To see the other types of publications on this topic, follow the link: Fouille de règle.

Dissertations / Theses on the topic 'Fouille de règle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Fouille de règle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Hamrouni, Tarek. "Fouille de représentations concises des motifs fréquents à travers les espaces de recherche conjonctif et disjonctif." Phd thesis, Université d'Artois, 2009. http://tel.archives-ouvertes.fr/tel-00465733.

Full text
Abstract:
Durant ces dernières années, les quantités de données collectées, dans divers domaines d'application de l'informatique, deviennent de plus en plus importantes. Cela suscite le besoin d'analyser et d'interpréter ces données afin d'en extraire des connaissances utiles. Dans cette situation, le processus d'Extraction de Connaissances à partir des Données est un processus complet visant à extraire des connaissances cachées, nouvelles et potentiellement utiles à partir de grands volumes de données. Parmi ces étapes, la fouille de données offre les outils et techniques permettant une telle extraction. Plusieurs travaux de recherche en fouille de données concernent la découverte des règles d'association, permettant d'identifier des liens entre ensembles de descripteurs (ou attributs ou items) décrivant un ensemble d'objets (ou individus ou transactions). Les règles d'association ont montré leur utilité dans plusieurs domaines d'application tels que la gestion de la relation client en grande distribution (analyse du panier de la ménagère pour déterminer les produits souvent achetés simultanément, et agencer les rayons et organiser les promotions en conséquence), la biologie moléculaire (analyse des associations entre gènes), etc. De manière générale, la construction des règles d'association s'effectue en deux étapes : l'extraction des ensembles d'items (ou itemsets) fréquents, puis la génération des règles d'association à partir de des itemsets fréquents. Dans la pratique, le nombre de motifs (itemsets fréquents ou règles d'associations) extraits ou générés, peut être très élevé, ce qui rend difficile leur exploitation pertinente par les utilisateurs. Pour pallier ce problème, certains travaux de recherche proposent l'usage d'un noyau de motifs, appelés représentations concises, à partir desquels les motifs redondants peuvent être régénérés. Le but de telles représentations est de condenser les motifs extraits tout en préservant autant que possible les informations cachées et intéressantes sur des données. Dans la littérature, beaucoup de représentations concises des motifs fréquents ont été proposées, explorant principalement l'espace de recherche conjonctif. Dans cet espace, les itemsets sont caractérisés par la fréquence de leur co-occurrence. Ceci fait l'objet de la première partie de ce travail. Une étude détaillée proposée dans cette thèse prouve que les itemsets fermés et les générateurs minimaux sont un moyen de représenter avec concision les itemsets fréquents et les règles d'association. Les itemsets fermés structurent l'espace de recherche dans des classes d'équivalence tels que chaque classe regroupe les itemsets apparaissant dans le même sous-ensemble (appelé aussi objets ou transactions) des données. Un itemset fermé inclut l'expression la plus spécifique décrivant les transactions associées, alors qu'un générateur minimal inclut une des expressions les plus générales. Cependant, une redondance combinatoire intra-classe résulte logiquement de l'absence inhérente d'un seul générateur minimal associé à un itemset fermé donné. Ceci nous amotivé à effectuer une étude approfondie visant à maintenir seulement les générateurs minimaux irréductibles dans chaque classe d'équivalence, et d'élaguer les autres. À cet égard, il est proposé une réduction sans perte d'information de l'ensemble des générateurs minimaux grâce à un nouveau processus basé sur la substitution. Une étude complète des propriétés associées aux familles obtenues est présentée. Les résultats théoriques sont ensuite étendus au cadre de règles d'association afin de réduire autant que possible le nombre de règles maintenues sans perte d'information. Puis, est présentée une étude formelle complète du mécanisme d'inférence permettant de dériver toutes les règles d'association redondantes, à partir de celles maintenues. Afin de valider l'approche proposée, les algorithmes de construction de ces représentations concises de motifs sont présentés ainsi que les résultats des expérimentations réalisées en terme de concision et de temps de calcul. La seconde partie de ce travail est consacrée à une exploration complète de l'espace de recherche disjonctif des itemsets, où ceux-ci sont caractérisés par leurs supports disjonctifs. Ainsi dans l'espace disjonctif, un itemset vérifie une transaction si au moins un de ses items y est présent. Les itemsets disjonctifs véhiculent ainsi une connaissance au sujet des occurrences complémentaires d'items dans un ensemble de données. Cette exploration est motivée par le fait que, dans certaines applications, une telle information peut être utile aux utilisateurs. Lors de l'analyse d'une séquence génétique par exemple, le fait d'engendrer une information telle que " présence d'un gène X ou la présence d'un gène Y ou ... " présente un intérêt pour le biologiste. Afin d'obtenir une représentation concise de l'espace de recherche disjonctif, une solution intéressante consiste à choisir un seul élément pour représenter les itemsets couvrant le même ensemble de données. Deux itemsets sont équivalents si leurs items respectifs couvrent le même ensemble de données. À cet égard, un nouvel opérateur consacré à cette tâche, a été introduit. Dans chaque classe d'équivalence induite, les éléments minimaux sont appelés itemsets essentiels, alors que le plus grand élément est appelé itemset fermé disjonctif. L'opérateur présenté est alors à la base de nouvelles représentations concises des itemsets fréquents. L'espace de recherche disjonctif est ensuite exploité pour dériver des règles d'association généralisées. Ces dernières règles généralisent les règles classiques pour offrir également des connecteurs de disjonction et de négation d'items, en plus de celui conjonctif. Des outils (algorithme et programme) dédiés ont été alors conçus et mis en application pour extraire les itemsets disjonctifs et les règles d'association généralisées. Les résultats des expérimentations effectuées ont montré l'utilité de notre exploration et ont mis en valeur la concision des représentations concises proposées.
APA, Harvard, Vancouver, ISO, and other styles
2

Francisci, Dominique. "Techniques d'optimisation pour la fouille de données." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00216131.

Full text
Abstract:
Les technologies numériques ont engendré depuis peu, des volumes de données importants, qui peuvent receler des informations utiles. Ceci a donné naissance à l'extraction de connaissances à partir des données qui désigne le processus d'extraction d'informations implicites, précédemment inconnues et potentiellement utiles enfouies dans les données. La fouille de données comprend cinq phases dont la principale est l'extraction de modèles. Nous nous intéressons aux connaisances exprimées sous la forme de règles de dépendance et à la qualité de ces règles. Une règle de dépendance est une implication conditionnelle entre ensembles d'attributs. Les algorithmes standard ont pour but de rechercher les meilleurs modèles. Derrière ces processus se cache en fait une véritable problématique d'optimisation. Nous considérons la recherche des règles de dépendance les plus intéressantes comme étant un problème d'optimisation dans lequel la qualité d'une règle est quantifiée par des mesures. Ainsi, il convient d'étudier les espaces de recherche induits par les mesures ainsi que les algorithmes de recherche dans ces espaces. Il ressort que la plupart des mesures observées présentent des propriétés différentes suivant le jeu de données. Une approche analytique n'est donc pas envisageable dans fixer certains paramères. Nous observons les variations relatives de mesures évaluées simultanément ; certaines d'entre elles sont antagonistes ce qui ne permet pas d'obtenir "la" meilleure règle ; il faut alors considérer un ensemble de compromis satisfaisants. Nous apportons des solutions par le biais des algorithmes génétiques.
APA, Harvard, Vancouver, ISO, and other styles
3

Simonne, Lucas. "Mining differential causal rules in knowledge graphs." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG008.

Full text
Abstract:
La fouille de règles d'association au sein de graphes de connaissances est un domaine de recherche important.En effet, ce type de règle permet de représenter des connaissances, et leur application permet de compléter un graphe en ajoutant des données manquantes ou de supprimer des données erronées.Cependant, ces règles ne permettent pas d'exprimer des relations causales, dont la sémantique diffère d'une simple association ou corrélation. Dans un système, un lien de causalité entre une variable A et une variable B est une relation orientée de A vers B et indique qu'un changement dans A cause un changement dans B, les autres variables du système conservant les mêmes valeurs.Plusieurs cadres d'étude existent pour déterminer des relations causales, dont le modèle d'étude des résultats potentiels, qui consiste à apparier des instances similaires ayant des valeurs différentes sur une variable nommée traitement pour étudier l'effet de ce traitement sur une autre variable nommée résultat.Nous proposons dans cette thèse plusieurs approches permettant de définir des règles représentant l'effet causal d'un traitement sur un résultat.Cet effet peut être local, i.e., valide pour un sous-ensemble d'instances d'un graphe de connaissances défini par un motif de graphe, ou bien moyen, i.e., valide en moyenne pour l'ensemble d'instances de la classe considérée. La découverte de ces règles se base sur le cadre d'étude des résultats potentiels en appariant des instances similaires, en comparant leurs descriptions RDF au sein du graphe ou bien leurs représentations vectorielles apprises à travers des modèles de plongements de graphes
The mining of association rules within knowledge graphs is an important area of research.Indeed, this type of rule makes it possible to represent knowledge, and their application makes it possible to complete a knowledge graph by adding missing triples or to remove erroneous triples.However, these rules express associations and do not allow the expression of causal relations, whose semantics differ from an association or a correlation.In a system, a causal link between variable A and variable B is a relationship oriented from A to B. It indicates that a change in A causes a change in B, with the other variables in the system maintaining the same values.Several frameworks exist for determining causal relationships, including the potential outcome framework, which involves matching similar instances with different values on a variable named treatment to study the effect of that treatment on another variable named the outcome.In this thesis, we propose several approaches to define rules representing a causal effect of a treatment on an outcome.This effect can be local, i.e., valid for a subset of instances of a knowledge graph defined by a graph pattern, or average, i.e., valid on average for the whole set of graph instances.The discovery of these rules is based on the framework of studying potential outcomes by matching similar instances and comparing their RDF descriptions or their learned vectorial representations through graph embedding models
APA, Harvard, Vancouver, ISO, and other styles
4

Boudane, Abdelhamid. "Fouille de données par contraintes." Thesis, Artois, 2018. http://www.theses.fr/2018ARTO0403/document.

Full text
Abstract:
Dans cette thèse, nous abordons les problèmes bien connus de clustering et de fouille de règles d’association. Notre première contribution introduit un nouveau cadre de clustering, où les objets complexes sont décrits par des formules propositionnelles. Premièrement, nous adaptons les deux fameux algorithmes de clustering, à savoir, le k-means et l’algorithme hiérarchique ascendant, pour traiter ce type d’objets complexes. Deuxièmement, nous introduisons un nouvel algorithme hiérarchique descendant pour le clustering des objets représentés explicitement par des ensembles de modèles. Enfin, nous proposons un encodage basé sur la satisfiabilité propositionnelle du problème de clustering des formules propositionnelles sans avoir besoin d’une représentation explicite de leurs modèles. Dans une seconde contribution, nous proposons une nouvelle approche basée sur la satisfiabilité pour extraire les règles d’association en une seule étape. La tâche est modélisée comme une formule propositionnelle dont les modèles correspondent aux règles à extraire. Pour montrer la flexibilité de notre cadre, nous abordons également d’autres variantes, à savoir, l’extraction des règles d’association fermées, minimales non redondantes, les plus générales et les indirectes. Les expérimentations sur de nombreux jeux de données montrent que sur la majorité des tâches de fouille de règles d’association considérées, notre approche déclarative réalise de meilleures performances que les méthodes spécialisées
In this thesis, We adress the well-known clustering and association rules mining problems. Our first contribution introduces a new clustering framework, where complex objects are described by propositional formulas. First, we extend the two well-known k-means and hierarchical agglomerative clustering techniques to deal with these complex objects. Second, we introduce a new divisive algorithm for clustering objects represented explicitly by sets of models. Finally, we propose a propositional satisfiability based encoding of the problem of clustering propositional formulas without the need for an explicit representation of their models. In a second contribution, we propose a new propositional satisfiability based approach to mine association rules in a single step. The task is modeled as a propositional formula whose models correspond to the rules to be mined. To highlight the flexibility of our proposed framework, we also address other variants, namely the closed, minimal non-redundant, most general and indirect association rules mining tasks. Experiments on many datasets show that on the majority of the considered association rules mining tasks, our declarative approach achieves better performance than the state-of-the-art specialized techniques
APA, Harvard, Vancouver, ISO, and other styles
5

Idoudi, Rihab. "Fouille de connaissances en diagnostic mammographique par ontologie et règles d'association." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0005/document.

Full text
Abstract:
Face à la complexité significative du domaine mammographique ainsi que l'évolution massive de ses données, le besoin de contextualiser les connaissances au sein d'une modélisation formelle et exhaustive devient de plus en plus impératif pour les experts. C'est dans ce cadre que s'inscrivent nos travaux de recherche qui s'intéressent à unifier différentes sources de connaissances liées au domaine au sein d'une modélisation ontologique cible. D'une part, plusieurs modélisations ontologiques mammographiques ont été proposées dans la littérature, où chaque ressource présente une perspective distincte du domaine d'intérêt. D'autre part, l'implémentation des systèmes d'acquisition des mammographies rend disponible un grand volume d'informations issues des faits passés, dont la réutilisation devient un enjeu majeur. Toutefois, ces fragments de connaissances, présentant de différentes évidences utiles à la compréhension de domaine, ne sont pas interopérables et nécessitent des méthodologies de gestion de connaissances afin de les unifier. C'est dans ce cadre que se situe notre travail de thèse qui s'intéresse à l'enrichissement d'une ontologie de domaine existante à travers l'extraction et la gestion de nouvelles connaissances (concepts et relations) provenant de deux courants scientifiques à savoir: des ressources ontologiques et des bases de données comportant des expériences passées. Notre approche présente un processus de couplage entre l'enrichissement conceptuel et l'enrichissement relationnel d'une ontologie mammographique existante. Le premier volet comporte trois étapes. La première étape dite de pré-alignement d'ontologies consiste à construire pour chaque ontologie en entrée une hiérarchie des clusters conceptuels flous. Le but étant de réduire l'étape d'alignement de deux ontologies entières en un alignement de deux groupements de concepts de tailles réduits. La deuxième étape consiste à aligner les deux structures des clusters relatives aux ontologies cible et source. Les alignements validés permettent d'enrichir l'ontologie de référence par de nouveaux concepts permettant d'augmenter le niveau de granularité de la base de connaissances. Le deuxième processus s'intéresse à l'enrichissement relationnel de l'ontologie mammographique cible par des relations déduites de la base de données de domaine. Cette dernière comporte des données textuelles des mammographies recueillies dans les services de radiologies. Ce volet comporte ces étapes : i) Le prétraitement des données textuelles ii) l'application de techniques relatives à la fouille de données (ou extraction de connaissances) afin d'extraire des expériences de nouvelles associations sous la forme de règles, iii) Le post-traitement des règles générées. Cette dernière consiste à filtrer et classer les règles afin de faciliter leur interprétation et validation par l'expert vi) L'enrichissement de l'ontologie par de nouvelles associations entre les concepts. Cette approche a été mise en 'uvre et validée sur des ontologies mammographiques réelles et des données des patients fournies par les hôpitaux Taher Sfar et Ben Arous
Facing the significant complexity of the mammography area and the massive changes in its data, the need to contextualize knowledge in a formal and comprehensive modeling is becoming increasingly urgent for experts. It is within this framework that our thesis work focuses on unifying different sources of knowledge related to the domain within a target ontological modeling. On the one hand, there is, nowadays, several mammographic ontological modeling, where each resource has a distinct perspective area of interest. On the other hand, the implementation of mammography acquisition systems makes available a large volume of information providing a decisive competitive knowledge. However, these fragments of knowledge are not interoperable and they require knowledge management methodologies for being comprehensive. In this context, we are interested on the enrichment of an existing domain ontology through the extraction and the management of new knowledge (concepts and relations) derived from two scientific currents: ontological resources and databases holding with past experiences. Our approach integrates two knowledge mining levels: The first module is the conceptual target mammographic ontology enrichment with new concepts extracting from source ontologies. This step includes three main stages: First, the stage of pre-alignment. The latter consists on building for each input ontology a hierarchy of fuzzy conceptual clusters. The goal is to reduce the alignment task from two full ontologies to two reduced conceptual clusters. The second stage consists on aligning the two hierarchical structures of both source and target ontologies. Thirdly, the validated alignments are used to enrich the reference ontology with new concepts in order to increase the granularity of the knowledge base. The second level of management is interested in the target mammographic ontology relational enrichment by novel relations deducted from domain database. The latter includes medical records of mammograms collected from radiology services. This section includes four main steps: i) the preprocessing of textual data ii) the application of techniques for data mining (or knowledge extraction) to extract new associations from past experience in the form of rules, iii) the post-processing of the generated rules. The latter is to filter and classify the rules in order to facilitate their interpretation and validation by expert, vi) The enrichment of the ontology by new associations between concepts. This approach has been implemented and validated on real mammographic ontologies and patient data provided by Taher Sfar and Ben Arous hospitals. The research work presented in this manuscript relates to knowledge using and merging from heterogeneous sources in order to improve the knowledge management process
APA, Harvard, Vancouver, ISO, and other styles
6

Guillet, Fabrice. "Qualité, Fouille et Gestion des Connaissances." Habilitation à diriger des recherches, Université de Nantes, 2006. http://tel.archives-ouvertes.fr/tel-00481938.

