To see the other types of publications on this topic, follow the link: Fourier optics.

Journal articles on the topic 'Fourier optics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Fourier optics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Papoulis, A. "FOURIER OPTICS." Electromagnetics 9, no. 1 (January 1989): 1–16. http://dx.doi.org/10.1080/02726348908915223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Siegman, A. E. "Fiber Fourier optics." Optics Letters 26, no. 16 (August 15, 2001): 1215. http://dx.doi.org/10.1364/ol.26.001215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ozaktas, Haldun M., and David A. B. Miller. "Digital Fourier optics." Applied Optics 35, no. 8 (March 10, 1996): 1212. http://dx.doi.org/10.1364/ao.35.001212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ozaktas, Haldun M., and David Mendlovic. "Fractional Fourier optics." Journal of the Optical Society of America A 12, no. 4 (April 1, 1995): 743. http://dx.doi.org/10.1364/josaa.12.000743.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pellat-Finet, Pierre, and Georges Bonnet. "Fractional order Fourier transform and Fourier optics." Optics Communications 111, no. 1-2 (September 1994): 141–54. http://dx.doi.org/10.1016/0030-4018(94)90154-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Steward, E. G. "Fourier Optics; An Introduction." Leonardo 22, no. 3/4 (1989): 445. http://dx.doi.org/10.2307/1575430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cincotti, Gabriella. "Generalized fiber Fourier optics." Optics Letters 36, no. 12 (June 15, 2011): 2321. http://dx.doi.org/10.1364/ol.36.002321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MANSURIPUR, MASUD. "Fourier Optics, Part 1." Optics and Photonics News 11, no. 5 (May 1, 2000): 53. http://dx.doi.org/10.1364/opn.11.5.000053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

MANSURIPUR, MASUD. "Fourier Optics, Part 2." Optics and Photonics News 11, no. 6 (June 1, 2000): 44. http://dx.doi.org/10.1364/opn.11.6.000044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Steward, E. G., and Eugene Hecht. "Fourier Optics: An Introduction." American Journal of Physics 54, no. 6 (June 1986): 573–74. http://dx.doi.org/10.1119/1.14547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Huggins, Elisha. "Introduction to Fourier Optics." Physics Teacher 45, no. 6 (September 2007): 364–68. http://dx.doi.org/10.1119/1.2768695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Abouraddy, Ayman F., Bahaa E. A. Saleh, Alexander V. Sergienko, and Malvin C. Teich. "Entangled-photon Fourier optics." Journal of the Optical Society of America B 19, no. 5 (May 1, 2002): 1174. http://dx.doi.org/10.1364/josab.19.001174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Asakura, Toshimitsu. "Optical Fourier-transform theory based on geometrical optics." Optical Engineering 41, no. 1 (January 1, 2002): 13. http://dx.doi.org/10.1117/1.1424878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Averchenko, A. V., N. Yu Konopaltseva, P. V. Korolenko, and A. Yu Mishin. "Fourier Optics of Fractal Structures." Bulletin of the Russian Academy of Sciences: Physics 82, no. 11 (November 2018): 1383–87. http://dx.doi.org/10.3103/s1062873818110035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Siegman, A. E. "Fiber Fourier optics: previous publication." Optics Letters 27, no. 6 (March 15, 2002): 381. http://dx.doi.org/10.1364/ol.27.000381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Molina-Fern�ndez, I., and J. G. Wang�emert-P�rez. "Improved AWG Fourier optics model." Optics Express 12, no. 20 (2004): 4804. http://dx.doi.org/10.1364/opex.12.004804.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Sethuraman, J. "Galilean invariance in Fourier optics." Applied Optics 24, no. 10 (May 15, 1985): 1546. http://dx.doi.org/10.1364/ao.24.001546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Rubin, Noah A., Gabriele D’Aversa, Paul Chevalier, Zhujun Shi, Wei Ting Chen, and Federico Capasso. "Matrix Fourier optics enables a compact full-Stokes polarization camera." Science 365, no. 6448 (July 4, 2019): eaax1839. http://dx.doi.org/10.1126/science.aax1839.

Full text
Abstract:
Recent developments have enabled the practical realization of optical elements in which the polarization of light may vary spatially. We present an extension of Fourier optics—matrix Fourier optics—for understanding these devices and apply it to the design and realization of metasurface gratings implementing arbitrary, parallel polarization analysis. We show how these gratings enable a compact, full-Stokes polarization camera without standard polarization optics. Our single-shot polarization camera requires no moving parts, specially patterned pixels, or conventional polarization optics and may enable the widespread adoption of polarization imaging in machine vision, remote sensing, and other areas.
APA, Harvard, Vancouver, ISO, and other styles
19

Voelkl, E., and L. F. Allard. "The extended Fourier algorithm: Application in discrete optics and electron holography." Proceedings, annual meeting, Electron Microscopy Society of America 52 (1994): 918–19. http://dx.doi.org/10.1017/s0424820100172322.

Full text
Abstract:
The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.
APA, Harvard, Vancouver, ISO, and other styles
20

Swift, D. W. "The new physical optics notebook: Tutorials in fourier optics." Optics & Laser Technology 22, no. 1 (February 1990): 56. http://dx.doi.org/10.1016/0030-3992(90)90013-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dainty, Christopher. "The New Physical Optics Notebook: Tutorials in Fourier Optics." Journal of Modern Optics 37, no. 5 (May 1990): 1005. http://dx.doi.org/10.1080/09500349014551001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Moreno, I., M. M. Sánchez-López, C. Ferreira, J. A. Davis, and F. Mateos. "Teaching Fourier optics through ray matrices." European Journal of Physics 26, no. 2 (February 8, 2005): 261–71. http://dx.doi.org/10.1088/0143-0807/26/2/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wolf, Kurt Bernardo. "Fourier transform in metaxial geometric optics." Journal of the Optical Society of America A 8, no. 9 (September 1, 1991): 1399. http://dx.doi.org/10.1364/josaa.8.001399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

McLeod, Robert R., and Kelvin H. Wagner. "Vector Fourier optics of anisotropic materials." Advances in Optics and Photonics 6, no. 4 (December 22, 2014): 368. http://dx.doi.org/10.1364/aop.6.000368.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Goodman, Joseph W. "Introduction to Fourier Optics, Second Edition." Optical Engineering 35, no. 5 (May 1, 1996): 1513. http://dx.doi.org/10.1117/1.601121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Aime, C. "Fourier optics: imaging with diluted apertures." EAS Publications Series 22 (2006): 351–66. http://dx.doi.org/10.1051/eas:2006141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Lohmann, Adolf W., David Mendlovic, and Zeev Zalevsky. "Fourier optics of the triple correlation." Optics Communications 152, no. 4-6 (July 1998): 243–46. http://dx.doi.org/10.1016/s0030-4018(98)00191-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

de Groot, Peter J., and Xavier Colonna de Lega. "Fourier optics modeling of interference microscopes." Journal of the Optical Society of America A 37, no. 9 (April 30, 2020): B1. http://dx.doi.org/10.1364/josaa.390746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wu, Kedi, Qiluan Cheng, and Guo Ping Wang. "Fourier optics theory for invisibility cloaks." Journal of the Optical Society of America B 28, no. 6 (May 19, 2011): 1467. http://dx.doi.org/10.1364/josab.28.001467.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Zhao, Peiqian, V. Coudé Du Foresto, J. M. Mariotti, P. Lena, and Bifang Zhou. "Stellar Diameter Measurements with Fiber Optic Double Fourier Interferometry—Experimental Study." Symposium - International Astronomical Union 166 (1995): 362. http://dx.doi.org/10.1017/s0074180900228453.

Full text
Abstract:
Long baseline optical interferometry has been successfully employed to measure the diameters of stars. In this technique, bandwidth smearing can affect the measurement accuracy. These bandwidth smearing effects can be, to some extent, eliminated by dividing the whole observing spectral band into sub-bands and calculating the star's diameter based on the visibilities and spatial frequencies at the corresponding sub-bands. In the visible range, dividing the whole spectral band can be implemented by introducing a spectrograph, while in the IR domain, this operation can be performed efficiently with the technique of double Fourier interferometry (DFI) without losing the advantage of multiplexing. In particular, the use of IR single-mode fiber optics for DFI will make the interferometer extremely compact, light, insensitive to surrounding conditions, etc. We established an IR single-mode fiber optic double Fourier interferometer in the laboratory, in which the optical path difference modulations are generated by stretching fiber arms and the beam combination is carried out with a fiber optic directional coupler. In this paper, we report on experiments and experimental results from measurements of the diameter of an artificial star with the technique of fiber optic DFI.
APA, Harvard, Vancouver, ISO, and other styles
31

Shuyu Zhou, Shuyu Zhou, Jun Qian Jun Qian, Shanchao Zhang Shanchao Zhang, and and Yuzhu Wang and Yuzhu Wang. "Cold atoms passing through a thin laser beam: a Fourier optics approach." Chinese Optics Letters 14, no. 7 (2016): 070202–70206. http://dx.doi.org/10.3788/col201614.070202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Borondics, F., M. Jossent, C. Sandt, L. Lavoute, D. Gaponov, A. Hideur, P. Dumas, and S. Février. "Supercontinuum-based Fourier transform infrared spectromicroscopy." Optica 5, no. 4 (March 29, 2018): 378. http://dx.doi.org/10.1364/optica.5.000378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mínguez-Vega, Gladys, Matthias Gruber, Jürgen Jahns, and Jesús Lancis. "Achromatic optical Fourier transformer with planar-integrated free-space optics." Applied Optics 44, no. 2 (January 10, 2005): 229. http://dx.doi.org/10.1364/ao.44.000229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ershov, Petr, Sergey Kuznetsov, Irina Snigireva, Vyacheslav Yunkin, Alexander Goikhman, and Anatoly Snigirev. "Fourier crystal diffractometry based on refractive optics." Journal of Applied Crystallography 46, no. 5 (September 18, 2013): 1475–80. http://dx.doi.org/10.1107/s0021889813021468.

Full text
Abstract:
X-ray refractive lenses are proposed as a Fourier transformer for high-resolution X-ray crystal diffraction. By employing refractive lenses the wave transmitted through the object converts into a spatial intensity distribution at its back focal plane according to the Fourier-transform relations. A theoretical consideration of the Fourier-transform technique is presented. Two types of samples were studied in Bragg reflection geometry: a grating made of strips of a thin SiO2film on an Si substrate and a grating made by profiling an Si crystal. Fourier patterns recorded at different angles along the rocking curves of the Si 111 Bragg reflection were analysed.
APA, Harvard, Vancouver, ISO, and other styles
35

Danchick, Roy. "A New Approach to Telescope Fourier Optics." OALib 06, no. 11 (2019): 1–14. http://dx.doi.org/10.4236/oalib.1105856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Moreno, Ignacio, María J. Yzuel, Juan Campos, and Asticio Vargas. "Jones matrix treatment for polarization fourier optics." Journal of Modern Optics 51, no. 14 (September 2004): 2031–38. http://dx.doi.org/10.1080/09500340408232511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li, Jensen, Seunghoon Han, Shuang Zhang, Guy Bartal, and Xiang Zhang. "Designing the Fourier space with transformation optics." Optics Letters 34, no. 20 (October 7, 2009): 3128. http://dx.doi.org/10.1364/ol.34.003128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kauderer, Mark. "Fourier-optics approach to the symplectic group." Journal of the Optical Society of America A 7, no. 2 (February 1, 1990): 231. http://dx.doi.org/10.1364/josaa.7.000231.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Bernardo, Lui´s M. "ABCD matrix formalism of fractional Fourier optics." Optical Engineering 35, no. 3 (March 1, 1996): 732. http://dx.doi.org/10.1117/1.600641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Lam, Edmund Y. "Golden anniversary of Fourier optics: guest editorial." Applied Optics 58, no. 7 (January 2, 2019): ED1. http://dx.doi.org/10.1364/ao.58.000ed1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Glazer, Oded, Erez N. Ribak, and Leonid Mirkin. "Adaptive optics implementation with a Fourier reconstructor." Applied Optics 46, no. 4 (February 1, 2007): 574. http://dx.doi.org/10.1364/ao.46.000574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Pang, A. B., Th Müller, M. S. Altman, and Ernst Bauer. "Fourier optics of image formation in LEEM." Journal of Physics: Condensed Matter 21, no. 31 (July 7, 2009): 314006. http://dx.doi.org/10.1088/0953-8984/21/31/314006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Sheppard, C. J. R., H. Fatemi, and Min Gu. "The fourier optics of near-field microscopy." Scanning 17, no. 1 (December 7, 2006): 28–40. http://dx.doi.org/10.1002/sca.4950170105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Miscuglio, Mario, Zibo Hu, Shurui Li, Jonathan K. George, Roberto Capanna, Hamed Dalir, Philippe M. Bardet, Puneet Gupta, and Volker J. Sorger. "Massively parallel amplitude-only Fourier neural network." Optica 7, no. 12 (December 18, 2020): 1812. http://dx.doi.org/10.1364/optica.408659.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bruno, E. Schmidt, Philippe Lassonde, Guilmot Ernotte, Matteo Clerici, Roberto Morandotti, Heide Ibrahim, and François Légaré. "Linearizing Nonlinear Optics." EPJ Web of Conferences 205 (2019): 01007. http://dx.doi.org/10.1051/epjconf/201920501007.

Full text
Abstract:
Fourier nonlinear optics merges the simplicity of linear optics with the power of nonlinear optics to achieve a decoupling of frequencies, amplitudes and phases in nonlinear processes - enabling first deep UV shaping at 207nm.
APA, Harvard, Vancouver, ISO, and other styles
46

Laborde, Victor, Jérôme Loicq, and Serge Habraken. "Modeling infrared behavior of multilayer diffractive optical elements using Fourier optics." Applied Optics 60, no. 7 (March 1, 2021): 2037. http://dx.doi.org/10.1364/ao.414082.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Guillet de Chatellus, Hugues, Luis Romero Cortés, and José Azaña. "Optical real-time Fourier transformation with kilohertz resolutions." Optica 3, no. 1 (December 22, 2015): 1. http://dx.doi.org/10.1364/optica.3.000001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Fauvarque, Olivier, Benoit Neichel, Thierry Fusco, Jean-Francois Sauvage, and Orion Girault. "General formalism for Fourier-based wave front sensing." Optica 3, no. 12 (December 2, 2016): 1440. http://dx.doi.org/10.1364/optica.3.001440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Muminov, Baurzhan, and Luat T. Vuong. "Fourier optical preprocessing in lieu of deep learning." Optica 7, no. 9 (August 24, 2020): 1079. http://dx.doi.org/10.1364/optica.397707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Lee, Byounghyo, Jong-young Hong, Dongheon Yoo, Jaebum Cho, Youngmo Jeong, Seokil Moon, and Byoungho Lee. "Single-shot phase retrieval via Fourier ptychographic microscopy." Optica 5, no. 8 (August 8, 2018): 976. http://dx.doi.org/10.1364/optica.5.000976.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography