos predictivos sean capaces de explicar las condiciones ambientales que se encuentran a lo largo de la cadena alimentaria. Entre tales condiciones encontramos: condiciones subóptimas para el crecimiento y producción de micotoxinas, distribución aleatoria de esporas fúngicas en el alimento, presencia de diferentes cepas de la misma especie o condiciones ambientales dinámicas. El presente trabajo proporciona una base para el desarrollo de modelos científicamente probados, que pueden ser aplicados por la industria alimentaria para mejorar el control de micotoxinas en postcosecha.
Aflatoxins are potent carcinogens that pose a significant threat to human health. Incidence of these mycotoxins in foodstuffs is high, thus their control and prevention is mandatory in the food industry. The development of appropriate predictive models that allow us to predict fungal growth and mycotoxin production will be a valuable tool to monitor, predict and prevent the mycotoxin risk. To develop accurate predictive models it is important to account for the real conditions that we will encounter through the food chain. Such conditions include: suboptimal conditions for growth and mycotoxin production, even distribution of spores across the food matrix, presence of different strains of the same species or dynamic environmental conditions. Given the scope and complexity of the problem the present work provides the basis for scientifically proven models, which can be applied in the food industry in order to improve postharvest control of commodities.
Oleksandra, Shovkun. "Some methods for reducing the total consumption and production prediction errors of electricity: Adaptive Linear Regression of Original Predictions and Modeling of Prediction Errors." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-34398.
Full textAltmisdort, F. Nadir. "Development of a new prediction algorithm and a simulator for the Predictive Read Cache (PRC)." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA322724.
Full textThesis advisor(s): Douglas J. Fouts. "September 1996." Includes bibliographical references (p. 127-128). Also available online.
Hotz-Behofsits, Christian, Florian Huber, and Thomas Zörner. "Predicting crypto-currencies using sparse non-Gaussian state space models." Wiley, 2018. http://dx.doi.org/10.1002/for.2524.
Full textSilva, Jesús, Palma Hugo Hernández, Núẽz William Niebles, David Ovallos-Gazabon, and Noel Varela. "Time Series Decomposition using Automatic Learning Techniques for Predictive Models." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/652144.
Full textLosik, Len. "Using Oracol® for Predicting Long-Term Telemetry Behavior for Earth and Lunar Orbiting and Interplanetary Spacecraft." International Foundation for Telemetering, 2010. http://hdl.handle.net/10150/604280.
Full textProviding normal telemetry behavior predictions prior to and post launch will help to stop surprise catastrophic satellite and spacecraft equipment failures. In-orbit spacecraft fail from surprise equipment failures that can result from not having normal telemetry behavior available for comparison with actual behavior catching satellite engineers by surprise. Some surprise equipment failures lead to the total loss of the satellite or spacecraft. Some recovery actions from a surprise equipment failure increase spacecraft risk and involve decisions requiring a level of experience far beyond the responsible engineers.
Losik, Len. "Using Oracol® for Predicting Long-Term Telemetry Behavior for Earth and Lunar Orbiting and Interplanetary Spacecraft." International Foundation for Telemetering, 2009. http://hdl.handle.net/10150/606127.
Full textProviding normal telemetry behavior predictions prior to and post launch will help to stop surprise catastrophic satellite and spacecraft equipment failures. In-orbit spacecraft fail from surprise equipment failures that can result from not having normal telemetry behavior available for comparison with actual behavior catching satellite engineers by surprise. Some surprise equipment failures lead to the total loss of the satellite or spacecraft. Some recovery actions as a consequence of a surprise equipment failure are high risk and involve decisions requiring a level of experience far beyond the responsible engineers.
Abo, Al Ahad George, and Abbas Salami. "Machine Learning for Market Prediction : Soft Margin Classifiers for Predicting the Sign of Return on Financial Assets." Thesis, Linköpings universitet, Produktionsekonomi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-151459.
Full textHausberger, Thomas [Verfasser]. "Nonlinear High-Speed Model Predictive Control with Long Prediction Horizons for Power-Converter Systems / Thomas Hausberger." Düren : Shaker, 2021. http://d-nb.info/1233548271/34.
Full textFawcett, Lee, Neil Thorpe, Joseph Matthews, and Karsten Kremer. "A novel Bayesian hierarchical model for road safety hotspot prediction." Elsevier, 2016. https://publish.fid-move.qucosa.de/id/qucosa%3A72268.
Full textSowan, Bilal I. "Enhancing Fuzzy Associative Rule Mining Approaches for Improving Prediction Accuracy. Integration of Fuzzy Clustering, Apriori and Multiple Support Approaches to Develop an Associative Classification Rule Base." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5387.
Full textApplied Science University (ASU) of Jordan
Broberg, Magnus. "Performance Prediction and Improvement Techniques for Parallel Programs in Multiprocessors." Doctoral thesis, Karlskrona: Department of Software Engineering and Computer Science, Blekinge Institute of Technology, 2002. http://www.bth.se/fou/forskinfo.nsf/01f1d3898cbbd490c12568160037fb62/2bf3ca6a32368b72c1256b98003d7466!OpenDocument.
Full textScott, Hanna. "Towards a Framework for Fault and Failure Prediction and Estimation." Licentiate thesis, Karlskrona : Department of Systems and Software Engineering, School of Engineering, Blekinge Institute of Technology, 2008. http://www.bth.se/fou/Forskinfo.nsf/allfirst2/46bd1c549ac32f74c12574c100299f82?OpenDocument.
Full textDarwiche, Aiman A. "Machine Learning Methods for Septic Shock Prediction." Diss., NSUWorks, 2018. https://nsuworks.nova.edu/gscis_etd/1051.
Full textYang, Lei. "Methodology of Prognostics Evaluation for Multiprocess Manufacturing Systems." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1298043095.
Full textSowan, Bilal Ibrahim. "Enhancing fuzzy associative rule mining approaches for improving prediction accuracy : integration of fuzzy clustering, apriori and multiple support approaches to develop an associative classification rule base." Thesis, University of Bradford, 2011. http://hdl.handle.net/10454/5387.
Full textFlöjs, Amanda, and Alexandra Hägg. "Churn Prediction : Predicting User Churn for a Subscription-based Service using Statistical Analysis and Machine Learning Models." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-171678.
Full textPrenumerationstjänster blir alltmer populära i dagens samhälle. Därför är det viktigt för ett företag med en prenumerationsbaserad verksamhet att ha en god förståelse för sina användares beteendemönster på tjänsten, samt att de minskar antalet användare som avslutar sin prenumeration. Enligt marknads-föringsstatistik är sannolikheten att sälja till en redan existerande användare betydligt högre än att sälja till en helt ny. Av den anledningen, är det viktigt att ett stort fokus riktas mot att förebygga att användare lämnar tjänsten. För att förebygga att användare lämnar tjänsten måste företaget identifiera vilka användare som är i riskzonen att lämna. Därför har detta examensarbete behandlats som ett klassifikations problem. Syftet med arbetet var att utveckla en statistisk modell för att förutspå vilka användare som sannolikt kommer att lämna prenumerationstjänsten inom nästa månad. Olika statistiska metoder har prövats för att identifiera användares beteendemönster i aktivitet- och engagemangsdata, data som inkluderar variabler som beskriver senaste interaktion, frekvens och volym. Bäst prestanda för att förutspå om en användare kommer att lämna tjänsten gavs av Random Forest algoritmen. Den valda modellen kan separera de två klasserna av användare som lämnar tjänsten och de användare som stannar med 73% sannolikhet och har en relativt låg missfrekvens på 35%. Resultatet av arbetet visar att det går att förutspå vilka användare som befinner sig i riskzonen för att lämna tjänsten med hjälp av statistiska modeller, även om det är svårt för modellen att generalisera ett specifikt beteendemönster för de olika grupperna. Detta är dock förståeligt då det är mänskligt beteende som modellen försöker att förutspå. Resultatet av arbetet pekar mot att variabler som beskriver frekvensen av användandet av tjänsten beskriver mer om en användare är påväg att lämna tjänsten än variabler som beskriver användarens aktivitet i volym.
Ferreira, de Melo Filho Alberto. "Predicting the unpredictable - Can Artificial Neural Network replace ARIMA for prediction of the Swedish Stock Market (OMXS30)?" Thesis, Mittuniversitetet, Institutionen för ekonomi, geografi, juridik och turism, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36908.
Full textJahedpari, Fatemeh. "Artificial prediction markets for online prediction of continuous variables." Thesis, University of Bath, 2016. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.690730.
Full textCai, Xun Ph D. Massachusetts Institute of Technology. "Transforms for prediction residuals based on prediction inaccuracy modeling." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/109003.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 157-162).
In a typical transform-based image and video compression system, an image or a video frame is predicted from previously encoded information. The prediction residuals are encoded with transforms. With a proper choice of the transform, a large amount of the residual energy compacts into a small number of transform coefficients. This is known as the energy compaction property. Given the covariance function of the signal, the linear transform with the best energy compaction property is the Karhunen Loeve transform. In this thesis, we develop a new set of transforms for prediction residuals. We observe that the prediction process in practical video compression systems is usually not accurate. By studying the inaccuracy of the prediction process, we can derive new covariance functions for prediction residuals. The estimated covariance function is used to generate the Karhunen Loeve transform for residual encoding. In this thesis, we model the prediction inaccuracy for two types of residuals. Specifically, we estimate the covariance function of the directional intra prediction residuals. We show that the covariance function and the optimal transform for directional intra prediction residuals are related with the one-dimensional gradient of boundary predictors. We estimate the covariance function of the motion-compensated prediction residuals. We show that the covariance function and the optimal transform for motion-compensated prediction residuals are related with the two-dimensional gradient of the displaced reference block. The proposed transforms are evaluated using the energy compaction property and the rate-distortion metric in a practical video coding system. Experimental results indicate that the proposed transforms significantly improve the performance in a typical transform-based compression scenario.
by Xun Cai.
Ph. D.
op, den Kelder Antonia. "Using predictive uncertainty analysis to optimise data acquisition for stream depletion and land-use change predictions." Thesis, Stockholms universitet, Institutionen för naturgeografi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-160851.
Full textSammouri, Wissam. "Data mining of temporal sequences for the prediction of infrequent failure events : application on floating train data for predictive maintenance." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1041/document.
Full textIn order to meet the mounting social and economic demands, railway operators and manufacturers are striving for a longer availability and a better reliability of railway transportation systems. Commercial trains are being equipped with state-of-the-art onboard intelligent sensors monitoring various subsystems all over the train. These sensors provide real-time flow of data, called floating train data, consisting of georeferenced events, along with their spatial and temporal coordinates. Once ordered with respect to time, these events can be considered as long temporal sequences which can be mined for possible relationships. This has created a neccessity for sequential data mining techniques in order to derive meaningful associations rules or classification models from these data. Once discovered, these rules and models can then be used to perform an on-line analysis of the incoming event stream in order to predict the occurrence of target events, i.e, severe failures that require immediate corrective maintenance actions. The work in this thesis tackles the above mentioned data mining task. We aim to investigate and develop various methodologies to discover association rules and classification models which can help predict rare tilt and traction failures in sequences using past events that are less critical. The investigated techniques constitute two major axes: Association analysis, which is temporal and Classification techniques, which is not temporal. The main challenges confronting the data mining task and increasing its complexity are mainly the rarity of the target events to be predicted in addition to the heavy redundancy of some events and the frequent occurrence of data bursts. The results obtained on real datasets collected from a fleet of trains allows to highlight the effectiveness of the approaches and methodologies used
Alstermark, Olivia, and Evangelina Stolt. "Purchase Probability Prediction : Predicting likelihood of a new customer returning for a second purchase using machine learning methods." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184831.
Full textArnold, Naomi (Naomi Aiko). "Wafer defect prediction with statistical machine learning." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105633.
Full textThesis: M.B.A., Massachusetts Institute of Technology, Sloan School of Management, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 81-83).
In the semiconductor industry where the technology continues to grow in complexity while also striving to achieve lower manufacturing costs, it is becoming increasingly important to drive cost savings by screening out defective die upstream. The primary goal of the project is to build a statistical prediction model to facilitate operational improvements across two global manufacturing locations. The scope of the project includes one high-volume product line, an off-line statistical model using historical production data, and experimentation with machine learning algorithms. The prediction model pilot demonstrates there exists a potential to improve the wafer sort process using random forest classifier on wafer and die-level datasets. Yet more development is needed to conclude final memory test defect die-level predictions are possible. Key findings include the importance of model computational performance in big data problems, necessity of a living model that stays accurate over time to meet operational needs, and an evaluation methodology based on business requirements. This project provides a case study for a high-level strategy of assessing big data and advanced analytics applications to improve semiconductor manufacturing.
by Naomi Arnold.
S.M. in Engineering Systems
M.B.A.
Campbell, Brian. "Type-based amortized stack memory prediction." Thesis, University of Edinburgh, 2008. http://hdl.handle.net/1842/3176.
Full textJing, Junbo. "Vehicle Predictive Fuel-Optimal Control for Real-World Systems." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1534506777487814.
Full textGe, Wuxiang. "Prediction-based failure management for supercomputers." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/predictionbased-failure-management-for-supercomputers(3accd61b-e77a-4722-919b-5bd9ae11610b).html.
Full textMehdi, Muhammad Sarim. "Trajectory Prediction for ADAS." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21891/.
Full textIbarria, Lorenzo. "Geometric Prediction for Compression." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16162.
Full textLi, Xiang. "Lifetime prediction for rocks." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-126371.
Full text本文认为微结构缺陷(微裂纹)的扩展决定了受力岩石的寿命(破坏时间)。基于此假设,提出了岩石寿命预测方法。利用线弹性断裂力学理论,通过FLAC进行了数值模拟。数值模型中每个单元定义一条初始裂纹,其长度与方向服从特定分布。基于亚临界裂纹扩展理论,由Charles方程决定微裂纹的扩展(速度)。如微裂纹发展至单元边界,或应力强度系数到达断裂韧度,则单元破坏。宏观裂纹由微裂纹所联合形成,并最终贯穿模型导致破坏。在形成宏观裂纹的过程中,发生弹塑性应力重分布。在数值模型中,编制了不同类型的微裂纹扩展方式,并在不同的受力条件下加以分析。数值模型的岩石寿命,裂纹形状,破坏方式以及一些重要的参数的数值模拟结果与解析解有较好的一致性。对本文所提出的数值模型的初步实际应用进行了分析,并讨论了计算结果。最后讨论了本文所提出的岩石寿命预测方法的可能改良与发展,并对进一步的研究工作给出建议。
Abdullah, Siti Norbaiti binti. "Machine learning approach for crude oil price prediction." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/machine-learning-approach-for-crude-oil-price-prediction(949fa2d5-1a4d-416a-8e7c-dd66da95398e).html.
Full textHagward, Anders. "Using Git Commit History for Change Prediction : An empirical study on the predictive potential of file-level logical coupling." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172998.
Full textDe senaste åren har en ny generation av distribuerade versionshanteringssystem tagit plats där tidigare centraliserade sådana huserat. I spetsen för dessa nya system går ett system vid namn Git. Vi undersöker potentialen i att nyttja versionshistorik från Git i syftet att förutspå filer som ofta redigeras ihop. I synnerhet synar vi Gits heuristik för att detektera när en fil flyttats eller bytt namn, någonting som torde vara användbart för att bibehålla historiken för en sådan fil, och mäter dess inverkan på prediktionsprestandan. Genom att applicera en datautvinningsalgoritm på fem populära GitHubprojekt extraherar vi logisk koppling – beroenden mellan filer som inte nödvändigtvis är detekterbara medelst statisk analys – på vilken vi baserar vår prediktion. Därtill utreder vi huruvida vissa Gitcommits är bättre lämpade för prediktion än andra; vi definierar en buggfixcommit som en commit som löser en eller flera buggar i den tillhörande buggdatabasen, och jämför deras prediktionsprestanda. Medan våra resultat ej kan påvisa några större prestandamässiga skillnader när flytt- och namnbytesinformationen ignorerades, indikerar de att extrahera koppling från, och prediktera på, enbart bugfixcommits kan leda till förutsägelser som är både mer precisa och mångtaliga.
Gailey, Robert Stuart. "The amputee mobility predictor : a functional assessment instrument for the prediction of the lower limb amputee's readiness to ambulate." Thesis, University of Strathclyde, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367028.
Full textKuchangi, Shamanth. "A categorical model for traffic incident likelihood estimation." Thesis, Texas A&M University, 2006. http://hdl.handle.net/1969.1/4661.
Full textIqbal, Ammar Tanange Rakesh Virk Shafqat. "Vehicle fault prediction analysis : a health prediction tool for heavy vehicles /." Göteborg : IT-universitetet, Chalmers tekniska högskola och Göteborgs universitet, 2006. http://www.ituniv.se/w/index.php?option=com_itu_thesis&Itemid=319.
Full textMcElroy, Wade Allen. "Demand prediction modeling for utility vegetation management." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117973.
Full textThesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, in conjunction with the Leaders for Global Operations Program at MIT, 2018.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 63-64).
This thesis proposes a demand prediction model for utility vegetation management (VM) organizations. The primary uses of the model is to aid in the technology adoption process of Light Detection and Ranging (LiDAR) inspections, and overall system planning efforts. Utility asset management ensures vegetation clearance of electrical overhead powerlines to meet state and federal regulations, all in an effort to create the safest and most reliable electrical system for their customers. To meet compliance, the utility inspects and then prunes and/or removes trees within their entire service area on an annual basis. In recent years LiDAR technology has become more widely implemented in utilities to quickly and accurately inspect their service territory. VM programs encounter the dilemma of wanting to pursue LiDAR as a technology to improve their operations, but find it prudent, especially in the high risk and critical regulatory environment, to test the technology. The biggest problem during, and after, the testing is having a baseline of the expected number of tree units worked each year due to the intrinsic variability of tree growth. As such, double inspection and/or long pilot projects are conducted before there is full adoption of the technology. This thesis will address the prediction of circuit-level tree work forecasting through the development a model using statistical methods. The outcome of this model will be a reduced timeframe for complete adoption of LiDAR technology for utility vegetation programs. Additionally, the modeling effort provides the utility with insight into annual planning improvements. Lastly for later usage, the model will be a baseline for future individual tree growth models that include and leverage LiDAR data to provide a superior level of safety and reliability for utility customers.
by Wade Allen McElroy.
M.B.A.
S.M.
Sepp, Löfgren Nicholas. "Accelerating bulk material property prediction using machine learning potentials for molecular dynamics : predicting physical properties of bulk Aluminium and Silicon." Thesis, Linköpings universitet, Teoretisk Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179894.
Full textAkkasli, Cem. "Methods for Path loss Prediction." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-6127.
Full textLarge scale path loss modeling plays a fundamental role in designing both fixed and mobile radio systems. Predicting the radio coverage area of a system is not done in a standard manner. Wireless systems are expensive systems. Therefore, before setting up a system one has to choose a proper method depending on the channel environment, frequency band and the desired radio coverage range. Path loss prediction plays a crucial role in link budget analysis and in the cell coverage prediction of mobile radio systems. Especially in urban areas, increasing numbers of subscribers brings forth the need for more base stations and channels. To obtain high efficiency from the frequency reuse concept in modern cellular systems one has to eliminate the interference at the cell boundaries. Determining the cell size properly is done by using an accurate path loss prediction method. Starting from the radio propagation phenomena and basic path loss models this thesis aims at describing various accurate path loss prediction methods used both in rural and urban environments. The Walfisch-Bertoni and Hata models, which are both used for UHF propagation in urban areas, were chosen for a detailed comparison. The comparison shows that the Walfisch-Bertoni model, which involves more parameters, agrees with the Hata model for the overall path loss.
Bayrak, Hakan. "Lifetime Condition Prediction For Bridges." Phd thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613793/index.pdf.
Full textYu, Xiaofeng. "Prediction Intervals for Class Probabilities." The University of Waikato, 2007. http://hdl.handle.net/10289/2436.
Full textRozum, Michael A. "Effective design augmentation for prediction." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-08032007-102232/.
Full text