Full text
Abstract:
Qualité, Fouille et Gestion des Connaissances Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Sed non risus. Suspendisse lectus tortor, dignissim sit amet, adipiscing nec, ultricies sed, dolor. Cras elementum ultrices diam. Maecenas ligula massa, varius a, semper congue, euismod non, mi. Proin porttitor, orci nec nonummy molestie, enim est eleifend mi, non fermentum diam nisl sit amet erat. Duis semper. Duis arcu massa, scelerisque vitae, consequat in, pretium a, enim. Pellentesque congue. Ut in risus volutpat libero pharetra tempor. Cras vestibulum bibendum augue. Praesent egestas leo in pede. Praesent blandit odio eu enim. Pellentesque sed dui ut augue blandit sodales
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Thi Kim Ngan. "Generalizing association rules in n-ary relations : application to dynamic graph analysis." Phd thesis, INSA de Lyon, 2012. http://tel.archives-ouvertes.fr/tel-00995132.

Full text
Abstract:
Pattern discovery in large binary relations has been extensively studied. An emblematic success in this area concerns frequent itemset mining and its post-processing that derives association rules. In this case, we mine binary relations that encode whether some properties are satisfied or not by some objects. It is however clear that many datasets correspond to n-ary relations where n > 2. For example, adding spatial and/or temporal dimensions (location and/or time when the properties are satisfied by the objects) leads to the 4-ary relation Objects x Properties x Places x Times. Therefore, we study the generalization of association rule mining within arbitrary n-ary relations: the datasets are now Boolean tensors and not only Boolean matrices. Unlike standard rules that involve subsets of only one domain of the relation, in our setting, the head and the body of a rule can include arbitrary subsets of some selected domains. A significant contribution of this thesis concerns the design of interestingness measures for such generalized rules: besides a frequency measures, two different views on rule confidence are considered. The concept of non-redundant rules and the efficient extraction of the non-redundant rules satisfying the minimal frequency and minimal confidence constraints are also studied. To increase the subjective interestingness of rules, we then introduce disjunctions in their heads. It requires to redefine the interestingness measures again and to revisit the redundancy issues. Finally, we apply our new rule discovery techniques to dynamic relational graph analysis. Such graphs can be encoded into n-ary relations (n ≥ 3). Our use case concerns bicycle renting in the Vélo'v system (self-service bicycle renting in Lyon). It illustrates the added-value of some rules that can be computed thanks to our software prototypes.
APA, Harvard, Vancouver, ISO, and other styles
8

Papon, Pierre-Antoine. "Extraction optimisée de règles d'association positives et négatives intéressantes." Thesis, Clermont-Ferrand 2, 2016. http://www.theses.fr/2016CLF22702/document.

Full text
Abstract:
L’objectif de la fouille de données consiste à extraire des connaissances à partir de grandes masses de données. Les connaissances extraites peuvent prendre différentes formes. Dans ce travail, nous allons chercher à extraire des connaissances uniquement sous la forme de règles d’association positives et de règles d’association négatives. Une règle d’association négative est une règle dans laquelle la présence ainsi que l’absence d’une variable peuvent être utilisées. En considérant l’absence des variables dans l’étude, nous allons élargir la sémantique des connaissances et extraire des informations non détectables par les méthodes d’extraction de règles d’association positives. Cela va par exemple permettre aux médecins de trouver des caractéristiques qui empêchent une maladie de se déclarer, en plus de chercher des caractéristiques déclenchant une maladie. Cependant, l’ajout de la négation va entraîner différents défis. En effet, comme l’absence d’une variable est en général plus importante que la présence de ces mêmes variables, les coûts de calculs vont augmenter exponentiellement et le risque d’extraire un nombre prohibitif de règles, qui sont pour la plupart redondantes et inintéressantes, va également augmenter. Afin de remédier à ces problèmes, notre proposition, dérivée de l’algorithme de référence A priori, ne va pas se baser sur les motifs fréquents comme le font les autres méthodes. Nous définissons donc un nouveau type de motifs : les motifs raisonnablement fréquents qui vont permettre d’améliorer la qualité des règles. Nous nous appuyons également sur la mesure M G pour connaître les types de règles à extraire mais également pour supprimer des règles inintéressantes. Nous utilisons également des méta-règles nous permettant d’inférer l’intérêt d’une règle négative à partir d’une règle positive. Par ailleurs, notre algorithme va extraire un nouveau type de règles négatives qui nous semble intéressant : les règles dont la prémisse et la conclusion sont des conjonctions de motifs négatifs. Notre étude se termine par une comparaison quantitative et qualitative aux autres algorithmes d’extraction de règles d’association positives et négatives sur différentes bases de données de la littérature. Notre logiciel ARA (Association Rules Analyzer ) facilite l’analyse qualitative des algorithmes en permettant de comparer intuitivement les algorithmes et d’appliquer en post-traitement différentes mesures de qualité. Finalement, notre proposition améliore l’extraction au niveau du nombre et de la qualité des règles extraites mais également au niveau du parcours de recherche des règles
The purpose of data mining is to extract knowledge from large amount of data. The extracted knowledge can take different forms. In this work, we will seek to extract knowledge only in the form of positive association rules and negative association rules. A negative association rule is a rule in which the presence and the absence of a variable can be used. When considering the absence of variables in the study, we will expand the semantics of knowledge and extract undetectable information by the positive association rules mining methods. This will, for example allow doctors to find characteristics that prevent disease instead of searching characteristics that cause a disease. Nevertheless, adding the negation will cause various challenges. Indeed, as the absence of a variable is usually more important than the presence of these same variables, the computational costs will increase exponentially and the risk to extract a prohibitive number of rules, which are mostly redundant and uninteresting, will also increase. In order to address these problems, our proposal, based on the famous Apriori algorithm, does not rely on frequent itemsets as other methods do. We define a new type of itemsets : the reasonably frequent itemsets which will improve the quality of the rules. We also rely on the M G measure to know which forms of rules should be mined but also to remove uninteresting rules. We also use meta-rules to allow us to infer the interest of a negative rule from a positive one. Moreover, our algorithm will extract a new type of negative rules that seems interesting : the rules for which the antecedent and the consequent are conjunctions of negative itemsets. Our study ends with a quantitative and qualitative comparison with other positive and negative association rules mining algorithms on various databases of the literature. Our software ARA (Association Rules Analyzer ) facilitates the qualitative analysis of the algorithms by allowing to compare intuitively the algorithms and to apply in post-process treatments various quality measures. Finally, our proposal improves the extraction in the number and the quality of the extracted rules but also in the rules search path
APA, Harvard, Vancouver, ISO, and other styles
9

David, Jérôme. "AROMA : une méthode pour la découverte d'alignements orientés entre ontologies à partir de règles d'association." Phd thesis, Université de Nantes, 2007. http://tel.archives-ouvertes.fr/tel-00200040.

Full text
Abstract:
Ce travail de thèse s'inscrit à l'intersection des deux domaines de recherche que sont l'extraction des connaissances dans les données (ECD) et de l'ingénierie des connaissances. Plus précisément, en nous appuyant sur la combinaison des travaux menés, d'une part sur l'alignement des ontologies, et d'autre part sur la fouille de règles d'association, nous proposons une nouvelle méthode d'alignement d'ontologies associées à des corpus textuels (taxonomies, hiérarchies documentaires, thésaurus, répertoires ou catalogues Web), appelée AROMA (\emph{Association Rule Matching Approach}).

Dans la littérature, la plupart des travaux traitant des méthodes d'alignement d'ontologies ou de schémas s'appuient sur une définition intentionnelle des schémas et utilisent des relations basées sur des mesures de similarité qui ont la particularité d'être symétriques (équivalences). Afin d'améliorer les méthodes d'alignement, et en nous inspirant des travaux sur la découverte de règles d'association, des mesures de qualité associées, et sur l'analyse statistique implicative, nous proposons de découvrir des appariements asymétriques (implications) entre ontologies. Ainsi, la contribution principale de cette thèse concerne la conception d'une méthode d'alignement extensionnelle et orientée basée sur la découverte des implications significatives entre deux hiérarchies plantées dans un corpus textuel.
Notre méthode d'alignement se décompose en trois phases successives. La phase de prétraitement permet de préparer les ontologies à l'alignement en les redéfinissant sur un ensemble commun de termes extraits des textes et sélectionnés statistiquement. La phase de fouille extrait un alignement implicatif entre hiérarchies. La dernière phase de post-traitement des résultats permet de produire des alignements consistants et minimaux (selon un critère de redondance).

Les principaux apports de cette thèse sont : (1) Une modélisation de l'alignement étendue pour la prise en compte de l'implication. Nous définissons les notions de fermeture et couverture d'un alignement permettant de formaliser la redondance et la consistance d'un alignement. Nous étudions également la symétricité et les cardinalités d'un alignement. (2) La réalisation de la méthode AROMA et d'une interface d'aide à la validation d'alignements. (3) Une extension d'un modèle d'évaluation sémantique pour la prise en compte de la présence d'implications dans un alignement. (4) L'étude du comportement et de la performance d'AROMA sur différents types de jeux de tests (annuaires Web, catalogues et ontologies au format OWL) avec une sélection de six mesures de qualité.

Les résultats obtenus sont prometteurs car ils montrent la complémentarité de notre méthode avec les approches existantes.
APA, Harvard, Vancouver, ISO, and other styles
10

Martin, Florent. "Pronostic de défaillances de pompes à vide - Exploitation automatique de règles extraites par fouille de données." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENA011.

Full text
Abstract:
Cette thèse présente une méthode de pronostic basée sur des règles symboliques extraites par fouille de données. Une application de cette méthode au cas du grippage de pompes à vide est aussi détaillée. Plus précisément, à partir d'un historique de données vibratoires, nous modélisons le comportement des pompes par extraction d'un type particulier de règles d'épisode appelé « First Local Maximum episode rules » (FLM-règles). L'algorithme utilisé pour extraire ces FLM-règles extrait aussi de manière automatique leur fenêtre optimale respective, i.e. la fenêtre dans laquelle la probabilité d'observer la prémisse et la conclusion de la règle est maximale. Un sous-ensemble de ces FLM-règles est ensuite sélectionné pour prédire les grippages à partir d'un flux de données vibratoires. Notre contribution porte sur la sélection des FLM-règles les plus fiables, la recherche de ces FLM-règles dans un flux continu de données vibratoires et la construction d'un intervalle de pronostic de grippage à partir des fenêtres optimales des FLM-règles retrouvées
This thesis presents a symbolic rule-based method that addresses system prognosis. It also details a successful application to complex vacuum pumping systems. More precisely, using historical vibratory data, we first model the behavior of the pumps by extracting a given type of episode rules, namely the First Local Maximum episode rules (FLM-rules). The algorithm that extracts FLM-rules also determines automatically their respective optimal temporal window, i.e. the temporal window in which the probability of observing the premiss and the conclusion of a rule is maximum. A subset of the extracted FLM-rules is then selected in order to further predict pumping system failures in a vibratory data stream context. Our contribution consists in selecting the most reliable FLM-rules, continuously matching them in a data stream of vibratory data and building a forecast time interval using the optimal temporal windows of the FLM-rules that have been matched
APA, Harvard, Vancouver, ISO, and other styles
11

Mondal, Kartick Chandra. "Algorithmes pour la fouille de données et la bio-informatique." Thesis, Nice, 2013. http://www.theses.fr/2013NICE4049.

Full text
Abstract:
L'extraction de règles d'association et de bi-clusters sont deux techniques de fouille de données complémentaires majeures, notamment pour l'intégration de connaissances. Ces techniques sont utilisées dans de nombreux domaines, mais aucune approche permettant de les unifier n'a été proposée. Hors, réaliser ces extractions indépendamment pose les problèmes des ressources nécessaires (mémoire, temps d'exécution et accès aux données) et de l'unification des résultats. Nous proposons une approche originale pour extraire différentes catégories de modèles de connaissances tout en utilisant un minimum de ressources. Cette approche est basée sur la théorie des ensembles fermés et utilise une nouvelle structure de données pour extraire des représentations conceptuelles minimales de règles d'association, bi-clusters et règles de classification. Ces modèles étendent les règles d'association et de classification et les bi-clusters classiques, les listes d'objets supportant chaque modèle et les relations hiérarchiques entre modèles étant également extraits. Cette approche a été appliquée pour l'analyse de données d'interaction protéomiques entre le virus VIH-1 et l'homme. L'analyse de ces interactions entre espèces est un défi majeur récent en bio-informatique. Plusieurs bases de données intégrant des informations hétérogènes sur les interactions et des connaissances biologiques sur les protéines ont été construites. Les résultats expérimentaux montrent que l'approche proposée peut traiter efficacement ces bases de données et que les modèles conceptuels extraits peuvent aider à la compréhension et à l'analyse de la nature des relations entre les protéines interagissant
Knowledge pattern extraction is one of the major topics in the data mining and background knowledge integration domains. Out of several data mining techniques, association rule mining and bi-clustering are two major complementary tasks for these topics. These tasks gained much importance in many domains in recent years. However, no approach was proposed to perform them in one process. This poses the problems of resources required (memory, execution times and data accesses) to perform independent extractions and of the unification of the different results. We propose an original approach for extracting different categories of knowledge patterns while using minimum resources. This approach is based on the frequent closed patterns theoretical framework and uses a novel suffix-tree based data structure to extract conceptual minimal representations of association rules, bi-clusters and classification rules. These patterns extend the classical frameworks of association and classification rules, and bi-clusters as data objects supporting each pattern and hierarchical relationships between patterns are also extracted. This approach was applied to the analysis of HIV-1 and human protein-protein interaction data. Analyzing such inter-species protein interactions is a recent major challenge in computational biology. Databases integrating heterogeneous interaction information and biological background knowledge on proteins have been constructed. Experimental results show that the proposed approach can efficiently process these databases and that extracted conceptual patterns can help the understanding and analysis of the nature of relationships between interacting proteins
APA, Harvard, Vancouver, ISO, and other styles
12

Fu, Huaiguo. "Algorithmique des treillis de concepts : application à la fouille de données." Artois, 2005. http://www.theses.fr/2005ARTO0401.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à la structure du treillis de concepts et à ses applications à la fouille de données. Nous avons entrepris dans cette thèse un travail de comparaison de plusieurs algorithmes de génération des concepts formels sur les données d'UCI. Au cours de cette étude, nous avons analysé le phénomène de la dualité objets/attributs sur les performances des algorithmes. Nous proposons un nouvel algorithme de génération de concepts formels, nommé ScalingNextClosure. ScalingNextClosure décompose l'espace de recherche en partitions, et génère de manière indépendante les concepts pour chaque partition. Cette technique de décomposition et d'indépendance des partitions lui permet de gérer efficacement la mémoire centrale et les entrées/sorties pour être capable de traiter efficacement des contextes de données volumineux. Une comparaison expérimentale montre l'efficacité de cet algorithme par rapport à NextClosure. L'indépendance des partitions est un atout pour la mise en oeuvre de ScalingNextClosure dans un environnement parallèle et distribué. En fouille de données, la problématique d'extraction des itemsets fermés fréquents pour la recherche de règles d'association, se prête bien à une mise en oeuvre de ScalingNextClosure. Nous avons donc étendu ScalingNextClosure pour traiter ce problème. Le nouvel algorithme, nommé PFC, utilise la mesure du support pour élaguer l'espace de recherche dans une partition. Une comparaison expérimentale avec une des méthodes les plus efficaces actuellement, a été réalisée sur une architecture séquentielle, et donne des résultats encourageants
Our main concern in this thesis is concept (or galois) lattices and its application to data mining. We achieve a comparison of different concept lattices algorithms on benchmarks taken from UCI. During this comparison, we analyse the duality phenomenon between objects and attributes on each algorithm performance. This analysis allows to show that the running time of an algorithm may considerably vary when using the formal context or the transposed context. Using the Divide-and-Conquer paradigm, we design a new concept lattice algorithm, ScalingNextClosure, which decomposes the search space in many partitions and builds formal concepts for each partition independently. By reducing the search space, ScalingNextClosure can deal efficiently with few memory space and thus treat huge formal context, but only if the whole context can be loaded in the memory. An experimental comparison between NextClosure and ScalingNextClosure shows the efficiency of such decomposition approach. In any huge dataset, ScalingNextClosure runs faster than NextClosure on a sequential machine, with an average win factor equal to 10. Another advantage of ScalingNextClosure is that it can be easily implemented on a distributed or parallel architecture. Mining frequent closed itemsets (FCI) is a subproblem of mining association rules. We adapt ScalingNextClosure to mine frequent closed itemsets, and design a new algorithm, called PFC. PFC uses the support measure to prune the search space within one partition. An experimental comparison conducted on a sequential architecture, between PFC with one of the efficient FCI system, is discussed
APA, Harvard, Vancouver, ISO, and other styles
13

Bothorel, Gwenael. "Algorithmes automatiques pour la fouille visuelle de données et la visualisation de règles d’association : application aux données aéronautiques." Phd thesis, Toulouse, INPT, 2014. http://oatao.univ-toulouse.fr/13783/1/bothorel.pdf.

