Journal articles on the topic 'Fourier restriction theorems'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fourier restriction theorems.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Demeter, Ciprian, and S. Zubin Gautam. "Bilinear Fourier Restriction Theorems." Journal of Fourier Analysis and Applications 18, no. 6 (June 6, 2012): 1265–90. http://dx.doi.org/10.1007/s00041-012-9230-9.
Full textDrury, S. W., and B. P. Marshall. "Fourier restriction theorems for degenerate curves." Mathematical Proceedings of the Cambridge Philosophical Society 101, no. 3 (May 1987): 541–53. http://dx.doi.org/10.1017/s0305004100066901.
Full textLakey, Joseph D. "Weighted Restriction for Curves." Canadian Mathematical Bulletin 36, no. 1 (March 1, 1993): 87–95. http://dx.doi.org/10.4153/cmb-1993-013-5.
Full textBloom, Steven, and Gary Sampson. "Weighted spherical restriction theorems for the Fourier transform." Illinois Journal of Mathematics 36, no. 1 (March 1992): 73–101. http://dx.doi.org/10.1215/ijm/1255987608.
Full textDe Carli, Laura, Dmitry Gorbachev, and Sergey Tikhonov. "Pitt inequalities and restriction theorems for the Fourier transform." Revista Matemática Iberoamericana 33, no. 3 (2017): 789–808. http://dx.doi.org/10.4171/rmi/955.
Full textDrury, S. W., and B. P. Marshall. "Fourier restriction theorems for curves with affine and Euclidean arclengths." Mathematical Proceedings of the Cambridge Philosophical Society 97, no. 1 (January 1985): 111–25. http://dx.doi.org/10.1017/s0305004100062654.
Full textFerreyra, Elida, and Marta Urciuolo. "Restriction Theorems for Anisotropically Homogeneous Hypersurfaces of." gmj 15, no. 4 (December 2008): 643–51. http://dx.doi.org/10.1515/gmj.2008.643.
Full textFerreyra, E., T. Godoy, and M. Urciuolo. "Restriction theorems for the Fourier transform to homogeneous polynomial surfaces in R3." Studia Mathematica 160, no. 3 (2004): 249–65. http://dx.doi.org/10.4064/sm160-3-4.
Full textFraser, Robert, and Kyle Hambrook. "Explicit Salem sets, Fourier restriction, and metric Diophantine approximation in the p-adic numbers." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 150, no. 3 (January 29, 2019): 1265–88. http://dx.doi.org/10.1017/prm.2018.115.
Full textCluckers, Raf. "Analytic van der Corput Lemma for p-adic and Fq((t)) oscillatory integrals, singular Fourier transforms, and restriction theorems." Expositiones Mathematicae 29, no. 4 (2011): 371–86. http://dx.doi.org/10.1016/j.exmath.2011.06.004.
Full textKovač, Vjekoslav, and Diogo Oliveira e Silva. "A variational restriction theorem." Archiv der Mathematik 117, no. 1 (May 7, 2021): 65–78. http://dx.doi.org/10.1007/s00013-021-01604-1.
Full textMockenhaupt, Gerd. "A restriction theorem for the Fourier transform." Bulletin of the American Mathematical Society 25, no. 1 (July 1, 1991): 31–37. http://dx.doi.org/10.1090/s0273-0979-1991-16018-0.
Full textHickman, Jonathan, and James Wright. "An abstract $L^2$ Fourier restriction theorem." Mathematical Research Letters 26, no. 1 (2019): 75–100. http://dx.doi.org/10.4310/mrl.2019.v26.n1.a6.
Full textHickman, Jonathan. "AN AFFINE FOURIER RESTRICTION THEOREM FOR CONICAL SURFACES." Mathematika 60, no. 2 (December 13, 2013): 374–90. http://dx.doi.org/10.1112/s002557931300020x.
Full textChen, Xianghong. "A Fourier restriction theorem based on convolution powers." Proceedings of the American Mathematical Society 142, no. 11 (July 21, 2014): 3897–901. http://dx.doi.org/10.1090/s0002-9939-2014-12148-4.
Full textBuschenhenke, Stefan, Detlef Müller, and Ana Vargas. "A Fourier restriction theorem for a perturbed hyperbolic paraboloid." Proceedings of the London Mathematical Society 120, no. 1 (August 5, 2019): 124–54. http://dx.doi.org/10.1112/plms.12286.
Full textShayya, Bassam. "Fourier restriction in low fractal dimensions." Proceedings of the Edinburgh Mathematical Society 64, no. 2 (April 30, 2021): 373–407. http://dx.doi.org/10.1017/s0013091521000201.
Full textGupta, Sanjiv Kumar. "Generalized De Leeuw Theorem." gmj 12, no. 1 (March 2005): 89–96. http://dx.doi.org/10.1515/gmj.2005.89.
Full textDrury, S. W., and K. Guo. "Some remarks on the restriction of the Fourier transform to surfaces." Mathematical Proceedings of the Cambridge Philosophical Society 113, no. 1 (January 1993): 153–59. http://dx.doi.org/10.1017/s0305004100075848.
Full textOberlin, Daniel M. "A Restriction Theorem for a k-Surface in ℝn." Canadian Mathematical Bulletin 48, no. 2 (June 1, 2005): 260–66. http://dx.doi.org/10.4153/cmb-2005-024-9.
Full textOberlin, Daniel M. "A uniform Fourier restriction theorem for surfaces in $\mathbb {R}^{d}$." Proceedings of the American Mathematical Society 140, no. 1 (June 29, 2011): 263–65. http://dx.doi.org/10.1090/s0002-9939-2011-11218-8.
Full textOberlin, Daniel M. "A uniform Fourier restriction theorem for surfaces in $\mathbb {R}^{3}$." Proceedings of the American Mathematical Society 132, no. 4 (October 15, 2003): 1195–99. http://dx.doi.org/10.1090/s0002-9939-03-07289-7.
Full textVitturi, Marco. "A note on maximal Fourier restriction for spheres in all dimensions." Glasnik Matematicki 57, no. 2 (December 30, 2022): 313–19. http://dx.doi.org/10.3336/gm.57.2.10.
Full textChen, Xianghong, and Andreas Seeger. "Convolution Powers of Salem Measures With Applications." Canadian Journal of Mathematics 69, no. 02 (April 2017): 284–320. http://dx.doi.org/10.4153/cjm-2016-019-6.
Full textBuschenhenke, Stefan, Detlef Müller, and Ana Vargas. "A Fourier restriction theorem for a two-dimensional surface of finite type." Analysis & PDE 10, no. 4 (May 9, 2017): 817–91. http://dx.doi.org/10.2140/apde.2017.10.817.
Full textKumar, Pratyoosh. "Fourier restriction theorem and characterization of weakL2eigenfunctions of the Laplace–Beltrami operator." Journal of Functional Analysis 266, no. 9 (May 2014): 5584–97. http://dx.doi.org/10.1016/j.jfa.2013.10.009.
Full textChen, Xianghong. "Sets of Salem type and sharpness of the $L^2$-Fourier restriction theorem." Transactions of the American Mathematical Society 368, no. 3 (June 17, 2015): 1959–77. http://dx.doi.org/10.1090/tran/6396.
Full textArendt, Wolfgang, and Shangquan Bu. "OPERATOR-VALUED FOURIER MULTIPLIERS ON PERIODIC BESOV SPACES AND APPLICATIONS." Proceedings of the Edinburgh Mathematical Society 47, no. 1 (February 2004): 15–33. http://dx.doi.org/10.1017/s0013091502000378.
Full textOberlin, Daniel, and Richard Oberlin. "Application of a Fourier Restriction Theorem to Certain Families of Projections in $${\mathbb {R}}^3$$ R 3." Journal of Geometric Analysis 25, no. 3 (March 22, 2014): 1476–91. http://dx.doi.org/10.1007/s12220-014-9480-7.
Full textHamid, Ashwaq Q., and Burak Abedulhadi. "DESIGN AND EVALUATION OF A WEB BASED VIRTUAL DSP LABORATORY USING GUI AND HTML." Journal of Engineering 17, no. 02 (March 1, 2011): 279–306. http://dx.doi.org/10.31026/j.eng.2011.02.07.
Full textBuschenhenke, Stefan, Detlef Müller, and Ana Vargas. "Partitions of Flat One-Variate Functions and a Fourier Restriction Theorem for Related Perturbations of the Hyperbolic Paraboloid." Journal of Geometric Analysis 31, no. 7 (February 18, 2021): 6941–86. http://dx.doi.org/10.1007/s12220-020-00587-9.
Full textBuschenhenke, Stefan. "A sharp $$L^p-L^q$$ L p - L q -Fourier restriction theorem for a conical surface of finite type." Mathematische Zeitschrift 280, no. 1-2 (March 25, 2015): 367–99. http://dx.doi.org/10.1007/s00209-015-1429-4.
Full textSafina, R. M. "Keldysh problem for Pulkin’s equation in a rectangular domain." Vestnik of Samara University. Natural Science Series 21, no. 3 (May 19, 2017): 53–63. http://dx.doi.org/10.18287/2541-7525-2015-21-3-53-63.
Full textAntoniou, I., and S. A. Shkarin. "Decay measures on locally compact abelian topological groups." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 131, no. 6 (December 2001): 1257–73. http://dx.doi.org/10.1017/s0308210500001384.
Full textFrønsdal, Christian. "Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation." International Journal of Geometric Methods in Modern Physics 14, no. 02 (January 18, 2017): 1750017. http://dx.doi.org/10.1142/s0219887817500177.
Full textNikolaev, Oleksii, and Mariia Skitska. "The method of determining optimal control of the thermoelastic state of piece-homogeneous body using a stationary temperature field." Radioelectronic and Computer Systems 2024, no. 2 (April 23, 2024): 98–119. http://dx.doi.org/10.32620/reks.2024.2.09.
Full textBahouri, Hajer, Davide Barilari, and Isabelle Gallagher. "Strichartz Estimates and Fourier Restriction Theorems on the Heisenberg Group." Journal of Fourier Analysis and Applications 27, no. 2 (March 11, 2021). http://dx.doi.org/10.1007/s00041-021-09822-5.
Full textDabra, Arvish, and N. Shravan Kumar. "Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra." Results in Mathematics 79, no. 6 (August 26, 2024). http://dx.doi.org/10.1007/s00025-024-02263-8.
Full textCASPERS, MARTIJN, JAVIER PARCET, MATHILDE PERRIN, and ÉRIC RICARD. "NONCOMMUTATIVE DE LEEUW THEOREMS." Forum of Mathematics, Sigma 3 (October 1, 2015). http://dx.doi.org/10.1017/fms.2015.23.
Full textCaspers, Martijn, Bas Janssens, Amudhan Krishnaswamy-Usha, and Lukas Miaskiwskyi. "Local and multilinear noncommutative de Leeuw theorems." Mathematische Annalen, May 3, 2023. http://dx.doi.org/10.1007/s00208-023-02611-z.
Full textDabra, Arvish, and N. Shravan Kumar. "Correction To: Restriction Theorems for the p-Analog of the Fourier–Stieltjes Algebra." Results in Mathematics 79, no. 8 (November 16, 2024). http://dx.doi.org/10.1007/s00025-024-02304-2.
Full textFraser, Robert, Kyle Hambrook, and Donggeun Ryou. "Fourier restriction and well-approximable numbers." Mathematische Annalen, November 1, 2024. http://dx.doi.org/10.1007/s00208-024-03000-w.
Full textSenapati, P. Jitendra Kumar, Pradeep Boggarapu, Shyam Swarup Mondal, and Hatem Mejjaoli. "Restriction theorem for the Fourier–Dunkl transform I: cone surface." Journal of Pseudo-Differential Operators and Applications 14, no. 1 (December 11, 2022). http://dx.doi.org/10.1007/s11868-022-00499-y.
Full textBuschenhenke, Stefan, Detlef Müller, and Ana Vargas. "A Fourier restriction theorem for a perturbed hyperbolic paraboloid: polynomial partitioning." Mathematische Zeitschrift, February 7, 2022. http://dx.doi.org/10.1007/s00209-021-02948-8.
Full textSenapati, P. Jitendra Kumar, Pradeep Boggarapu, Shyam Swarup Mondal, and Hatem Mejjaoli. "Restriction Theorem for the Fourier–Dunkl Transform and Its Applications to Strichartz Inequalities." Journal of Geometric Analysis 34, no. 3 (January 13, 2024). http://dx.doi.org/10.1007/s12220-023-01530-4.
Full textGarofalo, Nicola. "Some Inequalities for the Fourier Transform and Their Limiting Behaviour." Journal of Geometric Analysis 34, no. 2 (December 29, 2023). http://dx.doi.org/10.1007/s12220-023-01477-6.
Full textMondal, Shyam Swarup, and Jitendriya Swain. "Restriction theorem for the Fourier–Hermite transform and solution of the Hermite–Schrödinger equation." Advances in Operator Theory 7, no. 4 (July 19, 2022). http://dx.doi.org/10.1007/s43036-022-00208-y.
Full textThangavelu, Sundaram. "Spherical Means on the Heisenberg Group and a Restriction Theorem for the Symplectic Fourier Transform." Revista Matemática Iberoamericana, 1991, 135–55. http://dx.doi.org/10.4171/rmi/108.
Full textMondal, Shyam Swarup, and Jitendriya Swain. "Correction: Restriction theorem for the Fourier–Hermite transform and solution of the Hermite–Schrödinger equation." Advances in Operator Theory 8, no. 3 (June 14, 2023). http://dx.doi.org/10.1007/s43036-023-00276-8.
Full textOliveira e Silva, Diogo. "The endpoint Stein–Tomas inequality: old and new." São Paulo Journal of Mathematical Sciences, April 22, 2024. http://dx.doi.org/10.1007/s40863-024-00422-x.
Full text