Academic literature on the topic 'Forward/inverse kinematics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forward/inverse kinematics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forward/inverse kinematics"
Ge, Dawei. "Kinematics modeling of redundant manipulator based on screw theory and Newton-Raphson method." Journal of Physics: Conference Series 2246, no. 1 (April 1, 2022): 012068. http://dx.doi.org/10.1088/1742-6596/2246/1/012068.
Full textMeng, Guang Zhu, Guang Ming Yuan, Zhe Liu, and Jun Zhang. "Forward and Inverse Kinematic of Continuum Robot for Search and Rescue." Advanced Materials Research 712-715 (June 2013): 2290–95. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.2290.
Full textXin, Shi Zhi, Luo Yu Feng, Hang Lu Bing, and Yang Ting Li. "A Simple Method for Inverse Kinematic Analysis of the General 6R Serial Robot." Journal of Mechanical Design 129, no. 8 (August 18, 2006): 793–98. http://dx.doi.org/10.1115/1.2735636.
Full textZhao, Rui Feng, Zhen Zhang, and Jiu Qiang Cui. "The Kinematics Modeling and Simulation of a Mechanical Arm in Nuclear Industry with Postpositional Drive." Applied Mechanics and Materials 496-500 (January 2014): 754–59. http://dx.doi.org/10.4028/www.scientific.net/amm.496-500.754.
Full textJatsun, S. F., and Yan Naing Soe. "KINEMATIC AND JACOBIAN ANALYSIS APPROACH FOR THE FOUR-LEGGED ROBOT." Proceedings of the Southwest State University 22, no. 4 (August 28, 2018): 32–41. http://dx.doi.org/10.21869/2223-1560-2018-22-4-32-41.
Full textIskandar, Fathur Rokhman, Imam Sucahyo, and Meta Yantidewi. "Penerapan Metode Invers kinematik Pada Kontrol Gerak Robot Lengan Tiga Derajat Bebas." Inovasi Fisika Indonesia 9, no. 2 (June 22, 2020): 64–71. http://dx.doi.org/10.26740/ifi.v9n2.p64-71.
Full textZhou, Yi Jun, Xue Ming Li, Hai Yang Xu, and Heng Liang Fan. "Method and Simulation for Kinematics of 6-SPS Parallel Mechanism." Advanced Materials Research 1033-1034 (October 2014): 1334–37. http://dx.doi.org/10.4028/www.scientific.net/amr.1033-1034.1334.
Full textKumar K, Pavan, Murali Mohan J, and Srikanth D. "Generalized solution for inverse kinematics problem of a robot using hybrid genetic algorithms." International Journal of Engineering & Technology 7, no. 4.6 (September 25, 2018): 250. http://dx.doi.org/10.14419/ijet.v7i4.6.20486.
Full textVu, Hung Minh, Trung Quang Trinh, and Thang Quoc Vo. "Research on kinematic structure of a redundant serial industrial robot arm." Science and Technology Development Journal 19, no. 3 (September 30, 2016): 24–33. http://dx.doi.org/10.32508/stdj.v19i3.561.
Full textKifayat Mammadova, Aytan Aliyeva, Kifayat Mammadova, Aytan Aliyeva, and Nigar Baghirova Nigar Baghirova. "CONSTRUCTION OF THE KINEMATIC MODEL OF ROBOTIC SYSTEMS IN THE MATLAB ENVIRONMENT." ETM - Equipment, Technologies, Materials 16, no. 04 (October 6, 2023): 67–75. http://dx.doi.org/10.36962/etm16042023-67.
Full textDissertations / Theses on the topic "Forward/inverse kinematics"
Doctor, Diana. "Aplikace quaternionů v kinematice robotu." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2019. http://www.nusl.cz/ntk/nusl-401559.
Full textVacek, Václav. "Aplikace technologie MOLECUBES v robotice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-242848.
Full textVítek, Filip. "Konfigurace robotické struktury za použití MOLECUBES." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232194.
Full textPotvin, Brigitte. "Predicting Muscle Activations in a Forward-Inverse Dynamics Framework Using Stability-Inspired Optimization and an In Vivo-Based 6DoF Knee Joint." Thesis, Université d'Ottawa / University of Ottawa, 2016. http://hdl.handle.net/10393/34647.
Full textRoutson, Rebecca Linn. "The Effects of Varying Speed on the Biomechanics of Stair Ascending and Descending in Healthy Young Adults: Inverse Kinematics, Inverse Dynamics, Electromyography and a Pilot Study for Computational Muscle Control and Forward Dynamics." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1281578603.
Full textAristidou, Andreas. "Tracking and modelling motion for biomechanical analysis." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237554.
Full textPivovarník, Marek. "Matematické principy robotiky." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230139.
Full textFilho, Sylvio Celso Tartari. "Modelagem e otimização de um robô de arquitetura paralela para aplicações industriais." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3152/tde-07122006-151723/.
Full textThis work is about the study of parallel architecture robots, focusing in modeling and optimization. No physical prototypes were built, although the virtual models can help those willing to do so. After searching for an application that could benefit from the use of a parallel robot, another search was made, this time for the right architecture type. After selecting the architecture, the next step was the kinematics and dynamics analysis. The dynamics model is developed using the Newton ? Euler method. A virtual simulator was also developed in MATLAB 6.5 environment. The simulator?s main purpose was to demonstrate that the methods applied were correct and efficient, so it has several features such as linear and circular interpolations, capacity to use multiple coordinate systems and others. After finishing the simulator, an algorithm to calculate the machine workspace was added. The algorithm receives as input some desired requirements regarding the manipulator pose and then calculates the workspace, taking into consideration imposed constraints. Lastly, algorithms capable to measure the manipulator?s performance regarding to its actuator and end-effector force relationship were also incorporated into the simulator that calculates the machine?s force ellipsoid during any movement, for each desired workspace point. For the optimization procedures, some previously developed tools were used, so that the resulting model was capable to respect some workspace constraints regarding size and shape, but also maintaining the best performance possible inside this volume.
Dokoupil, Petr. "Animační knihovna se zaměřením na skeletální animace." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2009. http://www.nusl.cz/ntk/nusl-236629.
Full textSpacca, Jordy Luiz Cerminaro. "Usando o Sistema de Inferência Neuro Fuzzy - ANFIS para o cálculo da cinemática inversa de um manipulador de 5 DOF /." Ilha Solteira, 2019. http://hdl.handle.net/11449/183448.
Full textResumo: No estudo dos manipuladores são utilizados os conceitos da cinemática direta e a inversa. No cálculo da cinemática direta tem-se a facilidade da notação de Denavit-Hartenberg, mas o desafio maior é a resolução da cinemática inversa, que se torna mais complexa conforme aumentam os graus de liberdade do manipulador, além de apresentar múltiplas soluções. As variáveis angulares obtidas pelas equações da cinemática inversa são utilizadas pelo controlador, para posicionar o órgão terminal do manipulador em um ponto específico de seu volume de trabalho. Na busca de alternativas para contornar estes problemas, neste trabalho utilizam-se os Modelos Adaptativos de Inferência Neuro-Fuzzy - ANFIS para a resolução da cinemática inversa, por meio de simulações, para obter o posicionamento de um manipulador robótico de 5 graus de liberdade, composto por sete servomotores controlados pela plataforma de desenvolvimento Intel® Galileo Gen 2, usado como caso de estudo. Nas simulações usamse ANFIS com uma arquitetura com três e quatro funções de pertinência de entrada, do tipo gaussiana. O desempenho da arquitetura da ANFIS implementada foi comparado com uma Rede Perceptron Multicamadas, demonstrando com os resultados favoráveis a ANFIS, a sua capacidade de aprender e resolver com baixo erro quadrático médio e com precisão, a cinemática inversa para o manipulador em estudo. Verifica-se também, que a performance das ANFIS melhora, quanto à precisão dos resultados, demonstrado pelo desvio médio d... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: In the study of manipulator’s, the concepts of direct and inverse kinematics are used. In the computation of forward kinematics, it has of the ease of Denavit-Hartenberg notation, but the biggest challenge is the resolution of the inverse kinematics, which becomes more complex as the manipulator's degrees of freedom increase, besides presenting multiple solutions. The angular variables obtained by the inverse kinematics equations are used by the controller to position the terminal organ of the manipulator at a specific point in its work volume. In the search for alternatives to overcome these problems, in this work, the Adaptive Neuro-Fuzzy Inference Models (ANFIS) are used to solve the inverse kinematics, by means of simulations, to obtain the positioning of a robot manipulator of 5 degrees of freedom, consisting of seven servomotors controlled by the Intel® Galileo Gen 2 development platform, used as a case's study . In the simulations ANFIS's architecture are used three and four Gaussian membership functions of input. The performance of the implemented ANFIS architecture was compared to a Multi-layered Perceptron Network, demonstrating with the favorable results the ANFIS, its ability to learn and solve with low mean square error and with precision, the inverse kinematics for the manipulator under study. It is also verified that the performance of the ANFIS improves, as regards the accuracy of the results in the training process, , demonstrated by the mean deviation of the... (Complete abstract click electronic access below)
Mestre
Book chapters on the topic "Forward/inverse kinematics"
Starke, Sebastian, Norman Hendrich, and Jianwei Zhang. "A Forward Kinematics Data Structure for Efficient Evolutionary Inverse Kinematics." In Computational Kinematics, 560–68. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60867-9_64.
Full textHadfield, Hugo, Lai Wei, and Joan Lasenby. "The Forward and Inverse Kinematics of a Delta Robot." In Advances in Computer Graphics, 447–58. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61864-3_38.
Full textBerceanu, C., D. Tarnita, S. Dumitru, and D. Filip. "Forward and Inverse Kinematics Calculation for an Anthropomorphic Robotic Finger." In New Trends in Mechanism Science, 335–42. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9689-0_39.
Full textAltuzarra, Oscar, Diego Caballero, Francisco J. Campa, and Charles Pinto. "Forward and Inverse Kinematics in 2-DOF Planar Parallel Continuum Manipulators." In EuCoMeS 2018, 231–38. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98020-1_27.
Full textXiao, Binghang, Jianzhe Huang, Wuji Liu, Yajun Teng, Lingfeng Qiao, and Zhongliang Jing. "Forward and Inverse Kinematics Analysis of SMA Spring-Driven Flexible Manipulator." In Lecture Notes in Electrical Engineering, 788–800. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-5912-6_58.
Full textSingh, Randheer, Vikas Kukshal, and Vinod Singh Yadav. "A Review on Forward and Inverse Kinematics of Classical Serial Manipulators." In Lecture Notes in Mechanical Engineering, 417–28. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4018-3_39.
Full textMy, Chu Anh, Duong Xuan Bien, and Le Chi Hieu. "Forward and Inverse Kinematics Analysis of a Spatial Three-Segment Continuum Robot." In Research in Intelligent and Computing in Engineering, 407–17. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7527-3_40.
Full textDeshmukh, Deepak, Dilip Kumar Pratihar, Alok Kanti Deb, Hena Ray, and Alokesh Ghosh. "ANFIS-Based Inverse Kinematics and Forward Dynamics of 3 DOF Serial Manipulator." In Hybrid Intelligent Systems, 144–56. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73050-5_15.
Full textBrito, Thadeu, José Lima, João Braun, Luis Piardi, and Paulo Costa. "A DOBOT Manipulator Simulation Environment for Teaching Aim with Forward and Inverse Kinematics." In Lecture Notes in Electrical Engineering, 303–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58653-9_29.
Full textLaryushkin, Pavel, Anton Antonov, Alexey Fomin, and Victor Glazunov. "Inverse and Forward Kinematics of a Reconfigurable Spherical Parallel Mechanism with a Circular Rail." In ROMANSY 24 - Robot Design, Dynamics and Control, 246–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06409-8_26.
Full textConference papers on the topic "Forward/inverse kinematics"
Bian, Yangxin, Bin Zhu, Jun Wu, and Yanling Tian. "Forward, Inverse Kinematics and Optimal Design of a Parallel Solar Tracker." In 2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE), 382–88. IEEE, 2024. http://dx.doi.org/10.1109/cacre62362.2024.10635026.
Full textYoshimitsu, Yuhei, Takayuki Osa, Heni Ben Amor, and Shuhei Ikemoto. "Active Learning for Forward/Inverse Kinematics of Redundantly-driven Flexible Tensegrity Manipulator." In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3512–18. IEEE, 2024. https://doi.org/10.1109/iros58592.2024.10802310.
Full textM, Navya, Muralidhara, Nirmith Jain, Vaishnavi Pai, Meghana Rao, and Aparna Rao. "Estimation of Inverse Kinematics Solutions of a 2D Planar Robotic Manipulator using Feed-Forward Neural Network." In 2024 International Conference on IoT Based Control Networks and Intelligent Systems (ICICNIS), 1040–44. IEEE, 2024. https://doi.org/10.1109/icicnis64247.2024.10823376.
Full textSrisuk, Pannawit, Adna Sento, and Yuttana Kitjaidure. "Inverse kinematics solution using neural networks from forward kinematics equations." In 2017 9th International Conference on Knowledge and Smart Technology (KST). IEEE, 2017. http://dx.doi.org/10.1109/kst.2017.7886084.
Full textSchinstock, Dale E., and James F. Cuttino. "Forward and Inverse Kinematic Solutions of a New Three Dimensional Metrology Frame." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-1182.
Full textKubus, Daniel, Rania Rayyes, and Jochen J. Steil. "Learning Forward and Inverse Kinematics Maps Efficiently." In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8593833.
Full textDasari, Anish, and N. S. Reddy. "Forward and inverse kinematics of a robotic frog." In 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI). IEEE, 2012. http://dx.doi.org/10.1109/ihci.2012.6481850.
Full textMitropoulos, Spyridon, Odysseas Tsakiridis, and Ioannis Christakis. "Forward and Inverse Robotics Kinematics JavaScript-HTML5 Simulator." In International Electronic Conference on Processes. Basel Switzerland: MDPI, 2024. http://dx.doi.org/10.3390/proceedings2024105035.
Full textSrisuk, Pannawit, Adna Sento, and Yuttana Kitjaidure. "Forward kinematic-like neural network for solving the 3D reaching inverse kinematics problems." In 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). IEEE, 2017. http://dx.doi.org/10.1109/ecticon.2017.8096211.
Full textHroncova, Darina, Lubica Mikova, Erik Prada, Robert Rakay, Peter Jan Sincak, and Tomas Merva. "Forward and inverse robot model kinematics and trajectory planning." In 2022 20th International Conference on Mechatronics - Mechatronika (ME). IEEE, 2022. http://dx.doi.org/10.1109/me54704.2022.9983355.
Full textReports on the topic "Forward/inverse kinematics"
Stouffer, Keith A. Development of the forward and inverse kinematic models for the Advanced Deburring and Chamfering System (ADACS) industrial robot. Gaithersburg, MD: National Institute of Standards and Technology, 1992. http://dx.doi.org/10.6028/nist.ir.4928.
Full text