Dissertations / Theses on the topic 'Foundations of mathematics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Foundations of mathematics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Uzquiano, Gabriel 1968. "Ontology and the foundations of mathematics." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9370.
Full textIncludes bibliographical references.
"Ontology and the Foundations of Mathematics" consists of three papers concerned with ontological issues in the foundations of mathematics. Chapter 1, "Numbers and Persons," confronts the problem of the inscrutability of numerical reference and argues that, even if inscrutable, the reference of the numerals, as we ordinarily use them, is determined much more, precisely than up to isomorphism. We argue that the truth conditions of a variety of numerical modal and counterfactual sentences (whose acceptance plays a crucial role in applications) place serious constraints on the sorts of items to which numerals, as we ordinarily use them, can be taken to refer: Numerals cannot be taken to refer to objects that exist contingently such as people, mountains, or rivers, but rather must be taken to refer to objects that exist necessarily such as abstracta. Chapter 2, "Modern Set Theory and Replacement," takes up a challenge to explain the reasons one should accept the axiom of replacement of Zermelo-Fraenkel set theory, when its applications within ordinary mathematics and the rest of science are often described as rare and recondite. We argue that this is not a question one should be interested in; replacement is required to ensure that the element-set relation is well-founded as well as to ensure that the cumulation of sets described by set theory reaches and proceeds beyond the level w of the cumulative hierarchy. A more interesting question is whether we should accept instances of replacement on uncountable sets, for these are indeed rarely used outside higher set theory. We argue that the best case for (uncountable) replacement comes not from direct, intuitive considerations, but from the role replacement plays in the formulation of transfinite recursion and the theory of ordinals, and from the fact that it permits us to express and assert the (first-order) content of the modern cumulative view of the set theoretic universe as arrayed in a cumulative hierarchy of levels. Chapter 3, "A No-Class Theory of Classes," makes use of the apparatus of plural quantification to construe talk of classes as plural talk about sets, and thus provide an interpretation of both one- and two-sorted versions of first-order Morse-Kelley set theory, an impredicative theory of classes. We argue that the plural interpretation of impredicative theories of classes has a number of advantages over more traditional interpretations of the language of classes as involving singular reference to gigantic set-like entities, only too encompassing to be sets, the most important of these being perhaps that it makes the machinery of classes available for the formalization of much recent and very interesting work in set theory without threatening the universality of the theory as the most comprehensive theory of collections, when these are understood as objects.
by Gabriel Uzquiano.
Ph.D.
Frovin, Jørgensen Klaus. "Kant's schematism and the foundations of mathematics /." Roskilde : Section Philosophy and Science Studies, Roskilde University, 2005. http://hdl.handle.net/1800/1664.
Full textNefdt, Ryan Mark. "The foundations of linguistics : mathematics, models, and structures." Thesis, University of St Andrews, 2016. http://hdl.handle.net/10023/9584.
Full textVaron, Stephanie Stigers 1939. "The mathematical foundations of classical ballet." Thesis, The University of Arizona, 1997. http://hdl.handle.net/10150/292004.
Full textBartocci, C. "Foundations of graded differential geometry." Thesis, University of Warwick, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386972.
Full textFennelly, Maxwell. "Geometric foundations of network partitioning." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/375533/.
Full textStergianopoulos, Georgios. "Large non-cooperative games : foundations and tools." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/56809/.
Full textBeaton, Ryan. "Interpreting Frege's Grundgesetze in an adaptation of Quine's New Foundations." Thesis, McGill University, 2004. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=81592.
Full textJohnson, Estrella Maria Salas. "Establishing Foundations for Investigating Inquiry-Oriented Teaching." PDXScholar, 2013. http://pdxscholar.library.pdx.edu/open_access_etds/1102.
Full textSzudzik, Matthew P. "Some Applications of Recursive Functionals to the Foundations of Mathematics and Physics." Research Showcase @ CMU, 2010. http://repository.cmu.edu/dissertations/26.
Full textBailin, S. G. "An analysis of finitism and the justification of set theory." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371602.
Full textPicard, Joseph Romeo William Michael. "Impredicativity and turn of the century foundations of mathematics : presupposition in Poincare and Russell." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12498.
Full textIncludes bibliographical references (leaves 145-158).
by Joseph Romeo William Michael Picard
Ph.D.
Farias, Pablo Mayckon Silva. "A study about the origins of Mathematical Logic and the limits of its applicability to the formalization of Mathematics." Universidade Federal do CearÃ, 2007. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=1516.
Full textEste trabalho à um estudo sobre as origens da LÃgica MatemÃtica e os limites da sua aplicabilidade ao desenvolvimento formal da MatemÃtica. Primeiramente, à apresentada a teoria aritmÃtica de Dedekind, a primeira teoria a fornecer uma definiÃÃo precisa para os nÃmeros naturais e com base nela demonstrar todos os fatos comumente conhecidos a seu respeito. à tambÃm apresentada a axiomatizaÃÃo da AritmÃtica feita por Peano, que de certa forma simplificou a teoria de Dedekind. Em seguida, à apresentada a ome{german}{Begriffsschrift} de Frege, a linguagem formal que deu origem à LÃgica moderna, e nela sÃo representadas as definiÃÃes bÃsicas de Frege a respeito da noÃÃo de nÃmero. Posteriormente, à apresentado um resumo de questÃes importantes em fundamentos da MatemÃtica durante as primeiras trÃs dÃcadas do sÃculo XX, iniciando com os paradoxos na Teoria dos Conjuntos e terminando com a doutrina formalista de Hilbert. Por fim, sÃo apresentados, em linhas gerais, os teoremas de incompletude de GÃdel e o conceito de computabilidade de Turing, que apresentaram respostas precisas Ãs duas mais importantes questÃes do programa de Hilbert, a saber, uma prova direta de consistÃncia para a AritmÃtica e o problema da decisÃo, respectivamente.
This work is a study about the origins of Mathematical Logic and the limits of its applicability to the formal development of Mathematics. Firstly, Dedekindâs arithmetical theory is presented, which was the first theory to provide a precise definition for natural numbers and to demonstrate relying on it all facts commonly known about them. Peanoâs axiomatization for Arithmetic is also presented, which in a sense simplified Dedekindâs theory. Then, Fregeâs Begriffsschrift is presented, the formal language from which modern Logic originated, and in it are represented Fregeâs basic definitions concerning the notion of number. Afterwards, a summary of important topics on the foundations of Mathematics from the first three decades of the twentieth century is presented, beginning with the paradoxes in Set Theory and ending with Hilbertâs formalist doctrine. At last, are presented, in general terms, GÃdelâs incompleteness. theorems and Turingâs computability concept, which provided precise answers to the two most important points in Hilbertâs program, to wit, a direct proof of consistency for Arithmetic and the decision problem, respectively. Keywords: 1. Mathematical Logic 2. Foundations of Mathematics 3. GÃdelâs incompleteness theorems
Thornhill, Hannah C. "The Philosophy of Mathematics: A Study of Indispensability and Inconsistency." Scholarship @ Claremont, 2016. http://scholarship.claremont.edu/scripps_theses/894.
Full textMarks, Lori J. "Difficulties vs. Disabilities in K-12 Mathematics: Synthesis and Systematic Review." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/3679.
Full textBushnell, Megan Haramoto. "The Process of Tracking in Mathematics in Box Elder School District." DigitalCommons@USU, 2008. https://digitalcommons.usu.edu/etd/85.
Full textSolanki, Vinesh. "Zariski structures in noncommutative algebraic geometry and representation theory." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:3fa23b75-9b85-4dc2-9ad6-bdb20d61fe45.
Full textSmith, Michael M. "PRE-CALCULUS CONCEPTS FUNDAMENTAL TO CALCULUS." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1164048974.
Full textBryant, Ross. "A Computation of Partial Isomorphism Rank on Ordinal Structures." Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5387/.
Full textCarruth, Nathan Thomas. "Classical Foundations for a Quantum Theory of Time in a Two-Dimensional Spacetime." DigitalCommons@USU, 2010. https://digitalcommons.usu.edu/etd/708.
Full textMagka, Despoina. "Foundations and applications of knowledge representation for structured entities." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:4a3078cc-5770-4a9b-81d4-8bc52b41e294.
Full textBurke, Mark. "Frege, Hilbert, and Structuralism." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/31937.
Full textD'Silva, Vijay Victor. "Logical abstract interpretation." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:3648e579-01dc-4054-8290-31626d53b003.
Full textYim, Austin Vincent. "On Galois correspondences in formal logic." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:b47d1dda-8186-4c81-876c-359409f45b97.
Full textLange, Alissa A. "Is a Pizza Slice a Triangle? Buiding Accurate Mathematical Foundations in Preschool Using a Fun, Interactive, and Research-based Approach." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/etsu-works/4183.
Full textFarias, Pablo Mayckon Silva. "Um estudo sobre as origens da Lógica Matemática e os limites da sua aplicabilidade à formalização da Matemática." reponame:Repositório Institucional da UFC, 2007. http://www.repositorio.ufc.br/handle/riufc/18511.
Full textSubmitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-12T14:54:53Z No. of bitstreams: 1 2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-20T13:48:23Z (GMT) No. of bitstreams: 1 2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5)
Made available in DSpace on 2016-07-20T13:48:23Z (GMT). No. of bitstreams: 1 2007_dis_pmsfarias.pdf: 859405 bytes, checksum: 9d580356cce3820f228499085b2e3cde (MD5) Previous issue date: 2007
This work is a study about the origins of Mathematical Logic and the limits of its applicability to the formal development of Mathematics. Firstly, Dedekind’s arithmetical theory is presented, which was the first theory to provide a precise definition for natural numbers and to demonstrate relying on it all facts commonly known about them. Peano’s axiomatization for Arithmetic is also presented, which in a sense simplified Dedekind’s theory. Then, Frege’s Begriffsschrift is presented, the formal language from which modern Logic originated, and in it are represented Frege’s basic definitions concerning the notion of number. Afterwards, a summary of important topics on the foundations of Mathematics from the first three decades of the twentieth century is presented, beginning with the paradoxes in Set Theory and ending with Hilbert’s formalist doctrine. At last, are presented, in general terms, Gödel’s incompleteness. theorems and Turing’s computability concept, which provided precise answers to the two most important points in Hilbert’s program, to wit, a direct proof of consistency for Arithmetic and the decision problem, respectively. Keywords: 1. Mathematical Logic 2. Foundations of Mathematics 3. Gödel’s incompleteness theorems
Este trabalho é um estudo sobre as origens da Lógica Matemática e os limites da sua aplicabilidade ao desenvolvimento formal da Matemática. Primeiramente, é apresentada a teoria aritmética de Dedekind, a primeira teoria a fornecer uma definição precisa para os números naturais e com base nela demonstrar todos os fatos comumente conhecidos a seu respeito. É também apresentada a axiomatização da Aritmética feita por Peano, que de certa forma simplificou a teoria de Dedekind. Em seguida, é apresentada a ome{german}{Begriffsschrift} de Frege, a linguagem formal que deu origem à Lógica moderna, e nela são representadas as definições básicas de Frege a respeito da noção de número. Posteriormente, é apresentado um resumo de questões importantes em fundamentos da Matemática durante as primeiras três décadas do século XX, iniciando com os paradoxos na Teoria dos Conjuntos e terminando com a doutrina formalista de Hilbert. Por fim, são apresentados, em linhas gerais, os teoremas de incompletude de Gödel e o conceito de computabilidade de Turing, que apresentaram respostas precisas às duas mais importantes questões do programa de Hilbert, a saber, uma prova direta de consistência para a Aritmética e o problema da decisão, respectivamente.
Colijn, Caroline. "The de Broglie-Bohm Causal Interpretation of Quantum Mechanics and its Application to some Simple Systems." Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1044.
Full textDijk, Wilhelmina Van, and Lori Jean Marks. "English Language Learners with Learning Disabilities and the Language in Mathematics: Inclusive Instruction to Support the Acquisition of Both Languages." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etsu-works/3533.
Full textShearer, Robert D. C. "Scalable reasoning for description logics." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d7c4fbf6-4258-4db4-a451-476dcebe68ca.
Full textHieronymi, Philipp Christian Karl. "The real field with an irrational power function and a dense multiplicative subgroup." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:2f9733a2-d8d7-4ec3-aeff-a1653e971817.
Full textElsner, Bernhard August Maurice. "Presmooth geometries." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:b5d9ccfd-8360-4a2c-ad89-0b4f136c5a96.
Full textSimaitis, Aistis. "Automatic verification of competitive stochastic systems." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:68b5e2d8-ba04-419f-8926-4cd542121e2d.
Full textMarks, Lori J. "Addressing Math skills Through Assistive Technology." Digital Commons @ East Tennessee State University, 2000. https://dc.etsu.edu/etsu-works/3706.
Full textLeyva, Daviel. "The Systems of Post and Post Algebras: A Demonstration of an Obvious Fact." Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7844.
Full textSmith, Michael Anthony. "Embedding an object calculus in the unifying theories of programming." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:8b5be90d-59c1-42c0-a996-ecd8015097b3.
Full textWyld, Kira A. "Sudoku Variants on the Torus." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/103.
Full textSouba, Matthew. "From the Outside Looking In: Can mathematical certainty be secured without being mathematically certain that it has been?" The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574777956439624.
Full textAtzemoglou, George Philip. "Higher-order semantics for quantum programming languages with classical control." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:9fdc4a26-cce3-48ed-bbab-d54c4917688f.
Full textFreire, Rodrigo de Alvarenga. "Os fundamentos do pensamento matematico no seculo XX e a relevancia fundacional da teoria de modelos." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/281061.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas
Made available in DSpace on 2018-08-12T22:46:52Z (GMT). No. of bitstreams: 1 Freire_RodrigodeAlvarenga_D.pdf: 761227 bytes, checksum: 3b1a0de92aa93b50f2bfc602bf6173bc (MD5) Previous issue date: 2009
Resumo: Esta Tese tem como objetivo elucidar, ao menos parcialmente, a questão do significado da Teoria de Modelos para uma reflexão sobre o conhecimento matemático no século XX. Para isso, vamos buscar, primeiramente, alcançar uma compreensão da própria reflexão sobre o conhecimento matemático, que será denominada de Fundamentos do Pensamento Matemático no século XX, e da própria relevância fundacional. Em seguida, analisaremos, dentro do contexto fundacional estabelecido, o papel da Teoria de Modelos e da sua interação com a Álgebra, em geral, e, finalmente, empreenderemos um estudo de caso específico. Nesse estudo de caso mostraremos que a Teoria de Galois pode ser vista como um conteúdo lógico, e buscaremos compreender o significado fundacional desse enquadramento modelo-teórico para uma parte da Álgebra clássica.
Abstract: The aim of the present Thesis is to bring some light to the question about the status and relevance of Model Theory to a reflection about the mathematical knowledge in the twentieth century. To pursue this target, we will, first of all, try to reach a comprehension of the reflection about the mathematical knowledge, itself, what will be designated as Foundations of Mathematical Thought in the twentieth century, and of the foundational relevance, itself. In the sequel, we will provide an analysis, of the role of Model Theory and its interaction with Algebra, in general, within the established foundational setting and, finally, we will discuss a specific study case. In this study case we will show that Galois Theory can be seen as a logical content, and we will try to understand the foundational meaning of this model-theoretic framework for some part of classical Algebra.
Doutorado
Logica
Doutor em Filosofia
Pierpoint, Alan S. "Logic: The first term revisited." CSUSB ScholarWorks, 1995. https://scholarworks.lib.csusb.edu/etd-project/480.
Full textvan, Dijk Wilhelmina, and Pamela J. Mims. "Instruction to support the acquisition of mathematics and vocabulary for young English Language Learners with Developmental Disabilities." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/193.
Full textGomes, Rodrigo Rafael. "A noção de função em Frege /." Rio Claro : [s.n.], 2009. http://hdl.handle.net/11449/91131.
Full textBanca: Itala Maria Loffredo D'Otaviano
Banca: Paulo Isamo Hiratsuka
Resumo: Neste trabalho apresentamos e analisamos o conceito fregiano de função, presente nos três livros de Frege: Begriffsschrift, Os Fundamentos da Aritmética e Leis Fundamentais da Aritmética. Discutimos ao longo dele o que Frege entendia por função e argumento, as modificações conceituais que tais noções sofreram no período de publicação de seus livros e a importância dessas noções para a sua filosofia. Para tanto, analisamos a linguagem artificial do primeiro livro, a definição de número do segundo, e os casos particulares de funções que são definidos no terceiro, bem como as considerações contidas em outros escritos do filósofo alemão. Verificamos uma caracterização puramente sintática de função em Begriffsschrift, uma distinção entre o sinal de uma função e aquilo que ele denota em Os Fundamentos da Aritmética, e a associação de dois elementos distintos a uma expressão funcional em Leis Fundamentais da Aritmética: o seu sentido e a sua referência. Finalmente, constatamos que a originalidade do sistema fregiano reside na possibilidade de considerar esse ou aquele termo de uma proposição como o argumento (ou os argumentos) de uma função.
Abstract: In this work we present and analyze the fregean concept of function, present in the three books by Frege: Begriffsschrift, The Foundations of the Arithmetic and Fundamental Laws of the Arithmetic. We discuss what Frege understood by function and argument, the conceptual modifications that such notions suffered in the period of publication of those books and the importance of these notions for his philosophy. For so much, we analyze the artificial language of the first book, the definition of number in the second, and the particular cases of functions that are defined in the third, as well as the considerations contained in other works by the philosopher. We verify a purely syntactic characterization of function in Begriffsschrift, a distinction between the sign of a function and what it denotes in The Foundations of the Arithmetic, and the association of two different elements to a functional expression in Fundamental Laws of the Arithmetic: its sense and its reference. Finally, we verify that the originality of the Frege's system is based on the possibility of considering one or other term of a proposition as the argument (or the arguments) of a function.
Mestre
Samson, Duncan Alistair. "An analysis of the influence of question design on pupils' approaches to number pattern generalisation tasks." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1003302.
Full textCox, Louis Anthony. "Mathematical foundations of risk measurement." Thesis, Massachusetts Institute of Technology, 1986. http://hdl.handle.net/1721.1/114010.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING
Bibliography: leaves 261-266.
by Louis Anthony Cox, Jr.
Ph.D.
Wharton, Elizabeth. "The model theory of certain infinite soluble groups." Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:7bd8d05b-4ff6-4326-8463-f896e2862e25.
Full textKing, Brian Christopher Ambrose. "Towards a Kantian foundation of mathematics." Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613022.
Full textBilal, Ahmed. "Counterfactual conditional analysis using the Centipede Game." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/cmc_theses/2252.
Full textRodriguez, Paul Fabian. "Mathematical foundations of simple recurrent networks /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 1999. http://wwwlib.umi.com/cr/ucsd/fullcit?p9935464.
Full textBartl, Eduard. "Mathematical foundations of graded knowledge spaces." Diss., Online access via UMI:, 2009.
Find full textIncludes bibliographical references.
Mawby, Jim. "Strict finitism as a foundation for mathematics." Thesis, University of Glasgow, 2005. http://theses.gla.ac.uk/1344/.
Full text