Full text
Abstract:
Depuis quelques années, nous assistons à une véritable explosion de la production de données dans de nombreux domaines, comme les réseaux sociaux ou le commerce en ligne. Ce phénomène récent est renforcé par la généralisation des périphériques connectés, dont l'utilisation est devenue aujourd'hui quasi-permanente. Le domaine aéronautique n'échappe pas à cette tendance. En effet, le besoin croissant de données, dicté par l'évolution des systèmes de gestion du trafic aérien et par les événements, donne lieu à une prise de conscience sur leur importance et sur une nouvelle manière de les appréhender, qu'il s'agisse de stockage, de mise à disposition et de valorisation. Les capacités d'hébergement ont été adaptées, et ne constituent pas une difficulté majeure. Celle-ci réside plutôt dans le traitement de l'information et dans l'extraction de connaissances. Dans le cadre du Visual Analytics, discipline émergente née des conséquences des attentats de 2001, cette extraction combine des approches algorithmiques et visuelles, afin de bénéficier simultanément de la flexibilité, de la créativité et de la connaissance humaine, et des capacités de calculs des systèmes informatiques. Ce travail de thèse a porté sur la réalisation de cette combinaison, en laissant à l'homme une position centrale et décisionnelle. D'une part, l'exploration visuelle des données, par l'utilisateur, pilote la génération des règles d'association, qui établissent des relations entre elles. D'autre part, ces règles sont exploitées en configurant automatiquement la visualisation des données concernées par celles-ci, afin de les mettre en valeur. Pour cela, ce processus bidirectionnel entre les données et les règles a été formalisé, puis illustré, à l'aide d'enregistrements de trafic aérien récent, sur la plate-forme Videam que nous avons développée. Celle-ci intègre, dans un environnement modulaire et évolutif, plusieurs briques IHM et algorithmiques, permettant l'exploration interactive des données et des règles d'association, tout en laissant à l'utilisateur la maîtrise globale du processus, notamment en paramétrant et en pilotant les algorithmes.
APA, Harvard, Vancouver, ISO, and other styles
14

Lehn, Rémi. "Un système interactif de visualisation et de fouille de règles pour l'extraction de connaissances dans les bases de données." Nantes, 2000. http://www.theses.fr/2000NANT2110.

Full text
Abstract:
L'utilisation de techniques combinatoires dans un processus d'extraction automatique de connaissances à partir des données génère potentiellement un volume de règle d'association trop important pour qu'un utilisateur puisse y trouver des connaissances effectivement utiles selon son point de vue ; et ce, malgré l'utilisation de critères de qualité des règles extraites tels que l'intensité d'implication. Nous proposons d'envisager une meilleure assistance à l'utilisateur en couplant à un algorithme performant pour la découverte d'association un nouvel outil interactif de visualisation, felix, fournissant une véritable aide à la décision en permettant la fouille de règles. Felix permet d'assister l'utilisateur dans son raisonnement mettant en relation la connaissance découverte automatiquement et sa propre expertise. Pour cela, il dessine le graphe des relations associant des descriptions de sous-ensembles d'objets de la base de données et permet, par action de l'utilisateur sur ce dessin, de modifier dynamiquement et de façon itérative cette représentation pour prendre en compte de manière incrémentale de nouvelles étapes dans le raisonnement de l'expert. Une heuristique basée sur les algorithmes génétiques a été développée pour le problème du dessin interactif. Felix a été implémenté selon une architecture client-serveur et exploite des standards ouverts pour s'intégrer parfaitement dans les environnements industriels d'aujourd'hui, entre les bases de données et l'intranet des entreprises. Il a déjà été utilisé dans le domaine de la gestion des ressources humaines pour étudier le rapprochement entre des bilans comportementaux et des métiers, à partir de bases de données de plusieurs clients de la société performanse sa. Des profils de métiers ont ainsi pu être élaborés.
APA, Harvard, Vancouver, ISO, and other styles
15

Kirchgessner, Martin. "Fouille et classement d'ensembles fermés dans des données transactionnelles de grande échelle." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAM060/document.

Full text
Abstract:
Les algorithmes actuels pour la fouille d’ensembles fréquents sont dépassés par l’augmentation des volumes de données. Dans cette thèse nous nous intéressons plus particulièrement aux données transactionnelles (des collections d’ensembles d’objets, par exemple des tickets de caisse) qui contiennent au moins un million de transactions portant sur au moins des centaines de milliers d’objets. Les jeux de données de cette taille suivent généralement une distribution dite en "longue traine": alors que quelques objets sont très fréquents, la plupart sont rares. Ces distributions sont le plus souvent tronquées par les algorithmes de fouille d’ensembles fréquents, dont les résultats ne portent que sur une infime partie des objets disponibles (les plus fréquents). Les méthodes existantes ne permettent donc pas de découvrir des associations concises et pertinentes au sein d’un grand jeu de données. Nous proposons donc une nouvelle sémantique, plus intuitive pour l’analyste: parcourir les associations par objet, au plus une centaine à la fois, et ce pour chaque objet présent dans les données.Afin de parvenir à couvrir tous les objets, notre première contribution consiste à définir la fouille centrée sur les objets. Cela consiste à calculer, pour chaque objet trouvé dans les données, les k ensembles d’objets les plus fréquents qui le contiennent. Nous présentons un algorithme effectuant ce calcul, TopPI. Nous montrons que TopPI calcule efficacement des résultats intéressants sur nos jeux de données. Il est plus performant que des solutions naives ou des émulations reposant sur des algorithms existants, aussi bien en termes de rapidité que de complétude des résultats. Nous décrivons et expérimentons deux versions parallèles de TopPI (l’une sur des machines multi-coeurs, l’autre sur des grappes Hadoop) qui permettent d’accélerer le calcul à grande échelle.Notre seconde contribution est CAPA, un système permettant d’étudier quelle mesure de qualité des règles d’association serait la plus appropriée pour trier nos résultats. Cela s’applique aussi bien aux résultats issus de TopPI que de jLCM, notre implémentation d’un algorithme récent de fouille d’ensembles fréquents fermés (LCM). Notre étude quantitative montre que les 39 mesures que nous comparons peuvent être regroupées en 5 familles, d’après la similarité des classements de règles qu’elles produisent. Nous invitons aussi des experts en marketing à participer à une étude qualitative, afin de déterminer laquelle des 5 familles que nous proposons met en avant les associations d’objets les plus pertinentes dans leur domaine.Notre collaboration avec Intermarché, partenaire industriel dans le cadre du projet Datalyse, nous permet de présenter des expériences complètes et portant sur des données réelles issues de supermarchés dans toute la France. Nous décrivons un flux d’analyse complet, à même de répondre à cette application. Nous présentons également des expériences portant sur des données issues d’Internet; grâce à la généricité du modèle des ensembles d’objets, nos contributions peuvent s’appliquer dans d’autres domaines.Nos contributions permettent donc aux analystes de découvrir des associations d’objets au milieu de grandes masses de données. Nos travaux ouvrent aussi la voie vers la fouille d’associations interactive à large échelle, afin d’analyser des données hautement dynamiques ou de réduire la portion du fichier à analyser à celle qui intéresse le plus l’analyste
The recent increase of data volumes raises new challenges for itemset mining algorithms. In this thesis, we focus on transactional datasets (collections of items sets, for example supermarket tickets) containing at least a million transactions over hundreds of thousands items. These datasets usually follow a "long tail" distribution: a few items are very frequent, and most items appear rarely. Such distributions are often truncated by existing itemset mining algorithms, whose results concern only a very small portion of the available items (the most frequents, usually). Thus, existing methods fail to concisely provide relevant insights on large datasets. We therefore introduce a new semantics which is more intuitive for the analyst: browsing associations per item, for any item, and less than a hundred associations at once.To address the items' coverage challenge, our first contribution is the item-centric mining problem. It consists in computing, for each item in the dataset, the k most frequent closed itemsets containing this item. We present an algorithm to solve it, TopPI. We show that TopPI computes efficiently interesting results over our datasets, outperforming simpler solutions or emulations based on existing algorithms, both in terms of run-time and result completeness. We also show and empirically validate how TopPI can be parallelized, on multi-core machines and on Hadoop clusters, in order to speed-up computation on large scale datasets.Our second contribution is CAPA, a framework allowing us to study which existing measures of association rules' quality are relevant to rank results. This concerns results obtained from TopPI or from jLCM, our implementation of a state-of-the-art frequent closed itemsets mining algorithm (LCM). Our quantitative study shows that the 39 quality measures we compare can be grouped into 5 families, based on the similarity of the rankings they produce. We also involve marketing experts in a qualitative study, in order to discover which of the 5 families we propose highlights the most interesting associations for their domain.Our close collaboration with Intermarché, one of our industrial partners in the Datalyse project, allows us to show extensive experiments on real, nation-wide supermarket data. We present a complete analytics workflow addressing this use case. We also experiment on Web data. Our contributions can be relevant in various other fields, thanks to the genericity of transactional datasets.Altogether our contributions allow analysts to discover associations of interest in modern datasets. We pave the way for a more reactive discovery of items' associations in large-scale datasets, whether on highly dynamic data or for interactive exploration systems
APA, Harvard, Vancouver, ISO, and other styles
16

Couturier, Olivier. "Contribution à la fouille de données : règles d'association et interactivité au sein d'un processus d'extraction de connaissances dans les données." Artois, 2005. http://www.theses.fr/2005ARTO0410.

Full text
Abstract:
Au regard du nombre croissant des grandes bases de données, déterminer la façon dont sont organisées les données, les interpréter et en extraire des informations utiles est un problème difficile et ouvert. En effet, à l'heure actuelle, notre capacité à collecter et stocker les données de tout type, outrepasse nos possibilités d'analyse, de synthèse et d'extraction de connaissances dans les données. Notre travail se situe au niveau de la recherche de règles d'association qui constitue une tâche de fouille de données. Cette dernière présente des résultats qui permettent aux experts de facilement interpréter les règles une à une. Les méthodes de génération sont combinatoires et engendrent un nombre élevé de règles qui sont difficilement exploitables. Plusieurs approches de réduction de ce nombre ont été proposées comme l'usage de mesures de qualité, le filtrage syntaxique par contraintes, la compression par les bases représentatives ou génériques. Cependant, ces approches n'intègrent pas l'expert dans le déroulement du processus limitant ainsi l'aspect interactif du processus. En effet, l'expert ne sait pas toujours initialement quelle connaissance il souhaite obtenir. Nous analysons l'activité cognitive de l'expert dans différents processus de recherche de règles d'association et nous montrons que dans ces approches, l'expert n'intervient pas durant les tâches du processus. Pour accroître cette interactivité avec l'expert, il est nécessaire que celui-ci soit au coeur du processus afin de répondre à l'un des objectifs de l'ECD. Nous nous basons sur les systèmes orientés-tâches, qui se focalisent sur les différentes tâches que l'expert doit réaliser, et proposons l'algorithme SHARK qui est une approche hybride basée sur l'utilisation d'une recherche hiérarchique s'appuyant sur une taxinomie d'attributs et d'une approche anthropocentrée de manière à inclure l'expert dans le processus. Nous couplons ainsi la connaissance explicite fournie par l'algorithme et la connaissance tacite de l'expert. L'utilisation d'une interface graphique adaptée s'avère donc nécessaire pour que l'expert puisse interagir de manière optimale avec le processus. L'efficacité de cet algorithme a été montrée sur un problème réel de marketing faisant intervenir des experts du monde bancaire. En outre, la fouille de données visuelle présente un intérêt non négligeable puisque l'esprit humain peut traiter une plus grande quantité d'informations de manière visuelle. Comme des quantités très importantes de règles sont générées, la fouille de données visuelle s'avère être une étape incontournable pour améliorer encore notre approche. Nous présentons un état de l'art des principales techniques de visualisation de règles d'association. Parmi ces représentations, nous nous focalisons sur les représentations de type matrice 3D présentant la particularité de générer des occlusions. Une occlusion est un chevauchement d'objets dans un environnement 3D rendant certains de ces objets pas ou peu visibles. Après avoir défini formellement le problème d'occlusions, nous montrons qu'il s'agit d'un problème d'optimisation qui est de trouver le meilleur ordre possible des itemsets sur les deux axes pour limiter les occlusions. Nous proposons une heuristique permettant de réduire significativement les occlusions générées. Les résultats que nous avons obtenus sont présentés et discutés.
APA, Harvard, Vancouver, ISO, and other styles
17

Szathmary, Laszlo. "Méthodes symboliques de fouille de données avec la plate-forme Coron." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00336374.

Full text
Abstract:
Le sujet principal de cette thèse est l'extraction de connaissances dans les bases de données (ECBD). Plus précisément, nous avons étudié deux des plus importantes tâches d'ECBD actuelles, qui sont l'extraction de motifs et la génération de règles d'association. Tout au long de notre travail, notre objectif a été de trouver des règles d'associations intéressantes selon plusieurs points de vue : dans un but de fouille efficace, pour réduire au minimum l'ensemble des règles extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables). Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques.
Les contributions principales de cette thèse sont : (1) nous avons développé et adapté des algorithmes pour trouver les règles d'association minimales non-redondantes ; (2) nous avons défini une nouvelle base pour les règles d'associations appelée “règles fermées” ; (3) nous avons étudié un champ de l'ECBD important mais relativement peu étudié, à savoir l'extraction des motifs rares et des règles d'association rares ; (4) nous avons regroupé nos algorithmes et une collection d'autres algorithmes ainsi que d'autres opérations auxiliaires d'ECBD dans une boîte à outils logicielle appelée Coron.
APA, Harvard, Vancouver, ISO, and other styles
18

Ramstein, Gérard. "Application de techniques de fouille de données en Bio-informatique." Habilitation à diriger des recherches, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00706566.

Full text
Abstract:
Les travaux de recherche présentés par l'auteur ont pour objet l'application de techniques d'extraction de connaissances à partir de données (ECD) en biologie. Deux thèmes majeurs de recherche en bio-informatique sont abordés : la recherche d'homologues distants dans des familles de protéines et l'analyse du transcriptome. La recherche d'homologues distants à partir de séquences protéiques est une problématique qui consiste à découvrir de nouveaux membres d'une famille de protéines. Celle-ci partageant généralement une fonction biologique, l'identification de la famille permet d'investiguer le rôle d'une séquence protéique. Des classifieurs ont été développés pour discriminer une superfamille de protéines particulière, celle des cytokines. Ces protéines sont impliquées dans le système immunitaire et leur étude est d'une importance cruciale en thérapeutique. La technique des Séparateurs à Vastes Marges (SVM) a été retenue, cette technique ayant donné les résultats les plus prometteurs pour ce type d'application. Une méthode originale de classification a été conçue, basée sur une étape préliminaire de découverte de mots sur-représentés dans la famille d'intérêt. L'apport de cette démarche est d'utiliser un dictionnaire retreint de motifs discriminants, par rapport à des techniques utilisant un espace global de k-mots. Une comparaison avec ces dernières méthodes montre la pertinence de cette approche en termes de performances de classification. La seconde contribution pour cette thématique porte sur l'agrégation des classifieurs basée sur des essaims grammaticaux. Cette méthode vise à optimiser l'association de classifieurs selon des modèles de comportement sociaux, à la manière des algorithmes génétiques d'optimisation. Le deuxième axe de recherche traite de l'analyse des données du transcriptome. L'étude du transcriptome représente un enjeu considérable, tant du point de vue de la compréhension des mécanismes du vivant que des applications cliniques et pharmacologiques. L'analyse implicative sur des règles d'association, développée initialement par Régis Gras, a été appliquée aux données du transcriptome. Une approche originale basée sur des rangs d'observation a été proposée. Deux applications illustrent la pertinence de cette méthode : la sélection de gènes informatifs et la classification de tumeurs. Enfin, une collaboration étroite avec une équipe INSERM dirigée par Rémi Houlgatte a conduit à l'enrichissement d'une suite logicielle dédiée aux données de puces à ADN. Cette collection d'outils dénommée MADTOOLS a pour objectifs l'intégration de données du transcriptome et l'aide à la méta-analyse. Une application majeure de cette suite utilise les données publiques relatives aux pathologies musculaires. La méta-analyse, en se basant sur des jeux de données indépendants, améliore grandement la robustesse des résultats. L'étude systématique de ces données a mis en évidence des groupes de gènes co-exprimés de façon récurrente. Ces groupes conservent leur propriété discriminante au travers de jeux très divers en termes d'espèces, de maladies ou de conditions expérimentales. Cette étude peut évidemment se généraliser à l'ensemble des données publiques concernant le transcriptome. Elle ouvre la voie à une approche à très grande échelle de ce type de données pour l'étude d'autres pathologies humaines.
APA, Harvard, Vancouver, ISO, and other styles
19

Azé, Jérôme. "Extraction de Connaissances à partir de Données Numériques et Textuelles." Phd thesis, Université Paris Sud - Paris XI, 2003. http://tel.archives-ouvertes.fr/tel-00011196.

Full text
Abstract:
Le travail réalisé dans le cadre de cette thèse concerne l'extraction de connaissances dans des données transactionnelles.
L'analyse de telles données est souvent contrainte par la définition d'un support minimal utilisé pour filtrer les connaissances non intéressantes.
Les experts des données ont souvent des difficultés pour déterminer ce support.
Nous avons proposé une méthode permettant de ne pas fixer un support minimal et fondée sur l'utilisation de mesures de qualité.
Nous nous sommes focalisés sur l'extraction de connaissances de la forme "règles d'association".
Ces règles doivent vérifier un ou plusieurs critères de qualité pour être considérées comme intéressantes et proposées à l'expert.
Nous avons proposé deux mesures de qualité combinant différents critères et permettant d'extraire des règles intéressantes.

Nous avons ainsi pu proposer un algorithme permettant d'extraire ces règles sans utiliser la contrainte du support minimal.
Le comportement de notre algorithme a été étudié en présence de données bruitées et nous avons pu mettre en évidence la difficulté d'extraire automatiquement des connaissances fiables à partir de données bruitées.
Une des solutions que nous avons proposée consiste à évaluer la résistance au bruit de chaque règle et d'en informer l'expert lors de l'analyse et de la validation des connaissances obtenues.

Enfin, une étude sur des données réelles a été effectuée dans le cadre d'un processus de fouille de textes.
Les connaissances recherchées dans ces textes sont des règles d'association entre des concepts définis par l'expert et propres au domaine étudié.
Nous avons proposé un outil permettant d'extraire les connaissances et d'assister l'expert lors de la validation de celles-ci.
Les différents résultats obtenus montrent qu'il est possible d'obtenir des connaissances intéressantes à partir de données textuelles en minimisant la sollicitation de l'expert dans la phase d'extraction des règles d'association.
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Dong Haoyuan. "Extraction de séquences inattendues : des motifs séquentiels aux règles d’implication." Montpellier 2, 2009. http://www.theses.fr/2009MON20253.

Full text
Abstract:
Les motifs séquentiels peuvent être vus comme une extension de la notion d'itemsets fréquents intégrant diverses contraintes temporelles. La recherche de tels motifs consiste ainsi à extraire des enchaînements d'ensembles d'items, couramment associés sur une période de temps bien spécifiée. La construction de règles à partir de ces motifs séquentiels permet d'étendre la notion de règles d'association pour la pris en compte de la temporalité. En fait, cette recherche met en évidence des associations inter-transactions, contrairement à celle des règles d'association qui extrait des combinaisons intra-transactions. Ce problème, posé à l'origine dans un contexte de marketing, intéresse à présent des domaines aussi variés que les télécommunications, la finance, ou encore la médecine et la bioinformatique. Même s'il existe aujourd'hui de très nombreuses approches efficaces pour extraire des motifs, ces derniers ne sont pas forcément adaptés aux besoins des applications réelles. En fait, les résultats obtenus sont basés sur une mesure statistique et ne tiennent pas compte de la connaissance du domaine. De plus, ces approches sont principalement axées sur la recherche de tendances et ne permettent pas d'extraire des connaissances sur les éléments atypiques ou inattendus. Dans le cadre de cette thèse, nous nous intéressons donc à la problématique de l'extraction de motifs séquentiels et règles inattendus en intégrant la connaissance du domaine. Le travail présenté dans cette thèse comporte la mise en œuvre d'un cadre MUSE pour l'extraction de séquences inattendues par rapport à un système de croyances, des extensions avec la théorie de logique floue, l'intégration des données hi
The sequential patterns can be viewed as an extension of the notion of association rules with integrating temporal constraints, which are effective for representing statistical frequency based behaviors between the elements contained in sequence data, that is, the discovered patterns are interesting because they are frequent. However, with considering prior domain knowledge of the data, another reason why the discovered patterns are interesting is because they are unexpected. In this thesis, we investigate the problems in the discovery of unexpected sequences in large databases with respect to prior domain expertise knowledge. We first methodically develop the framework Muse with integrating the approaches to discover the three forms of unexpected sequences. We then extend the framework Muse by adopting fuzzy set theory for describing sequence occurrence. We also propose a generalized framework SoftMuse with respect to the concept hierarchies on the taxonomy of data. We further propose the notions of unexpected sequential patterns and unexpected implication rules, in order to evaluate the discovered unexpected sequences by using a self-validation process. We finally propose the discovery and validation of unexpected sentences in free format text documents. The usefulness and effectiveness of our proposed approaches are shown with the experiments on synthetic data, real Web server access log data, and text document classification
APA, Harvard, Vancouver, ISO, and other styles
21

Ben, Said Guefrech Zohra. "A virtual reality-based approach for interactive and visual mining of association rules." Nantes, 2012. http://archive.bu.univ-nantes.fr/pollux/show.action?id=359deab9-229a-4369-908d-bfbbe98adaea.

Full text
Abstract:
Cette thèse se situe à l’intersection de deux domaines actifs de recherche : la fouille de règles d’association et la réalité virtuelle. Les limites majeures des algorithmes d’extraction de règles d’association sont (i) la grande quantité de règles produites et (ii) leur faible qualité. Dans la littérature, plusieurs solutions ont été proposées pour remédier à ce problème, comme le post-traitement de règles d’association qui permet la validation des règles et l’extraction de connaissances utiles. Cependant, alors que les règles sont extraites automatiquement par des algorithmes combinatoires, le post-traitement de règles est effectué par l’utilisateur. La visualisation peut aider l’utilisateur à faire face à une grande quantité de règles en les représentants sous forme visuelle. Afin de trouver les connaissances pertinentes dans les représentations visuelles, l’utilisateur doit interagir avec la représentation de règles d’association. Par conséquent, il est essentiel de fournir à l’utilisateur des techniques d’interaction efficaces. Ce travail aborde deux problèmes essentiels : la représentation de règles d’association afin de permettre à l’utilisateur de détecter très rapidement les règles les plus intéressantes et l’exploration interactive des règles. Le premier exige une métaphore intuitive de représentation de règles d’association. Le second nécessite un processus d’exploration très interactif permettant à l’utilisateur de fouiller l’espace de règles en se concentrant sur les règles intéressantes. Les principales contributions de ce travail peuvent être résumées comme suit : – Nous proposons une nouvelle classification pour les techniques de fouille visuelles de données, basée sur des représentations en 3D et des techniques d’interaction. Une telle classification aide l’utilisateur à choisir une configuration pertinente pour son application. – Nous proposons une nouvelle métaphore de visualisation pour les règles d’association qui prend en compte les attributs de la règle, la contribution de chacun d’eux et leurs corrélations. – Nous proposons une méthodologie pour l’exploration interactive de règles d’association. Elle est conçue pour faciliter la tâche de l’utilisateur face à des grands ensembles de règles en tenant en compte ses capacités cognitives. Dans cette méthodologie, des algorithmes locaux sont utilisés pour recommander les meilleures règles basées sur une règle de référence proposée par l’utilisateur. Ensuite, l’utilisateur peut à la fois diriger l’extraction et le post-traitement des règles en utilisant des opérateurs d’interaction appropriés. – Nous avons développé un outil qui implémente toutes les fonctionnalités de la méthodologie. Notre outil est basé sur un affichage intuitif dans un environnement virtuel et prend en charge plusieurs méthodes d’interaction
This thesis is at the intersection of two active research areas : Association Rules Mining and Virtual Reality. The main limitations of the association rule extraction algorithms are (i) the large amount of the generated rules and (ii) their low quality. Several solutions have been proposed to address this problem such as, the post-processing of association rules that allows rule validation and extraction of useful knowledge. Whereas rules are automatically extracted by combinatorial algorithms, rule post-processing is done by the user. Visualisation can help the user facing the large amount of rules by representing them in visual form. In order to find relevant knowledge in visual representations, the user needs to interact with these representations. To this aim, it is essential to provide the user with efficient interaction techniques. This work addresses two main issues : an association rule representation that allows the user quickly detection of the most interesting rules and interactive exploration of rules. The first issue requires an intuitive representation metaphor of association rules. The second requires an interactive exploration process allowing the user to explore the rule search space focusing on interesting rules. The main contributions of this work can be summarised as follows : – We propose a new classification for Visual Data Mining techniques, based on both 3D representations and interaction techniques. Such a classification helps the user choosing a visual representation and an interaction technique for his/her application. – We propose a new visualisation metaphor for association rules that takes into account the attributes of the rule, the contribution of each one, and their correlations. – We propose a methodology for interactive exploration of association rules to facilitate the user task facing large sets of rules taking into account his/her cognitive capabilities. In this methodology, local algorithms are used to recommend better rules based on a reference rule which is proposed by the user. Then, the user can both drives extraction and post-processing of rules using appropriate interaction operators. – We developed a tool that implements all the methodology functionality. The tool is based on an intuitive display in a virtual environment and supports multiple interaction methods
APA, Harvard, Vancouver, ISO, and other styles
22

Cleuziou, Guillaume. "Une méthode de classification non-supervisée pour l'apprentissage de règles et la recherche d'information." Phd thesis, Université d'Orléans, 2004. http://tel.archives-ouvertes.fr/tel-00084828.

Full text
Abstract:
Le regroupement d'objets, dans un cadre non-supervisé, est une tâche importante et difficile en apprentissage. Ce processus intervient dans des contextes variés tels que la découverte de connaissances, la simplification dans le représentation ou la description d'un ensemble de données.

Nous proposons, dans cette étude, l'algorithme de clustering PoBOC permettant de structurer un ensemble d'objets en classes non-disjointes. Nous utilisons cette méthode de clustering comme outil de traitement dans deux applications très différentes.

- En apprentissage supervisé, l'organisation préalable des instances apporte une connaissance utile pour la tâche d'induction de règles propositionnelles et logiques.

- En Recherche d'Information, les ambiguïtés et subtilités de la langue naturelle induisent naturellement des recouvrements entre thématiques.

Dans ces deux domaines de recherche, l'intérêt d'organiser les objets en classes non-disjointes est confirmé par les études expérimentales adaptées.
APA, Harvard, Vancouver, ISO, and other styles
23

Bouker, Slim. "Contribution à l'extraction des règles d'association basée sur des préférences." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22585/document.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kouomou-Choupo, Anicet. "Améliorer la recherche par similarité dans une grande base d'images fixes par des techniques de fouilles de données." Phd thesis, Université Rennes 1, 2006. http://tel.archives-ouvertes.fr/tel-00524418.

Full text
Abstract:
Les images fixes peuvent, entre autres, être décrites au niveau du pixel par des descripteurs visuels globaux de couleur, de texture ou de forme. La recherche par le contenu exploite et combine alors ces descripteurs dont le coût de calcul est d'autant plus important que la taille de la base d'images est grande. Les résultats de la recherche sont ensuite classés en fonction de leur similarité à la requête soumise et présentés à l'utilisateur sous forme de liste ordonnée. Un sous-ensemble de descripteurs pourrait cependant suffire à répondre à une recherche par similarité beaucoup plus rapidement, tout en gardant une qualité acceptable des résultats de recherche. Nous proposons pour cela une méthode de sélection automatique des descripteurs visuels qui exploite les règles d'association pour élaborer des stratégies d'exécution réduisant le temps de la recherche par le contenu dans de grandes bases d'images fixes. Dans cette thèse, nous présentons également comment une recherche par le contenu peut être adaptée pour proposer des résultats intermédiaires qui sont fusionnés de façon progressive avec l'avantage pour l'utilisateur, d'une part, de ne pas attendre que toute la base ait été parcourue avant de fournir un résultat et, d'autre part, de lui permettre de stopper la requête en cours d'exécution. Les expérimentations conduites sur des bases d'images réelles montrent que notre méthode améliore notablement les temps de réponse. Elles confirment aussi l'intérêt de la combinaison des descripteurs globaux pour la recherche d'images par le contenu.
APA, Harvard, Vancouver, ISO, and other styles
25

Shahzad, Atif. "Une Approche Hybride de Simulation-Optimisation Basée sur la fouille de Données pour les problèmes d'ordonnancement." Phd thesis, Université de Nantes, 2011. http://tel.archives-ouvertes.fr/tel-00647353.

Full text
Abstract:
Une approche hybride basée sur la fouille de données pour découvrir de nouvelles règles de priorité pour le problème l'ordonnancement job-shop est présentée. Cette approche est basée sur la recherche de connaissances supposées être intégrés dans les solutions efficaces fournies par un module d'optimisation préalablement mis en oeuvre et utilisant la recherche tabou. L'objectif est de découvrir les principes directeurs de l'ordonnancement à l'aide de la fouille de données et donc d'obtenir un ensemble de règles capables d'obtenir des solutions efficaces pour un problème d'ordonnancement. Une structure basée sur fouille de données est présentée et mise en œuvre pour un problème de job shop avec comme objectifs le retard maximum et le retard moyen. Les résultats obtenus sont très prometteurs.
APA, Harvard, Vancouver, ISO, and other styles
26

Cadot, Martine. "Extraire et valider les relations complexes en sciences humaines : statistiques, motifs et règles d'association." Phd thesis, Université de Franche-Comté, 2006. http://tel.archives-ouvertes.fr/tel-00594174.

Full text
Abstract:
Cette thèse concerne la fouille de données en sciences humaines. Cette branche récente de l'intelligence artificielle consiste en un ensemble de méthodes visant à extraire de la connaissance à partir de données stockées sur des supports informatiques. Parmi celles-ci, l'extraction de motifs et de règles d'association est une méthode de traitement des données qui permet de représenter de façon symbolique la structure des données, comme le font les méthodes statistiques classiques, mais qui, contrairement à celles-ci, reste opérationnelle en cas de données complexes, volumineuses. Toutefois ce modèle informatique des données, construit à partir de comptages de cooccurrences, n'est pas directement utilisable par les chercheurs en sciences humaines : il est essentiellement dédié aux données dichotomiques (vrai/faux), ses résultats directs, très morcelés, sont difficiles à interpréter, et sa validité peut paraître douteuse aux chercheurs habitués à la démarche statistique. Nous proposons des techniques que nous avons construites puis expérimentées sur des données réelles dans le but de réduire les difficultés d'utilisation que nous venons de décrire : 1) un test de randomisation à base d'échanges en cascade dans la matrice sujets x propriétés permet d'obtenir les liaisons statistiquement significatives entre deux propriétés, 2) une extension floue de la méthode d'extraction classique des motifs, qui produit des règles d'association floues généralisant les règles binaires et proches des règles floues définies par les chercheurs poursuivant les travaux de Zadeh, 3) MIDOVA, un algorithme extrayant les interactions n-aires entre variables - problème peu connu, peu abordé en informatique, et abordé avec de fortes limitations en statistiques - et 4) des méta-règles pour nettoyer le jeu de règles d'association de ses principales contradictions et redondances.
APA, Harvard, Vancouver, ISO, and other styles
27

Li, Haoyuan. "Extraction de séquences inattendues : des motifs séquentiels aux règles d'implication." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2009. http://tel.archives-ouvertes.fr/tel-00431117.

Full text
Abstract:
Les motifs séquentiels peuvent être vus comme une extension de la notion d'itemsets fréquents intégrant diverses contraintes temporelles. La recherche de tels motifs consiste ainsi à extraire des enchaînements d'ensembles d'items, couramment associés sur une période de temps bien spécifiée. La construction de règles à partir de ces motifs séquentiels permet d'étendre la notion de règles d'association pour la pris en compte de la temporalité. En fait, cette recherche met en évidence des associations inter-transactions, contrairement à celle des règles d'association qui extrait des combinaisons intra-transactions. Ce problème, posé à l'origine dans un contexte de marketing, intéresse à présent des domaines aussi variés que les télécommunications, la finance, ou encore la médecine et la bioinformatique. Même s'il existe aujourd'hui de très nombreuses approches efficaces pour extraire des motifs, ces derniers ne sont pas forcément adaptés aux besoins des applications réelles. En fait, les résultats obtenus sont basés sur une mesure statistique et ne tiennent pas compte de la connaissance du domaine. De plus, ces approches sont principalement axées sur la recherche de tendances et ne permettent pas d'extraire des connaissances sur les éléments atypiques ou inattendus. Dans le cadre de cette thèse, nous nous intéressons donc à la problématique de l'extraction de motifs séquentiels et règles inattendus en intégrant la connaissance du domaine. Le travail présenté dans cette thèse comporte la mise en œuvre d'un cadre MUSE pour l'extraction de séquences inattendues par rapport à un système de croyances, des extensions avec la théorie de logique floue, l'intégration des données hiérarchisées, la définition des motifs séquentiels et règles inattendus et, enfin, l'extraction de phrases inattendues dans des documents textes. Des expérimentations menées sur des données synthétiques et sur des données réelles sont rapportées et montrent l'intérêt de nos propositions.
APA, Harvard, Vancouver, ISO, and other styles
28

Diallo, Mouhamadou Saliou. "Découverte de règles de préférences contextuelles : application à la construction de profils utilisateurs." Thesis, Tours, 2015. http://www.theses.fr/2015TOUR4052/document.

Full text
Abstract:
L’utilisation de préférences suscite un intérêt croissant pour personnaliser des réponses aux requêtes et effectuer des recommandations ciblées. Pourtant, la construction manuelle de profils de préférences reste à la fois complexe et consommatrice de temps. Dans ce contexte, nous présentons dans cette thèse une nouvelle méthode automatique d’extraction de préférences basée sur des techniques de fouille de données. L’approche que nous proposons est constituée de deux phases : (1) une phase d’extraction de toutes les règles de préférences contextuelles intéressantes et (2) une phase de construction du profil utilisateur. A la fin de la première phase, nous constatons qu’il y a des règles redondantes voir superflues ; la seconde phase permet d’éliminer les règles superflues afin d’avoir un profil concis et consistant. Dans notre approche, un profil utilisateur est constitué de cet ensemble de règles de préférences contextuelles résultats de la seconde phase. La consistance garantit que les règles de préférences spécifiant les profils sont en accord avec un grand nombre de préférences utilisateur et contredisent un petit nombre d’entre elles. D’autre part, la concision implique que les profils sont constitués d’un petit nombre de règles de préférences. Nous avons aussi proposé quatre méthodes de prédiction qui utilisent les profils construits. Nous avons validé notre approche sur une base de données de films construite à partir de MovieLens et IMDB. La base de données contient 3 881 films notés par 6 040 utilisateurs. Ces derniers ont attribué 800 156 notes. Les résultats de ces expériences démontrent que la concision des profils utilisateurs est contrôlée par le seuil d’accord minimal et que même avec une forte réduction du nombre de règles, les qualités de prédiction des profils restent à un niveau acceptable. En plus des expérimentations montrant la qualité de prédiction de notre approche, nous avons montré également que les performances de notre approche peuvent rivaliser avec les qualités de prédiction de certaines méthodes de l’état de l’art, en particulier SVMRank
The use of preferences arouses a growing interest to personalize response to requests and making targeted recommandations. Nevertheless, manual construction of preferences profiles remains complex and time-consuming. In this context, we present in this thesis a new automatic method for preferences elicitation based on data mining techniques. Our proposal is a two phase algorithm : (1) Extracting all contextual preferences rules from a set of user preferences and (2) Building user profile. At the end of the first phase, we notice that there is to much preference rules which satisfy the fixed constraints then in the second phase we eliminate the superfluous preferences rules. In our approach a user profile is constituted by the set of contextual preferences rules resulting of the second phase. A user profile must satisfy conciseness and soundness properties. The soundness property guarantees that the preference rules specifying the profiles are in agreement with a large set of the user preferences, and contradict a small number of them. On the other hand, conciseness implies that profiles are small sets of preference rules. We also proposed four predictions methods which use the extracted profiles. We validated our approach on a set of real-world movie rating datasets built from MovieLens and IMDB. The whole movie rating database consists of 800,156 votes from 6,040 users about 3,881 movies. The results of these experiments demonstrates that the conciseness of user profiles is controlled by the minimal agreement threshold and that even with strong reduction, the soundness of the profile remains at an acceptable level. These experiment also show that predictive qualities of some of our ranking strategies outperform SVMRank in several situations
APA, Harvard, Vancouver, ISO, and other styles
29

Ben, Said Zohra. "A virtual reality-based approach for interactive and visual mining of association rules." Phd thesis, Université de Nantes, 2012. http://tel.archives-ouvertes.fr/tel-00829419.

Full text
Abstract:
Cette thèse se situe à l'intersection de deux domaines actifs de recherche: la fouille de règles d'association et la réalité virtuelle. Les limites majeures des algorithmes d'extraction de règles d'association sont (i) la grande quantité de règles produites et (ii) leur faible qualité. Dans la littérature, plusieurs solutions ont été proposées pour remédier à ce problème, comme le post-traitement de règles d'association qui permet la validation des règles et l'extraction de connaissances utiles. Cependant, alors que les règles sont extraites automatiquement par des algorithmes combinatoires, le post-traitement de règles est effectué par l'utilisateur. La visualisation peut aider l'utilisateur à faire face à une grande quantité de règles en les représentants sous forme visuelle. Afin de trouver les connaissances pertinentes dans les représentations visuelles, l'utilisateur doit interagir avec la représentation de règles d'association. Par conséquent, il est essentiel de fournir à l'utilisateur des techniques d'interaction efficaces. Ce travail aborde deux problèmes essentiels : la représentation de règles d'association afin de permettre à l'utilisateur de détecter très rapidement les règles les plus intéressantes et l'exploration interactive des règles. Le premier exige une métaphore intuitive de représentation de règles d'association. Le second nécessite un processus d'exploration très interactif permettant à l'utilisateur de fouiller l'espace de règles en se concentrant sur les règles intéressantes. Les principales contributions de ce travail peuvent être résumées comme suit : (i) Nous proposons une nouvelle classification pour les techniques de fouille visuelles de données, basée sur des représentations en 3D et des techniques d'interaction. Une telle classification aide l'utilisateur à choisir une configuration pertinente pour son application. (ii) Nous proposons une nouvelle métaphore de visualisation pour les règles d'association qui prend en compte les attributs de la règle, la contribution de chacun d'eux et leurs corrélations. (iii) Nous proposons une méthodologie pour l'exploration interactive de règles d'association. Elle est conçue pour faciliter la tâche de l'utilisateur face à des grands ensembles de règles en tenant en compte ses capacités cognitives. Dans cette méthodologie, des algorithmes locaux sont utilisés pour recommander les meilleures règles basées sur une règle de référence proposée par l'utilisateur. Ensuite, l'utilisateur peut à la fois diriger l'extraction et le post-traitement des règles en utilisant des opérateurs d'interaction appropriés. (iv) Nous avons développé un outil qui implémente toutes les fonctionnalités de la méthodologie. Notre outil est basé sur un affichage intuitif dans un environnement virtuel et prend en charge plusieurs méthodes d'interaction.
APA, Harvard, Vancouver, ISO, and other styles
30

Mecharnia, Thamer. "Approches sémantiques pour la prédiction de présence d'amiante dans les bâtiments : une approche probabiliste et une approche à base de règles." Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG036.

Full text
Abstract:
De nos jours, les Graphes de Connaissances sont utilisés pour représenter toutes sortes de données et ils constituent des ressources évolutives, interopérables et exploitables par des outils d’aide à la décision. Le Centre Scientifique et Technique du Bâtiment (CSTB) a été sollicité pour développer un outil d'aide à l'identification des matériaux contenant de l'amiante dans les bâtiments. Dans ce contexte, nous avons créé et peuplé l'ontologie ASBESTOS qui permet la représentation des données des bâtiments et les résultats des diagnostics réalisés en vue de détecter la présence d’amiante dans les produits utilisés. Nous nous sommes ensuite basés sur ce graphe de connaissance pour développer deux approches qui permettent de prédire la présence d’amiante dans les produits en l’absence de la référence du produit commercialisé effectivement utilisé.La première approche, nommée approche hybride, se base sur des ressources externes décrivant les périodes où les produits commercialisés sont amiantés pour calculer une probabilité d’existence d’amiante dans un composant du bâtiment. Cette approche traite les conflits entre les ressources externes, et l’incomplétude des données répertoriées en appliquant une approche de fusion pessimiste qui ajuste les probabilités calculées en utilisant un sous-ensemble de diagnostiques.La deuxième approche, nommée CRA-Miner, s’inspire de méthodes de programmation logique inductive (PLI) pour découvrir des règles à partir du graphe de connaissances décrivant les bâtiments et les diagnostics d'amiante. La référence des produits spécifiques utilisés lors de la construction n'étant jamais spécifiée, CRA-Miner considère les données temporelles, la sémantique de l'ontologie ASBESTOS, les types de produits et les informations contextuelles telles que les relations partie-tout pour découvrir un ensemble de règles qui pourront être utilisées pour prédire la présence d'amiante dans les éléments de construction.L’évaluation des deux approches menées sur l'ontologie ASBESTOS peuplée avec les données fournies par le CSTB montrent que les résultats obtenus, en particulier quand les deux approches sont combinées, sont tout à fait prometteurs
Nowadays, Knowledge Graphs are used to represent all kinds of data and they constitute scalable and interoperable resources that can be used by decision support tools. The Scientific and Technical Center for Building (CSTB) was asked to develop a tool to help identify materials containing asbestos in buildings. In this context, we have created and populated the ASBESTOS ontology which allows the representation of building data and the results of diagnostics carried out in order to detect the presence of asbestos in the used products. We then relied on this knowledge graph to develop two approaches which make it possible to predict the presence of asbestos in products in the absence of the reference of the marketed product actually used.The first approach, called the hybrid approach, is based on external resources describing the periods when the marketed products are asbestos-containing to calculate the probability of the existence of asbestos in a building component. This approach addresses conflicts between external resources, and incompleteness of listed data by applying a pessimistic fusion approach that adjusts the calculated probabilities using a subset of diagnostics.The second approach, called CRA-Miner, is inspired by inductive logic programming (ILP) methods to discover rules from the knowledge graph describing buildings and asbestos diagnoses. Since the reference of specific products used during construction is never specified, CRA-Miner considers temporal data, ASBESTOS ontology semantics, product types and contextual information such as part-of relations to discover a set of rules that can be used to predict the presence of asbestos in construction elements.The evaluation of the two approaches carried out on the ASBESTOS ontology populated with the data provided by the CSTB show that the results obtained, in particular when the two approaches are combined, are quite promising
APA, Harvard, Vancouver, ISO, and other styles
31

Blanchard, Julien. "Un système de visualisation pour l'extraction, l'évaluation, et l'exploration interactives des règles d'association." Phd thesis, Université de Nantes, 2005. http://tel.archives-ouvertes.fr/tel-00421413.

Full text
Abstract:
De nombreuses méthodes d'Extraction de Connaissances dans les Données (ECD) produisent des résultats sous forme de règles. Les règles ont l'avantage de représenter les connaissances de manière explicite, ce qui en fait des modèles tout à fait intelligibles pour un utilisateur. Elles sont d'ailleurs au fondement de la plupart des théories de
représentation de la connaissance en sciences cognitives. En fouille de données, la principale technique à base de règles est l'extraction de règles d'association, qui a donné lieu à de nombreux travaux de recherche.

La limite majeure des algorithmes d'extraction de règles d'association est qu'ils produisent communément de grandes quantités de règles, dont beaucoup se révèlent même sans aucun intérêt pour l'utilisateur. Ceci s'explique par la nature non supervisée de ces algorithmes : ne considérant aucune variable endogène, ils envisagent dans les règles toutes les combinaisons possibles de variables. Dans la pratique, l'utilisateur ne peut pas exploiter les résultats tels quels directement à la sortie des algorithmes. Un post-traitement consistant en une seconde opération de fouille se
révèle indispensable pour valider les volumes de règles et découvrir des connaissances utiles. Cependant, alors que la fouille de données est effectuée automatiquement par des algorithmes combinatoires, la fouille de règles est une
tâche laborieuse à la charge de l'utilisateur.

La thèse développe deux approches pour assister l'utilisateur dans le post-traitement des règles d'association :
– la mesure de la qualité des règles par des indices numériques,
– la supervision du post-traitement par une visualisation interactive.

Pour ce qui concerne la première approche, nous formalisons la notion d'indice de qualité de règles et réalisons une classification inédite des nombreux indices de la littérature, permettant d'aider l'utilisateur à choisir les indices pertinents pour son besoin. Nous présentons également trois nouveaux indices aux propriétés originales : l'indice
probabiliste d'écart à l'équilibre, l'intensité d'implication entropique, et le taux informationnel. Pour ce qui concerne la seconde approche, nous proposons une méthodologie de visualisation pour l'exploration interactive des règles. Elle
est conçue pour faciliter la tâche de l'utilisateur confronté à de grands ensembles de règles en prenant en compte ses capacités de traitement de l'information. Dans cette méthodologie, l'utilisateur dirige la découverte de connaissances
par des opérateurs de navigation adaptés en visualisant des ensembles successifs de règles décrits par des indices de qualité.

Les deux approches sont intégrées au sein de l'outil de visualisation ARVis (Association Rule Visualization) pour l'exploration interactive des règles d'association. ARVis implémente notre méthodologie au moyen d'une représentation
3D, inédite en visualisation de règles, mettant en valeur les indices de qualité. De plus, ARVis repose sur un algorithme spécifique d'extraction sous contraintes permettant de générer les règles interactivement au fur et à mesure de la navigation de l'utilisateur. Ainsi, en explorant les règles, l'utilisateur dirige à la fois l'extraction et le
post-traitement des connaissances.
APA, Harvard, Vancouver, ISO, and other styles
32

Yahyaoui, Hasna. "Méthode d'analyse de données pour le diagnostic a posteriori de défauts de production - Application au secteur de la microélectronique." Thesis, Saint-Etienne, EMSE, 2015. http://www.theses.fr/2015EMSE0795/document.

Full text
Abstract:
La maîtrise du rendement d’un site de fabrication et l’identification rapide des causes de perte de qualité restent un défi quotidien pour les industriels, qui font face à une concurrence continue. Dans ce cadre, cette thèse a pour ambition de proposer une démarche d’analyse permettant l’identification rapide de l’origine d’un défaut, à travers l’exploitation d’un maximum des données disponibles grâce aux outils de contrôle qualité, tel que la FDC, la métrologie, les tests paramétriques PT, et le tri électriques EWS. Nous avons proposé une nouvelle méthode hybride de fouille de données, nommée CLARIF, qui combine trois méthodes de fouille de données à savoir, le clustering, les règles d’association et l’induction d’arbres de décision. Cette méthode se base sur la génération non supervisée d’un ensemble de modes de production potentiellement problématiques, qui sont caractérisés par des conditions particulières de production. Elle permet, donc, une analyse qui descend au niveau des paramètres de fonctionnement des équipements. L’originalité de la méthode consiste dans (1) une étape de prétraitement pour l’identification de motifs spatiaux à partir des données de contrôle, (2) la génération non supervisée de modes de production candidats pour expliquer le défaut. Nous optimisons la génération des règles d’association à travers la proposition de l’algorithme ARCI, qui est une adaptation du célèbre algorithme de fouille de règles d’association, APRIORI, afin de permettre d’intégrer les contraintes spécifiques à la problématique de CLARIF, et des indicateurs de qualité de filtrage des règles à identifier, à savoir la confiance, la contribution et la complexité. Finalement, nous avons défini un processus d’Extraction de Connaissances à partir des Données, ECD permettant de guider l’utilisateur dans l’application de CLARIF pour expliquer une perte de qualité locale ou globale
Controlling the performance of a manufacturing site and the rapid identification of quality loss causes remain a daily challenge for manufacturers, who face continuing competition. In this context, this thesis aims to provide an analytical approach for the rapid identification of defect origins, by exploring data available thanks to different quality control systems, such FDC, metrology, parametric tests PT and the Electrical Wafer Sorting EWS. The proposed method, named CLARIF, combines three complementary data mining techniques namely clustering, association rules and decision trees induction. This method is based on unsupervised generation of a set of potentially problematic production modes, which are characterized by specific manufacturing conditions. Thus, we provide an analysis which descends to the level of equipment operating parameters. The originality of this method consists on (1) a pre-treatment step to identify spatial patterns from quality control data, (2) an unsupervised generation of manufacturing modes candidates to explain the quality loss case. We optimize the generation of association rules through the proposed ARCI algorithm, which is an adaptation of the famous association rules mining algorithm, APRIORI to integrate the constraints specific to our issue and filtering quality indicators, namely confidence, contribution and complexity, in order to identify the most interesting rules. Finally, we defined a Knowledge Discovery from Databases process, enabling to guide the user in applying CLARIF to explain both local and global quality loss problems
APA, Harvard, Vancouver, ISO, and other styles
33

Kane, Mouhamadou bamba. "Extraction et sélection de motifs émergents minimaux : application à la chémoinformatique." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC223/document.

Full text
Abstract:
La découverte de motifs est une tâche importante en fouille de données. Cemémoire traite de l’extraction des motifs émergents minimaux. Nous proposons une nouvelleméthode efficace qui permet d’extraire les motifs émergents minimaux sans ou avec contraintede support ; contrairement aux méthodes existantes qui extraient généralement les motifs émergentsminimaux les plus supportés, au risque de passer à côté de motifs très intéressants maispeu supportés par les données. De plus, notre méthode prend en compte l’absence d’attributqui apporte une nouvelle connaissance intéressante.En considérant les règles associées aux motifs émergents avec un support élevé comme desrègles prototypes, on a montré expérimentalement que cet ensemble de règles possède unebonne confiance sur les objets couverts mais malheureusement ne couvre pas une bonne partiedes objets ; ce qui constitue un frein pour leur usage en classification. Nous proposons uneméthode de sélection à base de prototypes qui améliore la couverture de l’ensemble des règlesprototypes sans pour autant dégrader leur confiance. Au vu des résultats encourageants obtenus,nous appliquons cette méthode de sélection sur un jeu de données chimique ayant rapport àl’environnement aquatique : Aquatox. Cela permet ainsi aux chimistes, dans un contexte declassification, de mieux expliquer la classification des molécules, qui sans cette méthode desélection serait prédites par l’usage d’une règle par défaut
Pattern discovery is an important field of Knowledge Discovery in Databases.This work deals with the extraction of minimal emerging patterns. We propose a new efficientmethod which allows to extract the minimal emerging patterns with or without constraint ofsupport ; unlike existing methods that typically extract the most supported minimal emergentpatterns, at the risk of missing interesting but less supported patterns. Moreover, our methodtakes into account the absence of attribute that brings a new interesting knowledge.Considering the rules associated with emerging patterns highly supported as prototype rules,we have experimentally shown that this set of rules has good confidence on the covered objectsbut unfortunately does not cover a significant part of the objects ; which is a disavadntagefor their use in classification. We propose a prototype-based selection method that improvesthe coverage of the set of the prototype rules without a significative loss on their confidence.We apply our prototype-based selection method to a chemical data relating to the aquaticenvironment : Aquatox. In a classification context, it allows chemists to better explain theclassification of molecules, which, without this method of selection, would be predicted by theuse of a default rule
APA, Harvard, Vancouver, ISO, and other styles
34

Raïssi, Chedy. "Extraction de Séquences Fréquentes : Des Bases de Données Statiques aux Flots de Données." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2008. http://tel.archives-ouvertes.fr/tel-00351626.

Full text
Abstract:
Extraction de séquences fréquentes : des bases de données statiques aux flots de données Il est reconnu aujourd'hui que l'être humain est généralement noyé sous une profusion d'informations et que sa capacité d'analyse n'est plus capable de faire face au volume sans cesse croissant de données. C'est dans ce contexte qu'est né le processus d'Extraction de Connaissance dans les bases de Données. Un des buts de ce processus est de passer d'un grand volume d'informations à un petit ensemble de connaissances à fortes valeurs ajoutées pour l'analyste ou le décideur. De plus, le processus d'ECD n'est pas un processus monolithique et univoque au cours duquel il s'agirait d'appliquer un principe général à tous les types de données stockées ou récupérées. Ainsi, une des étapes de ce processus qu'est la fouille de données peut se dériver sous plusieurs formes tels que : le clustering, la classification, l'extraction d'itemset et de règles d'associations, l'extraction de structures plus complexes tels que les épisodes, les graphes ou comme dans le cadre de cette thèse l'extraction de motifs séquentiels. Malheureusement, dans un monde sans cesse en évolution, le contexte dans lequel les travaux d'ECD ont été définis ces dernières années considérait que les données, sur lesquelles la fouille était réalisée, étaient disponibles dans des bases de données statiques. Aujourd'hui, suite au développement de nouvelles technologies et applications associées, nous devons faire face à de nouveaux modèles dans lesquels les données sont disponibles sous la forme de flots. Une question se pose alors : quid des approches d'extraction de connaissances traditionnelles ? Dans ce mémoire, nous présentons un ensemble de résultat sur les motifs séquentiels dans les bases de données d'un point de vue des représentations condensées et des méthodes d'échantillonnage puis nous étendons nos différentes approches afin de prendre en compte le nouveau modèle des flots de données. Nous présentons des algorithmes permettant ainsi l'extraction de motifs séquentiels (classiques et multidimensionnels) sur les flots. Des expérimentations menées sur des données synthétiques et sur des données réelles sont rapportées et montrent l'intérêt de nos propositions.
APA, Harvard, Vancouver, ISO, and other styles
35

Lisa, Di Jorio. "Recherche de motifs graduels et application aux données médicales." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2010. http://tel.archives-ouvertes.fr/tel-00577212.

Full text
Abstract:
Avec le développement des nouvelles technologies d'analyse (comme par exemple les puces à ADN) et de gestion de l'information (augmentation des capacités de stockage), le domaine de la santé a particulièrement évolué ces dernières années. En effet, des techniques de plus en plus avancées et efficaces sont mises à disposition des chercheurs, et permettent une étude approfondie des paramètres génomiques intervenant dans des problèmes de santé divers (cancer, maladie d'Alzheimer ...) ainsi que la mise en relation avec les paramètres cliniques. Parallèlement, l'évolution des capacités de stockage permet désormais d'accumuler la masse d'information générée par les diverses expériences menées. Ainsi, les avancées en terme de médecine et de prévention passent par l'analyse complète et pertinente de cette quantité de données. Le travail de cette thèse s'inscrit dans ce contexte médical. Nous nous sommes particulièrement intéressé à l'extraction automatique de motifs graduels, qui mettent en évidence des corrélations de variation entre attributs de la forme "plus un patient est âgé, moins ses souvenirs sont précis". Nous décrivons divers types de motifs graduels tels que les itemsets graduels, les itemset multidimensionnels graduels ou encore les motifs séquentiels graduels, ainsi que les sémantiques associées à ces motifs. Chacune de nos approches est testée sur un jeu de données synthétique et/ou réel.
APA, Harvard, Vancouver, ISO, and other styles
36

Sammouri, Wissam. "Data mining of temporal sequences for the prediction of infrequent failure events : application on floating train data for predictive maintenance." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1041/document.

Full text
Abstract:
De nos jours, afin de répondre aux exigences économiques et sociales, les systèmes de transport ferroviaire ont la nécessité d'être exploités avec un haut niveau de sécurité et de fiabilité. On constate notamment un besoin croissant en termes d'outils de surveillance et d'aide à la maintenance de manière à anticiper les défaillances des composants du matériel roulant ferroviaire. Pour mettre au point de tels outils, les trains commerciaux sont équipés de capteurs intelligents envoyant des informations en temps réel sur l'état de divers sous-systèmes. Ces informations se présentent sous la forme de longues séquences temporelles constituées d'une succession d'événements. Le développement d'outils d'analyse automatique de ces séquences permettra d'identifier des associations significatives entre événements dans un but de prédiction d'événement signant l'apparition de défaillance grave. Cette thèse aborde la problématique de la fouille de séquences temporelles pour la prédiction d'événements rares et s'inscrit dans un contexte global de développement d'outils d'aide à la décision. Nous visons à étudier et développer diverses méthodes pour découvrir les règles d'association entre événements d'une part et à construire des modèles de classification d'autre part. Ces règles et/ou ces classifieurs peuvent ensuite être exploités pour analyser en ligne un flux d'événements entrants dans le but de prédire l'apparition d'événements cibles correspondant à des défaillances. Deux méthodologies sont considérées dans ce travail de thèse: La première est basée sur la recherche des règles d'association, qui est une approche temporelle et une approche à base de reconnaissance de formes. Les principaux défis auxquels est confronté ce travail sont principalement liés à la rareté des événements cibles à prédire, la redondance importante de certains événements et à la présence très fréquente de "bursts". Les résultats obtenus sur des données réelles recueillies par des capteurs embarqués sur une flotte de trains commerciaux permettent de mettre en évidence l'efficacité des approches proposées
In order to meet the mounting social and economic demands, railway operators and manufacturers are striving for a longer availability and a better reliability of railway transportation systems. Commercial trains are being equipped with state-of-the-art onboard intelligent sensors monitoring various subsystems all over the train. These sensors provide real-time flow of data, called floating train data, consisting of georeferenced events, along with their spatial and temporal coordinates. Once ordered with respect to time, these events can be considered as long temporal sequences which can be mined for possible relationships. This has created a neccessity for sequential data mining techniques in order to derive meaningful associations rules or classification models from these data. Once discovered, these rules and models can then be used to perform an on-line analysis of the incoming event stream in order to predict the occurrence of target events, i.e, severe failures that require immediate corrective maintenance actions. The work in this thesis tackles the above mentioned data mining task. We aim to investigate and develop various methodologies to discover association rules and classification models which can help predict rare tilt and traction failures in sequences using past events that are less critical. The investigated techniques constitute two major axes: Association analysis, which is temporal and Classification techniques, which is not temporal. The main challenges confronting the data mining task and increasing its complexity are mainly the rarity of the target events to be predicted in addition to the heavy redundancy of some events and the frequent occurrence of data bursts. The results obtained on real datasets collected from a fleet of trains allows to highlight the effectiveness of the approaches and methodologies used
APA, Harvard, Vancouver, ISO, and other styles
37

Fahed, Lina. "Prédire et influencer l'apparition des événements dans une séquence complexe." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0125/document.

Full text
Abstract:
Depuis plusieurs années, un nouveau phénomène lié aux données numériques émerge : des données de plus en plus volumineuses, variées et véloces, apparaissent et sont désormais disponibles, elles sont souvent qualifiées de données complexes. Dans cette thèse, nous focalisons sur un type particulier de données complexes : les séquences complexes d’événements, en posant la question suivante : “comment prédire au plus tôt et influencer l’apparition des événements futurs dans une séquence complexe d’événements ?”. Tout d’abord, nous traitons le problème de prédiction au plus tôt des événements. Nous proposons un algorithme de fouille de règles d’épisode DEER qui a l’originalité de maîtriser l’horizon d’apparition des événements futurs à travers d’une distance imposée au sein de règles extraites. Dans un deuxième temps, nous focalisons sur la détection de l’émergence dans un flux d’événements. Nous proposons l’algorithme EER pour la détection au plus tôt de l’émergence de nouvelles règles. Pour augmenter la fiabilité de nouvelles règles lorsque leur support est très faible, EER s’appuie sur la similarité entre ces règles et les règles déjà connues. Enfin, nous étudions l’impact porté par des événements sur d’autres dans une séquence d’événements. Nous proposons l’algorithme IE qui introduit la notion des “événements influenceurs” et étudie l’influence sur le support, la confiance et la distance à travers de trois mesures d’influence proposées. Ces travaux sont évalués et validés par une étude expérimentale menée sur un corpus de données réelles issues de blogs
For several years now, a new phenomenon related to digital data is emerging : data which are increasingly voluminous, varied and rapid, appears and becomes available, they are often referred to as complex data. In this dissertation, we focus on a particular type of data : complex sequence of events, by asking the following question : “how to predict as soon as possible and to influence the appearance of future events within a complex sequence of events?”. First of all, we focus on the problem of predicting events as soon as possible in a sequence of events. We propose DEER : an algorithm for mining episode rules, which has the originality of controlling the horizon of the appearance of future events by imposing a temporal distance within the extracted rules. In a second phase, we address the problem of emergence detection in an events stream. We propose EER : an algorithm for detecting new emergent rules as soon as possible. In order to increase the reliability of new rules, EER relies on the similarity between theses rules and previously extracted rules. At last, we study the impact carried by events on other events within a sequence of events. We propose IE : an algorithm that introduces the concept of “influencer events” and studies the influence on the support, on the confidence and on the distance through three proposed measures. Our work is evaluated and validated through an experimental study carried on a real data set of blogs messages
APA, Harvard, Vancouver, ISO, and other styles
38

Khajeh, Nassiri Armita. "Expressive Rule Discovery for Knowledge Graph Refinement." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG045.

Full text
Abstract:
Les graphes de connaissances (KG) sont des structures de graphes hétérogènes représentant des faits dans un format lisible par une machine. Ils trouvent des applications dans des tâches telles que la réponse automatique aux questions, la désambiguïsation et liaison d'entités. Cependant, les graphes de connaissances sont intrinsèquement incomplets et il est essentiel de les raffiner pour améliorer leur qualité. Pour compléter le graphe de connaissances, il est possible de prédire les liens manquants dans un graphe de connaissances ou d'intégrer des sources externes. En extrayant des règles du graphe de connaissances, nous pouvons les exploiter pour compléter le graphe tout en fournissant des explications. Plusieurs approches ont été proposées pour extraire efficacement des règles. Or, la littérature manque de méthodes efficaces pour incorporer des prédicats numériques dans les règles. Pour répondre à cette lacune, nous proposons REGNUM, qui permet d'extraire des règles numériques avec des contraintes d'intervalle. REGNUM s'appuie sur les règles générées par un système d'extraction de règles existant et les enrichit en incorporant des prédicats numériques guidés par des mesures de qualité. En outre, la nature interconnectée des données web offre un potentiel significatif pour compléter et raffiner les KG, par exemple, par le liage des données, qui consiste à trouver des liens d'identité entre des entités de KG différents. Nous présentons RE-miner, une approche qui extrait des expressions référentielles (RE) pour une classe dans un graphe de connaissances.Les REs sont des règles qui ne s'appliquent qu'à une seule entité. Elles facilitent la découverte de connaissances et permettent de lier les données de manière explicable. De plus, nous visons à explorer les avantages et les opportunités de l'affinage des modèles linguistiques pour combler le fossé entre les KG et les données textuelles. Nous présentons GilBERT, qui exploite le fine-tuning sur des modèles linguistiques tels que BERT en optimisant une fonction de coût par triplet pour les tâches de prédiction de relation et de classification de triple. En prenant en compte ces défis et en proposant des approches novatrices, cette thèse contribue au raffinement des KG, en mettant particulièrement l'accent sur l'explicabilité et la découverte de connaissances. Les résultats de cette recherche ouvrent la voie à de nouvelles questions de recherche qui font progresser vers des KG de meilleure qualité
Knowledge graphs (KGs) are heterogeneous graph structures representing facts in a machine-readable format. They find applications in tasks such as question answering, disambiguation, and entity linking. However, KGs are inherently incomplete, and refining them is crucial to improve their effectiveness in downstream tasks. It's possible to complete the KGs by predicting missing links within a knowledge graph or integrating external sources and KGs. By extracting rules from the KG, we can leverage them to complete the graph while providing explainability. Various approaches have been proposed to mine rules efficiently. Yet, the literature lacks effective methods for effectively incorporating numerical predicates in rules. To address this gap, we propose REGNUM, which mines numerical rules with interval constraints. REGNUM builds upon the rules generated by an existing rule mining system and enriches them by incorporating numerical predicates guided by quality measures. Additionally, the interconnected nature of web data offers significant potential for completing and refining KGs, for instance, by data linking, which is the task of finding sameAs links between entities of different KGs. We introduce RE-miner, an approach that mines referring expressions (REs) for a class in a knowledge graph and uses them for data linking. REs are rules that are only applied to one entity. They support knowledge discovery and serve as an explainable way to link data. We employ pruning strategies to explore the search space efficiently, and we define characteristics to generate REs that are more relevant for data linking. Furthermore, we aim to explore the advantages and opportunities of fine-tuning language models to bridge the gap between KGs and textual data. We propose GilBERT, which leverages fine-tuning techniques on language models like BERT using a triplet loss. GilBERT demonstrates promising results for refinement tasks of relation prediction and triple classification tasks. By considering these challenges and proposing novel approaches, this thesis contributes to KG refinement, particularly emphasizing explainability and knowledge discovery. The outcomes of this research open doors to more research questions and pave the way for advancing towards more accurate and comprehensive KGs
APA, Harvard, Vancouver, ISO, and other styles
39

Bosc, Guillaume. "Anytime discovery of a diverse set of patterns with Monte Carlo tree search." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI074/document.

Full text
Abstract:
La découverte de motifs qui caractérisent fortement une classe vis à vis d'une autre reste encore un problème difficile en fouille de données. La découverte de sous-groupes (Subgroup Discovery, SD) est une approche formelle de fouille de motifs qui permet la construction de classifieurs intelligibles mais surtout d'émettre des hypothèses sur les données. Cependant, cette approche fait encore face à deux problèmes majeurs : (i) comment définir des mesures de qualité appropriées pour caractériser l'intérêt d'un motif et (ii) comment sélectionner une méthode heuristique adaptée lorsqu’une énumération exhaustive de l'espace de recherche n'est pas réalisable. Le premier problème a été résolu par la fouille de modèles exceptionnels (Exceptional Model Mining, EMM) qui permet l'extraction de motifs couvrant des objets de la base de données pour lesquels le modèle induit sur les attributs de classe est significativement différent du modèle induit par l'ensemble des objets du jeu de données. Le second problème a été étudié en SD et EMM principalement avec la mise en place de méthodes heuristiques de type recherche en faisceau (beam-search) ou avec des algorithmes génétiques qui permettent la découverte de motifs non redondants, diversifiés et de bonne qualité. Dans cette thèse, nous soutenons que la nature gloutonne des méthodes d'énumération précédentes génère cependant des ensembles de motifs manquant de diversité. Nous définissons formellement la fouille de données comme un jeu que nous résolvons par l'utilisation de la recherche arborescente de Monte Carlo (Monte Carlo Tree Search, MCTS), une technique récente principalement utilisée pour la résolution de jeux et de problèmes de planning en intelligence artificielle. Contrairement aux méthodes traditionnelles d'échantillonnage, MCTS donne la possibilité d'obtenir une solution à tout instant sans qu'aucune hypothèse ne soit faite que ce soit sur la mesure de qualité ou sur les données. Cette méthode d'énumération converge vers une approche exhaustive si les budgets temps et mémoire disponibles sont suffisants. Le compromis entre l'exploration et l'exploitation que propose cette approche permet une augmentation significative de la diversité dans l'ensemble des motifs calculés. Nous montrons que la recherche arborescente de Monte Carlo appliquée à la fouille de motifs permet de trouver rapidement un ensemble de motifs diversifiés et de bonne qualité à l'aide d'expérimentations sur des jeux de données de référence et sur un jeu de données réel traitant de l'olfaction. Nous proposons et validons également une nouvelle mesure de qualité spécialement conçue pour des jeux de donnée multi labels présentant une grande variance de fréquences des labels
The discovery of patterns that strongly distinguish one class label from another is still a challenging data-mining task. Subgroup Discovery (SD) is a formal pattern mining framework that enables the construction of intelligible classifiers, and, most importantly, to elicit interesting hypotheses from the data. However, SD still faces two major issues: (i) how to define appropriate quality measures to characterize the interestingness of a pattern; (ii) how to select an accurate heuristic search technique when exhaustive enumeration of the pattern space is unfeasible. The first issue has been tackled by Exceptional Model Mining (EMM) for discovering patterns that cover tuples that locally induce a model substantially different from the model of the whole dataset. The second issue has been studied in SD and EMM mainly with the use of beam-search strategies and genetic algorithms for discovering a pattern set that is non-redundant, diverse and of high quality. In this thesis, we argue that the greedy nature of most such previous approaches produces pattern sets that lack diversity. Consequently, we formally define pattern mining as a game and solve it with Monte Carlo Tree Search (MCTS), a recent technique mainly used for games and planning problems in artificial intelligence. Contrary to traditional sampling methods, MCTS leads to an any-time pattern mining approach without assumptions on either the quality measure or the data. It converges to an exhaustive search if given enough time and memory. The exploration/exploitation trade-off allows the diversity of the result set to be improved considerably compared to existing heuristics. We show that MCTS quickly finds a diverse pattern set of high quality in our application in neurosciences. We also propose and validate a new quality measure especially tuned for imbalanced multi-label data
APA, Harvard, Vancouver, ISO, and other styles
40

Nouvel, Damien. "Reconnaissance des entités nommées par exploration de règles d'annotation - Interpréter les marqueurs d'annotation comme instructions de structuration locale." Phd thesis, Université François Rabelais - Tours, 2012. http://tel.archives-ouvertes.fr/tel-00788630.

Full text
Abstract:
Ces dernières décennies, le développement considérable des technologies de l'information et de la communication a modifié en profondeur la manière dont nous avons accès aux connaissances. Face à l'afflux de données et à leur diversité, il est nécessaire de mettre au point des technologies performantes et robustes pour y rechercher des informations. Les entités nommées (personnes, lieux, organisations, dates, expressions numériques, marques, fonctions, etc.) sont sollicitées afin de catégoriser, indexer ou, plus généralement, manipuler des contenus. Notre travail porte sur leur reconnaissance et leur annotation au sein de transcriptions d'émissions radiodiffusées ou télévisuelles, dans le cadre des campagnes d'évaluation Ester2 et Etape. En première partie, nous abordons la problématique de la reconnaissance automatique des entités nommées. Nous y décrivons les analyses généralement conduites pour traiter le langage naturel, discutons diverses considérations à propos des entités nommées (rétrospective des notions couvertes, typologies, évaluation et annotation) et faisons un état de l'art des approches automatiques pour les reconnaître. A travers la caractérisation de leur nature linguistique et l'interprétation de l'annotation comme structuration locale, nous proposons une approche par instructions, fondée sur les marqueurs (balises) d'annotation, dont l'originalité consiste à considérer ces éléments isolément (début ou fin d'une annotation). En seconde partie, nous faisons état des travaux en fouille de données dont nous nous inspirons et présentons un cadre formel pour explorer les données. Les énoncés sont représentés comme séquences d'items enrichies (morpho-syntaxe, lexiques), tout en préservant les ambigüités à ce stade. Nous proposons une formulation alternative par segments, qui permet de limiter la combinatoire lors de l'exploration. Les motifs corrélés à un ou plusieurs marqueurs d'annotation sont extraits comme règles d'annotation. Celles-ci peuvent alors être utilisées par des modèles afin d'annoter des textes. La dernière partie décrit le cadre expérimental, quelques spécificités de l'implémentation du système (mXS) et les résultats obtenus. Nous montrons l'intérêt d'extraire largement les règles d'annotation, même celles qui présentent une moindre confiance. Nous expérimentons les motifs de segments, qui donnent de bonnes performances lorsqu'il s'agit de structurer les données en profondeur. Plus généralement, nous fournissons des résultats chiffrés relatifs aux performances du système à divers point de vue et dans diverses configurations. Ils montrent que l'approche que nous proposons est compétitive et qu'elle ouvre des perspectives dans le cadre de l'observation des langues naturelles et de l'annotation automatique à l'aide de techniques de fouille de données.
APA, Harvard, Vancouver, ISO, and other styles
41

Raissi, Chedy. "Extraction de séquences fréquentes : des bases de données statiques aux flots de données." Montpellier 2, 2008. http://www.theses.fr/2008MON20063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Rosá, Aiala. "Identification de opiniónes de differentes fuentes en textos en español." Thesis, Paris 10, 2011. http://www.theses.fr/2011PA100127.

Full text
Abstract:
Ce travail présente une étude linguistique des expressions d'opinions issues de différentes sources dans des textes en espagnol. Le travail comprend la définition d'un modèle pour les prédicats d'opinion et leurs arguments (la source, le sujet et le message), la création d'un lexique de prédicats d'opinions auxquels sont associées des informations provenant du modèle et la réalisation de trois systèmes informatiques.Le premier système, basé sur des règles contextuelles, obtient de bons résultats pour le score de F-mesure partielle: prédicat, 92%; source, 81%; sujet, 75%; message, 89%, opinion, 85%. En outre, l'identification de la source donne une valeur de 79% de F-mesure exacte. Le deuxième système, basé sur le modèle Conditional Random Fields (CRF), a été développé uniquement pour l'identification des sources, donnant une valeur de 76% de F-mesure exacte. Le troisième système, qui combine les deux techniques (règles et CRF), donne une valeur de 83% de F-mesure exacte, montrant ainsi que la combinaison permet d'obtenir des résultats intéressants.En ce qui concerne l'identification des sources, notre système, comparé à des travaux réalisés sur des corpus d'autres langues que l'espagnol, donne des résultats très satisfaisants. En effet ces différents travaux obtiennent des scores qui se situent entre 63% et 89,5%.Par ailleurs, en sus des systèmes réalisés pour l'identification de l'opinion, notre travail a débouché sur la construction de plusieurs ressources pour l'espagnol : un lexique de prédicats d'opinions, un corpus de 13000 mots avec des annotations sur les opinions et un corpus de 40000 mots avec des annotations sur les prédicats d'opinion et les sources
This work presents a study of linguistic expressions of opinion from different sources in Spanish texts. The work includes the definition of a model for opinion predicates and their arguments (source, topic and message), the creation of a lexicon of opinion predicates which have information from the model associated, and the implementation of three systems.The first system, based on contextual rules, gets good results for the F-measure score (partial match): predicate, 92%; source, 81%; topic, 75%; message, 89%; full opinion, 85%. In addition, for source identification the F-measure for exact match is 79%. The second system, based on Conditional Random Fields (CRF), was developed only for the identification of sources, giving 76% of F-measure (exact match). The third system, which combines the two techniques (rules and CRF), gives a value of 83% of F-measure (exact match), showing that the combination yields interesting results.As regards the identification of sources, our system compared to other work developed for languages ​other than Spanish, gives very satisfactory results. Indeed these works had scores that fall between 63% and 89.5%.Moreover, in addition to the systems made for the identification of opinions, our work has led to the construction of several resources for Spanish: a lexicon of opinion predicates, a 13,000 words corpus with opinions annotated and a 40,000 words corpus with opinion predicates end sources annotated
APA, Harvard, Vancouver, ISO, and other styles
43

Reynaud, Justine. "Découverte de définitions dans le web des données." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0160.

Full text
Abstract:
Dans cette thèse, nous nous intéressons au web des données et aux "connaissances" que potentiellement il renferme. Le web des données se présente comme un très grand graphe constitué de bases de triplets RDF connectées entre elles. Un triplet RDF, dénoté (sujet, prédicat, objet), représente une relation (le prédicat) qui existe entre deux ressources (le sujet et l'objet). Les ressources peuvent appartenir à une ou plusieurs classes, où une classe regroupe des ressources partageant des caractéristiques communes. Ainsi, ces bases de triplets RDF peuvent être vues comme des bases de connaissances interconnectées. La plupart du temps ces bases de connaissances sont construites de manière collaborative par des utilisateurs. C'est notamment le cas de DBpedia, une base de connaissances centrale dans le web des données, qui encode le contenu de Wikipédia au format RDF. DBpedia est construite à partir de deux types de données de Wikipédia : d'une part, des données (semi-)structurées telles que les infoboxes et d'autre part les catégories, qui sont des regroupements thématiques de pages générés manuellement. Cependant, la sémantique des catégories dans DBpedia, c'est-à-dire la raison pour laquelle un agent humain a regroupé des ressources, n'est pas explicite. De fait, en considérant une classe, un agent logiciel a accès aux ressources qui y sont regroupées --- il dispose de la définition dite en extension --- mais il n'a généralement pas accès aux "motifs" de ce regroupement --- il ne dispose pas de la définition dite en intension. Dans cette thèse, nous cherchons à associer une définition à une catégorie en l'assimilant à une classe de ressources. Plus précisément, nous cherchons à associer une intension à une classe donnée en extension. La paire (extension, intension) produite va fournir la définition recherchée et va autoriser la mise en œuvre d'un raisonnement par classification pour un agent logiciel. Cela peut s'exprimer en termes de conditions nécessaires et suffisantes : six appartient à la classe C, alors x a la propriété P (condition nécessaire), et si x a la propriété P, alors il appartient à la classe C (condition suffisante). Deux méthodes de fouille de données complémentaires nous permettent de matérialiser la découverte de définitions, la fouille de règles d'association et la fouille de redescriptions. Dans le mémoire, nous présentons d'abord un état de l'art sur les règles d'association et les redescriptions. Ensuite, nous proposons une adaptation de chacune des méthodes pour finaliser la tâche de découverte de définitions. Puis nous détaillons un ensemble d'expérimentations menées sur DBpedia, où nous comparons qualitativement et quantitativement les deux approches. Enfin les définitions découvertes peuvent potentiellement être ajoutées à DBpedia pour améliorer sa qualité en termes de cohérence et de complétude
In this thesis, we are interested in the web of data and knowledge units that can be possibly discovered inside. The web of data can be considered as a very large graph consisting of connected RDF triple databases. An RDF triple, denoted as (subject, predicate, object), represents a relation (i.e. the predicate) existing between two resources (i.e. the subject and the object). Resources can belong to one or more classes, where a class aggregates resources sharing common characteristics. Thus, these RDF triple databases can be seen as interconnected knowledge bases. Most of the time, these knowledge bases are collaboratively built thanks to human users. This is particularly the case of DBpedia, a central knowledge base within the web of data, which encodes Wikipedia content in RDF format. DBpedia is built from two types of Wikipedia data: on the one hand, (semi-)structured data such as infoboxes, and, on the other hand, categories, which are thematic clusters of manually generated pages. However, the semantics of categories in DBpedia, that is, the reason a human agent has bundled resources, is rarely made explicit. In fact, considering a class, a software agent has access to the resources that are regrouped together, i.e. the class extension, but it generally does not have access to the ``reasons'' underlying such a cluster, i.e. it does not have the class intension. Considering a category as a class of resources, we aim at discovering an intensional description of the category. More precisely, given a class extension, we are searching for the related intension. The pair (extension, intension) which is produced provides the final definition and the implementation of classification-based reasoning for software agents. This can be expressed in terms of necessary and sufficient conditions: if x belongs to the class C, then x has the property P (necessary condition), and if x has the property P, then it belongs to the class C (sufficient condition). Two complementary data mining methods allow us to materialize the discovery of definitions, the search for association rules and the search for redescriptions. In this thesis, we first present a state of the art about association rules and redescriptions. Next, we propose an adaptation of each data mining method for the task of definition discovery. Then we detail a set of experiments applied to DBpedia, and we qualitatively and quantitatively compare the two approaches. Finally, we discuss how discovered definitions can be added to DBpedia to improve its quality in terms of consistency and completeness
APA, Harvard, Vancouver, ISO, and other styles
44

Ahmadi, Naser. "A framework for the continuous curation of a knowledge base system." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS320.

Full text
Abstract:
Les graphes de connaissances centrés sur les entités sont de plus en plus populaires pour recueillir des informations sur les entités. Les schémas des KG sont complexes, avec de nombreux types et prédicats différents pour définir les entités et leurs relations. Ces KG contiennent des connaissances spécifiques à un domaine, mais pour tirer le maximum de ces données, il faut comprendre la structure et les schémas du KG. Leurs données comprennent des entités et leurs types sémantiques pour un domaine spécifique. En outre, les propriétés des entités et les relations entre les entités sont stockées. En raison de l'émergence de nouveaux faits et entités et de l'existence de déclarations invalides, la création et la maintenance des KG est un processus sans fin. Dans cette thèse, nous présentons d'abord une approche destinée à créer un KG dans le domaine de l'audit en faisant correspondre des documents de différents niveaux. Nous introduisons ensuite des méthodes pour la curation continue des KGs. Nous présentons un algorithme pour la fouille des règles conditionnelles et l'appliquons sur de grands KGs. Ensuite, nous décrivons RuleHub, un corpus extensible de règles pour les KGs publiques qui fournit des fonctionnalités pour l'archivage et la récupération des règles. Nous proposons également des méthodes pour l'exploitation des règles logiques dans deux applications différentes: l'apprentissage de règles souples à des modèles de langage pré-entraînés (RuleBert) et la vérification explicable des faits (ExpClaim)
Entity-centric knowledge graphs (KGs) are becoming increasingly popular for gathering information about entities. The schemas of KGs are semantically rich, with many different types and predicates to define the entities and their relationships. These KGs contain knowledge that requires understanding of the KG’s structure and patterns to be exploited. Their rich data structure can express entities with semantic types and relationships, oftentimes domain-specific, that must be made explicit and understood to get the most out of the data. Although different applications can benefit from such rich structure, this comes at a price. A significant challenge with KGs is the quality of their data. Without high-quality data, the applications cannot use the KG. However, as a result of the automatic creation and update of KGs, there are a lot of noisy and inconsistent data in them and, because of the large number of triples in a KG, manual validation is impossible. In this thesis, we present different tools that can be utilized in the process of continuous creation and curation of KGs. We first present an approach designed to create a KG in the accounting field by matching entities. We then introduce methods for the continuous curation of KGs. We present an algorithm for conditional rule mining and apply it on large graphs. Next, we describe RuleHub, an extensible corpus of rules for public KGs which provides functionalities for the archival and the retrieval of rules. We also report methods for using logical rules in two different applications: teaching soft rules to pre-trained language models (RuleBert) and explainable fact checking (ExpClaim)
APA, Harvard, Vancouver, ISO, and other styles
45

Cherfi, Hacène. "Etude et réalisation d'un système d'extraction de connaissances à partir de textes." Phd thesis, Université Henri Poincaré - Nancy I, 2004. http://tel.archives-ouvertes.fr/tel-00011195.

Full text
Abstract:
Ce travail de thèse porte sur la problématique d'extraction de connaissances à partir de textes, plus communément appelée la fouille de textes (FdT). Il s'articule autour des problèmes liés à l'analyse des textes, la fouille de textes proprement dite, et l'interprétation des éléments de connaissances extraits. Dans ce cadre, un système d'extraction des connaissances nécessaires pour analyser les textes en fonction de leur contenu est étudié et implanté. Les méthodes de fouille de données appliquées sont la recherche de motifs fréquents (avec l'algorithme Close) et l'extraction de règles d'association. Le mémoire s'attache à définir précisément le processus de fouille de textes et ses principales caractéristiques et propriétés en s'appuyant sur l'extraction de motifs fréquents et de règles d'association. En outre, une étude minutieuse d'un ensemble donné de mesures de qualité qu'il est possible d'attacher aux règles d'association est menée, toujours dans le cadre de la fouille de textes. Il est montré quel rôle ces mesures peuvent avoir sur la qualité et sur l'interprétation des règles extraites ; comment peuvent-elles influer sur la qualité globale du processus de fouille de textes.
L'utilisation d'un modèle de connaissances vient appuyer et surtout compléter cette première approche. Il est montré, par la définition d'une mesure de vraisemblance, l'intérêt de découvrir de nouvelles connaissances en écartant les connaissances déjà répertoriées et décrites par un modèle de connaissances du domaine. Les règles d'association peuvent donc être utilisées pour alimenter un modèle de connaissances terminologiques du domaine des textes choisi. La thèse inclut la réalisation d'un système appelé TAMIS : "Text Analysis by Mining Interesting ruleS" ainsi qu'une expérimentation et une validation sur des données réelles de résumés de textes en biologie moléculaire.
APA, Harvard, Vancouver, ISO, and other styles
46

Salem, Rashed. "Active XML Data Warehouses for Intelligent, On-line Decision Support." Thesis, Lyon 2, 2012. http://www.theses.fr/2012LYO22002.

Full text
Abstract:
Un système d'aide à la décision (SIAD) est un système d'information qui assiste lesdécideurs impliqués dans les processus de décision complexes. Les SIAD modernesont besoin d'exploiter, en plus de données numériques et symboliques, des donnéeshétérogènes (données texte, données multimédia, ...) et provenant de sources diverses(comme le Web). Nous qualifions ces données complexes. Les entrepôts dedonnées forment habituellement le socle des SIAD. Ils permettent d'intégrer des données provenant de diverses sources pour appuyer le processus décisionnel. Cependant, l'avènement de données complexes impose une nouvelle vision de l'entreposagedes données, y compris de l'intégration des données, de leur stockage et de leuranalyse. En outre, les exigences d'aujourd'hui imposent l'intégration des donnéescomplexes presque en temps réel, pour remplacer le processus ETL traditionnel(Extraction, Transformation et chargement). Le traitement en temps réel exige unprocessus ETL plus actif. Les tâches d'intégration doivent réagir d'une façon intelligente, c'est-à-dire d'une façon active et autonome pour s'adapter aux changementsrencontrés dans l'environnement d'intégration des données, notamment au niveaudes sources de données.Dans cette thèse, nous proposons des solutions originales pour l'intégration dedonnées complexes en temps réel, de façon active et autonome. En eet, nous avons conçu une approche générique basé sur des métadonnées, orientée services et orienté évènements pour l'intégration des données complexes. Pour prendre en charge lacomplexité des données, notre approche stocke les données complexes à l'aide d'unformat unie en utilisant une approche base sur les métadonnées et XML. Nous noustraitons également la distribution de données et leur l'interopérabilité en utilisantune approche orientée services. Par ailleurs, pour considérer le temps réel, notreapproche stocke non seulement des données intégrées dans un référentiel unie,mais présente des fonctions d'intégration des données a la volée. Nous appliquonségalement une approche orientée services pour observer les changements de donnéespertinentes en temps réel. En outre, l'idée d'intégration des données complexes defaçon active et autonome, nous proposons une méthode de fouille dans les évènements.Pour cela, nous proposons un algorithme incrémentiel base sur XML pourla fouille des règles d'association a partir d’évènements. Ensuite, nous denissonsdes règles actives a l'aide des données provenant de la fouille d'évènements an deréactiver les tâches d'intégration.Pour valider notre approche d'intégration de données complexes, nous avons développé une plateforme logicielle, à savoir AX-InCoDa ((Active XML-based frameworkfor Integrating Complex Data). AX-InCoDa est une application Web implémenté à l'aide d'outils open source. Elle exploite les standards du Web (comme les services Web et XML) et le XML actif pour traiter la complexité et les exigences temps réel. Pour explorer les évènements stockés dans base d'évènement, nous avons proposons une méthode de fouille d'évènements an d'assurer leur autogestion.AX-InCoDa est enrichi de règles actives L'ecacite d'AX-InCoDa est illustrée par une étude de cas sur des données médicales. En, la performance de notre algorithme de fouille d'évènements est démontrée expérimentalement
A decision support system (DSS) is an information system that supports decisionmakers involved in complex decision-making processes. Modern DSSs needto exploit data that are not only numerical or symbolic, but also heterogeneouslystructured (e.g., text and multimedia data) and coming from various sources (e.g,the Web). We term such data complex data. Data warehouses are casually usedas the basis of such DSSs. They help integrate data from a variety of sourcesto support decision-making. However, the advent of complex data imposes anothervision of data warehousing including data integration, data storage and dataanalysis. Moreover, today's requirements impose integrating complex data in nearreal-time rather than with traditional snapshot and batch ETL (Extraction, Transformationand Loading). Real-time and near real-time processing requires a moreactive ETL process. Data integration tasks must react in an intelligent, i.e., activeand autonomous way, to encountered changes in the data integration environment,especially data sources.In this dissertation, we propose novel solutions for complex data integration innear real-time, actively and autonomously. We indeed provide a generic metadatabased,service-oriented and event-driven approach for integrating complex data.To address data complexity issues, our approach stores heterogeneous data into aunied format using a metadata-based approach and XML. We also tackle datadistribution and interoperability using a service-oriented approach. Moreover, toaddress near real-time requirements, our approach stores not only integrated datainto a unied repository, but also functions to integrate data on-the-y. We also apply a service-oriented approach to track relevant data changes in near real-time.Furthermore, the idea of integrating complex data actively and autonomously revolvesaround mining logged events of data integration environment. For this sake,we propose an incremental XML-based algorithm for mining association rules fromlogged events. Then, we de ne active rules upon mined data to reactivate integrationtasks.To validate our approach for managing complex data integration, we develop ahigh-level software framework, namely AX-InCoDa (Active XML-based frameworkfor Integrating Complex Data). AX-InCoDa is implemented as Web application usingopen-source tools. It exploits Web standards (e.g., XML and Web services) andActive XML to handle complexity issues and near real-time requirements. Besidewarehousing logged events into an event repository to be mined for self-managingpurposes, AX-InCoDa is enriched with active rules. AX-InCoDa's feasibility is illustratedby a healthcare case study. Finally, the performance of our incremental eventmining algorithm is experimentally demonstrated
APA, Harvard, Vancouver, ISO, and other styles
47

Wajnberg, Mickaël. "Analyse relationnelle de concepts : une méthode polyvalente pour l'extraction de connaissances." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0136.

Full text
Abstract:
À une époque où les données, souvent interprétées comme une «réalité terrain»,sont produites dans des quantités gargantuesques, un besoin de compréhension et d’interprétation de ces données se développe en parallèle. Les jeux de données étant maintenant principalement relationnels, il convient de développer des méthodes qui permettent d’extraire de l’information pertinente décrivant à la fois les objets et les relations entre eux. Les règles d’association, adjointes des mesures de confiance et de support, décrivent les co-occurences entre les caractéristiques des objets et permettent d’exprimer et d’évaluer de manière explicite l’information contenue dans un jeu de données. Dans cette thèse, on présente et développe l’analyse relationnelle de concepts pour extraire des règles traduisant tant les caractéristiques propres d’un ensemble d’objets que les liens avec d’autres ensembles. Une première partie développe la théorie mathématique de la méthode, alors que la seconde partie propose trois cas d’application pour étayer l’intérêt d’un tel développement. Les études sont réalisées dans des domaines variés montrant ainsi la polyvalence de la méthode : un premier cas traite l’analyse d’erreur en production industrielle métallurgique, un second cas est réalisé en psycholinguistique pour l’analyse de dictionnaires et un dernier cas montre les possibilités de la méthode en ingénierie de connaissance
At a time where data, often interpreted as "ground truth", are produced in gigantic quantities, a need for understanding and interpretability emerges in parallel. Dataset are nowadays mainly relational, therefore developping methods that allows relevant information extraction describing both objects and relation among them is a necessity. Association rules, along with their support and confidence metrics, describe co-occurrences of object features, hence explicitly express and evaluate any information contained in a dataset. In this thesis, we present and develop the relational concept analysis approach to extract the association rules that translate objects proper features along with the links with sets of objects. A first part present the mathematical part of the method, while a second part highlights three case studies to assess the pertinence of such a development. Case studies cover various domains to demonstrate the method polyvalence: the first case deals with error analysis in industrial production, the second covers psycholinguistics for dictionary analysis and the last one shows the method application in knowledge engineering
APA, Harvard, Vancouver, ISO, and other styles
48

Fiot, Céline. "Extraction de séquences fréquentes : des données numériques aux valeurs manquantes." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2007. http://tel.archives-ouvertes.fr/tel-00179506.

Full text
Abstract:
La quantité de données aujourd'hui emmagasinées dans tous les domaines ainsi que leur diversité d'origines et de formats rendent impossibles l'analyse, le résumé ou l'extraction manuelle de connaissances. Pour répondre à ces besoins, diverses communautés se sont intéressées à la conception et au développement d'outils permettant d'extraire automatiquement de la connaissance de ces grandes bases. Désormais ces travaux visent à prendre en compte l'hétérogénéité de ces données, de leur format et de leur qualité. Notre travail s'inscrit dans cet axe de recherche et, plus précisément, dans le contexte de la découverte de schémas fréquents à partir de données regroupées sous la forme de séquences ordonnées. Ces schémas, appelés motifs séquentiels, n'étaient jusqu'alors extraits que sur des bases de données de séquences symboliques et parfaites, c'est-à-dire des bases ne contenant que des informations binaires ou pouvant être traitées comme telles et ne contenant aucun enregistrement incomplet. Nous avons donc proposé plusieurs améliorations des techniques d'extraction de séquences fréquentes afin de prendre en compte des données hétérogènes, incomplètes, incertaines ou mal connues de leur utilisateur, tout en minimisant les pertes éventuelles d'informations. Ainsi, le travail présenté dans cette thèse comporte la mise en oeuvre d'un cadre pour l'extraction de motifs séquentiels en présence de données numériques quantitatives, la définition de contraintes temporelles relâchées autorisant l'utilisateur à spécifier des contraintes temporelles approximatives et permettant un tri des résultats obtenus selon un indice de précision temporelle, enfin, le développement de deux approches pour l'extraction de motifs séquentiels sur des données symboliques incomplètes.
APA, Harvard, Vancouver, ISO, and other styles
49

Fiot, Céline. "Extraction de séquences fréquentes : des données numériques aux valeurs manquantes." Phd thesis, Montpellier 2, 2007. http://www.theses.fr/2007MON20056.

Full text
Abstract:
La quantité de données aujourd'hui emmagasinées dans tous les domaines ainsi que leur diversité d'origines et de formats rendent impossibles l'analyse, le résumé ou l'extraction manuelle de connaissances. Pour répondre à ces besoins, diverses communautés se sont intéressées à la conception et au développement d'outils permettant d'extraire automatiquement de la connaissance de ces grandes bases. Désormais ces travaux visent à prendre en compte l'hétérogénéité de ces données, de leur format et de leur qualité. Notre travail s'inscrit dans cet axe de recherche et, plus précisément, dans le contexte de la découverte de schémas fréquents à partir de données regroupées sous la forme de séquences ordonnées. Ces schémas, appelés motifs séquentiels, n'étaient jusqu'alors extraits que sur des bases de données de séquences symboliques et parfaites, c'est-à-dire des bases ne contenant que des informations binaires ou pouvant être traitées comme telles et ne contenant aucun enregistrement incomplet. Nous avons donc proposé plusieurs améliorations des techniques d'extraction de séquences fréquentes afin de prendre en compte des données hétérogènes, incomplètes, incertaines ou mal connues de leur utilisateur, tout en minimisant les pertes éventuelles d'informations. Ainsi, le travail présenté dans cette thèse comporte la mise en oeuvre d'un cadre pour l'extraction de motifs séquentiels en présence de données numériques quantitatives, la définition de contraintes temporelles relâchées autorisant l'utilisateur à spécifier des contraintes temporelles approximatives et permettant un tri des résultats obtenus selon un indice de précision temporelle, enfin, le développement de deux approches pour l'extraction de motifs séquentiels sur des données symboliques incomplètes.
APA, Harvard, Vancouver, ISO, and other styles
50

Lamirel, Jean-Charles. "Vers une approche systémique et multivues pour l'analyse de données et la recherche d'information : un nouveau paradigme." Habilitation à diriger des recherches, Université Nancy II, 2010. http://tel.archives-ouvertes.fr/tel-00552247.

Full text
Abstract:
Le sujet principal de notre travail d'habilitation concerne l'extension de l'approche systémique, initialement implantée dans le Système de Recherche d'Information NOMAD, qui a fait l'objet de notre travail de thèse, pour mettre en place un nouveau paradigme général d'analyse de données basé sur les points de vue multiples, paradigme que nous avons baptisé MVDA (Multi-View Data Analysis). Ce paradigme couvre à la fois le domaine de l'analyse de données et celui de la fouille de données. Selon celui-ci, chaque analyse de données est considérée comme une vue différente sur les données. Le croisement entre les vues s'opère par l'intermédiaire d'un réseau bayésien construit, de manière non supervisée, à partir des données ou des propriétés partagées entre ces dernières. Le paradigme MDVA repose également sur l'exploitation de méthodes spécifiques de visualisation, comme la visualisation topographique ou la visualisation hyperbolique. La mise en place de nouveaux estimateurs de qualité de type Rappel/Précision non supervisés basés sur l'analyse de la distribution des propriétés associées aux classes, et qui à la fois sont indépendants des méthodes de classification et des changements relatifs à leur mode opératoire (initialisation, distances utilisées ...), nous a permis de démontrer objectivement la supériorité de ce paradigme par rapport à l'approche globale, classique en analyse de données. Elle nous a également permis de comparer et d'intégrer dans le paradigme MVDA des méthodes de classification non supervisées (clustering) neuronales qui sont plus particulièrement adaptées à la gestion des données ultra-éparses et fortement multidimensionnelles, à l'image des données documentaires, ainsi que d'optimiser le mode opératoire de telles méthodes. Notre démarche a par ailleurs impliqué de développer la cohabitation entre le raisonnement neuronal et le raisonnement symbolique, ou entre des modèles de nature différente, de manière à couvrir l'ensemble des fonctions de la recherche et de l'analyse de l'information et à éliminer, sinon à réduire, les défauts inhérents à chacun des types d'approche. A travers de nombreuses applications, notamment dans le domaine de l'évaluation des sciences, nous montrons comment l'exploitation d'un tel paradigme peut permettre de résoudre des problèmes complexes d'analyse de données, comme ceux liés l'analyse diachronique à grande échelle des données textuelles polythématiques. Nous montrons également comment l'ensemble des outils développés dans le cadre de ce paradigme nous ont permis mettre en place de nouvelles méthodes très robustes et très performantes pour la classification supervisée et pour le clustering incrémental. Nous montrons finalement comment nous envisageons d'étendre leur application à d'autres domaines très porteurs, comme ceux du traitement automatique des langues ou de la bioinformatique.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography