Academic literature on the topic 'Formation of the solar system'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Formation of the solar system.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Formation of the solar system"
Smith, Keith T. "Timing Solar System formation." Science 370, no. 6518 (November 12, 2020): 805.13–807. http://dx.doi.org/10.1126/science.370.6518.805-m.
Full textMorfill, G. E. "Models of solar system formation." Chemical Geology 70, no. 1-2 (August 1988): 32. http://dx.doi.org/10.1016/0009-2541(88)90268-9.
Full textRawal, J. J. "Formation of the solar system." Astrophysics and Space Science 119, no. 1 (January 1986): 159–66. http://dx.doi.org/10.1007/bf00648837.
Full textPfalzner, S., M. B. Davies, M. Gounelle, A. Johansen, C. Münker, P. Lacerda, S. Portegies Zwart, L. Testi, M. Trieloff, and D. Veras. "The formation of the solar system." Physica Scripta 90, no. 6 (April 21, 2015): 068001. http://dx.doi.org/10.1088/0031-8949/90/6/068001.
Full textRussell, Sara S. "The Formation of the Solar System." Journal of the Geological Society 164, no. 3 (May 2007): 481–92. http://dx.doi.org/10.1144/0016-76492006-054.
Full textChambers, John. "Making the Solar System." Astrophysical Journal 944, no. 2 (February 1, 2023): 127. http://dx.doi.org/10.3847/1538-4357/aca96f.
Full textIda, Shigeru, and Eiichiro Kokubo. "Terrestrial Planet Formation: The Solar System and Other Systems." Symposium - International Astronomical Union 202 (2004): 159–66. http://dx.doi.org/10.1017/s0074180900217749.
Full textImaeda, Yusuke, and Toshikazu Ebisuzaki. "Tandem planet formation for solar system-like planetary systems." Geoscience Frontiers 8, no. 2 (March 2017): 223–31. http://dx.doi.org/10.1016/j.gsf.2016.06.011.
Full textYu, Ziyuan, Jin Liu, Chao Pan, Lvqian Guo, Zhiwei Kang, and Xin Ma. "Solar TDOA measurement and integrated navigation for formation flying." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 12 (February 2019): 4635–45. http://dx.doi.org/10.1177/0954410019827148.
Full textSmith, Keith T. "Two-part formation of the Solar System." Science 371, no. 6527 (January 21, 2021): 358.4–359. http://dx.doi.org/10.1126/science.371.6527.358-d.
Full textDissertations / Theses on the topic "Formation of the solar system"
Crida, Aurélien. "Planetary migration in solar system formation." Nice, 2006. http://www.theses.fr/2006NICE4076.
Full textLa migration planétaire est un phénomène apparemment inévitable lors de la formation des planètes dans les disques protoplanétaires. Les interactions gravitationnelles entre les embryons de planète et le disque de gaz font décroître le moment cinétique de l'embryon, qui spirale vers l'étoile centrale. Le temps de migration étant plus court que la durée de vie du disque, aucune planète ne devrait survivre (chapitres 1 et 2). Dans cette thèse, nous essayons de trouver des mécanismes qui empêchent ou ralentissent la migration. Dans le chapitre 3, nous montrons qu'un saut dans le profil de densité du disque de gaz bloque la migration et agit comme un piège à planète. Ainsi bloqué, un coeur solide massif peut accrèter une atmosphère gazeuse et devenir une planète géante. La planète est alors assez massive pour repousser le gaz et ouvrir un sillon autour de son orbite. En analysant des simulations numériques, nous mettons en évidence le rôle des effets de pression dans ce processus dans le chapitre 4; un nouveau critère unifié d'ouverture du sillon en découle. Après la présentation dans le chapitre 5 d'un nouvel algorithme fiable et performant pour réaliser des simulations numériques, nous l'utilisons dans le chapitre 6 pour étudier la migration d'une planète géante et son impact sur l'évolution du disque. La formation d'une cavité s'avère moins facile que prévu, mais une possibilité d'arrêter la migration apparaît. Enfin, dans le chapitre 7, nous étudions le cas de Jupiter et Saturne, et trouvons dans quelles conditions les interactions entre les deux planètes en empêchent la migration
Cyr, Kimberly Ellen 1964. "The distribution of water in the solar nebula: Implications for solar system formation." Diss., The University of Arizona, 1998. http://hdl.handle.net/10150/288870.
Full textElliott, Garrett T. "Detecting the debris of solar system formation via stellar occultation." Connect to resource, 2008. http://hdl.handle.net/1811/32191.
Full textMehta, Anand Vivek 1966. "The role of vortices in the formation of the solar system." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/50500.
Full textIncludes bibliographical references (p. 117-119).
An important part of explaining planet formation is understanding how small particles accumulate into larger bodies. Gas vortices are suggested as a mechanism to enhance the coagulation of dust particles in the solar nebula. An inviscid, barotropic, two-dimensional form of the vorticity equation is derived to study the gas flow. A pseudospectral numerical model uses this equation to calculate the evolution of the vorticity field. The calculations show that locally prograde elliptical vortices with the major axis parallel to the angular axis can persist for at least 103 years with less than 1% change in peak vorticity. The shape of the vortex depends on the strength, similar to analytical expressions for elliptical vortices in a linear shear. Stronger vortices are rounder while weaker vortices are elongated; With ratios of the peak vorticity to the background vorticity of 1.0 and 0.2, the aspect ratios are approximately 0.5 and 0.25. The vortex area is mostly constant, and the linear dimensions change as the shape changes. Two negative vortices within the same radial band tend to merge, forming a larger, stronger vortex in a few orbit periods. A random viscosity field tends to have a few strong vortices form, although not as efficiently as with merging vortices. Dust particles interact with the gas through the Stokes drag force, with the relaxation time specifying how quickly the particle velocity approaches the gas velocity. The particles tend to converge in high pressure vortices and drift out of low pressure systems. The convergence time is dependent on the vortex strength and the particle relaxation time. If the relaxation time is short compared to the period, the particles do not have an appreciable differential velocity compared to the gas, and the Stokes drag force is small. If the relaxation time is long, then the Stokes drag force is not large enough to have a significant effect. If, however, the relaxation time is of the same order as the period, so the dynamical and frictional timescales are similar, then the particles will have the shortest convergence times. This result can be seen analytically in the simple case of an axisymmetric pressure band and numerically in calculations involving the robust vortex. With a robust vortex, the convergence times are approximately 3-4 yr for relaxation times of 0.1-0.2 yr. For typical values of properties of the solar nebula, this relaxation time applies for particles with diameters of around 20 cm. Other particles, both smaller and larger, converge more slowly, but the different times result in more collisions, enhancing the coagulation of larger bodies.
by Anand Vivek Mehta.
Ph.D.
Lawler, Samantha. "The leftovers of planet formation : small body populations of our solar system and exoplanet systems." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/44760.
Full textPatzelt, Madelein [Verfasser], and Klaus [Akademischer Betreuer] Mezger. "Chondrule formation in the early Solar System / Madelein Patzelt ; Betreuer: Klaus Mezger." Münster : Universitäts- und Landesbibliothek Münster, 2015. http://d-nb.info/1138279943/34.
Full textTheis, Karen Julia. "Iron isotope fractionation of planetary bodies during early solar system formation processes." Thesis, University of Manchester, 2008. http://www.manchester.ac.uk/escholar/uk-ac-man-scw:163898.
Full textGorlova, Nadiya Igorivna. "Debris Disks in Open Stellar Clusters." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/195908.
Full textMiller, Kelly E., and Kelly E. Miller. "The R Chondrite Record of Volatile-Rich Environments in the Early Solar System." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621016.
Full textWilliams, Niel Hamilton. "Titanium isotope cosmochemistry." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/titanium-isotope-cosmochemistry(571ae148-1673-4b85-bc10-937284bb53fc).html.
Full textBooks on the topic "Formation of the solar system"
Ferronsky, V. I., and S. V. Ferronsky. Formation of the Solar System. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-5908-4.
Full textRossi, Matteo De. Solar system: Structure, formation, and exploration. Hauppauge, N.Y: Nova Science Publisher's, 2011.
Find full textAnfilogov, Vsevolod N., and Yurij V. Khachay. Some Aspects of the Formation of the Solar System. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17831-8.
Full textMandt, Kathleen, Olivier Mousis, Dominique Bockelée-Morvan, and Christopher Russell, eds. Comets as Tracers of Solar System Formation and Evolution. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1103-4.
Full textPessah, Martin, and Oliver Gressel, eds. Formation, Evolution, and Dynamics of Young Solar Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-60609-5.
Full textFormation of water and our solar system from a fission process with an. [Place of publication not identified]: Xlibris Corporation, 2011.
Find full textESLAB Symposium. (24th 1990 Friedrichshafen, Germany). Formation of stars and planets and the evolution of the solar system: Proceedings of the 24th ESLAB Symposium, 17 - 19 September 1990, Friedrichshafen, Germany. Edited by Battrick B. 1946-, Schwehm G, Stammes P, and European Space Agency. Noordwijk, The Netherlands: ESA Publications, 1990.
Find full text1953-, Weaver Harold A., Danly L, and Space Telescope Science Institute (U.S.), eds. The formation and evolution of planetary systems: Proceedings of the Formation and Evolution of Planetary Systems Meeting, Baltimore, 1988, May 9-11. Cambridge: Cambridge University Press, 1989.
Find full textUnited States. National Aeronautics and Space Administration., ed. Origins of interstellar and solar system carbonaceous materials: Final technical report. [Washington, DC: National Aeronautics and Space Administration, 1994.
Find full textV, Ferronskiĭ S., ed. Formation of the solar system: A new theory of the creation and decay of the celestial bodies. Dordrecht: Springer, 2013.
Find full textBook chapters on the topic "Formation of the solar system"
Crida, Aurélien. "Solar System Formation." In Reviews in Modern Astronomy, 215–27. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527629190.ch12.
Full textRobert, François. "Solar System Formation (Chronology)." In Encyclopedia of Astrobiology, 1528–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_1797.
Full textSouthwood, D. J. "Formation of Magnetotails." In Magnetotails in the Solar System, 197–215. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118842324.ch12.
Full textPetit, Jean-Marc, and Alessandro Morbidelli. "Chronology of Solar System Formation." In Lectures in Astrobiology, 61–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10913406_3.
Full textRobert, François. "System Solar Formation, Chronology of." In Encyclopedia of Astrobiology, 2450–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_1797.
Full textRawal, J. J. "Formation of the Solar System." In Third Asian-Pacific Regional Meeting of the International Astronomical Union, 159–66. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4630-9_37.
Full textRobert, François. "System Solar Formation, Chronology of." In Encyclopedia of Astrobiology, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_1797-2.
Full textRobert, François. "System Solar Formation, Chronology of." In Encyclopedia of Astrobiology, 2985–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_1797.
Full textBally, John, Alan Boss, Dimitri Papanastassiou, Scott Sandford, and Anneila Sargent. "Star Formation and the Solar System." In Galactic and Extragalactic Star Formation, 311–27. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2973-9_19.
Full textPirronello, Valerio. "Molecule Formation in Cometary Environments." In Ices in the Solar System, 261–72. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5418-2_17.
Full textConference papers on the topic "Formation of the solar system"
Palouš, Jan, Richard Wünsch, Vasile Mioc, Cristiana Dumitrache, and Nedelia A. Popescu. "Star Formation and Evolution of Galaxies." In EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993679.
Full textKadik, A. A. "Formation of carbon species in terrestrial magmas." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48734.
Full textLunine, Jonathan I., Wei Dai, and Fatima Ebrahim. "Solar system formation and the distribution of volatile species." In Volatiles in the Earth and solar system. AIP, 1995. http://dx.doi.org/10.1063/1.48735.
Full textBilenko, I. A., Vasile Mioc, Cristiana Dumitrache, and Nedelia A. Popescu. "Conditions for the formation of CMEs associated with filament eruptions." In EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE. AIP, 2008. http://dx.doi.org/10.1063/1.2993659.
Full textLichtenberg, Tim, Joanna Drążkowska, Maria Schönbächler, Gregor Golabek, and Thomas Hands. "Bifurcation of planetary building blocks during Solar System formation." In Goldschmidt2021. France: European Association of Geochemistry, 2021. http://dx.doi.org/10.7185/gold2021.4476.
Full textLi, Ming, Huizhu Yang, Gedong Jiang, Wenjun Wang, and Xuesong Mei. "Formation of nanostructures on the surface of CIGS films by picosecond laser with different beam patterns." In Photonics for Solar Energy Systems, edited by Ralf B. Wehrspohn and Alexander N. Sprafke. SPIE, 2018. http://dx.doi.org/10.1117/12.2306814.
Full textTakeichi, Noboru. "Feasibility Study of a Solar Power Satellite System Configured by Formation Flying." In 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.iac-03-r.1.07.
Full textYoung, Edward, and Michelle Jordan. "IRON ISOTOPE CONSTRAINTS ON PLANETESIMAL CORE FORMATION IN THE EARLY SOLAR SYSTEM." In GSA Annual Meeting in Denver, Colorado, USA - 2016. Geological Society of America, 2016. http://dx.doi.org/10.1130/abs/2016am-284424.
Full textCassen, Patrick, and Kenneth M. Chick. "The survival of presolar grains during the formation of the solar system." In ASTROPHYSICAL IMPLICATIONS OF THE LABORATORY STUDY OF PRESOLAR MATERIALS. ASCE, 1997. http://dx.doi.org/10.1063/1.53324.
Full textTamura, M., M. Takami, K. Enya, T. Ootsubo, M. Fukagawa, M. Honda, Y. K. Okamoto, et al. "Key Sciences of SPICA Mission: Planetary Formation, Exoplanets, and our Solar System." In SPICA joint European/Japanese Workshop. Les Ulis, France: EDP Sciences, 2009. http://dx.doi.org/10.1051/spica/200902001.
Full textReports on the topic "Formation of the solar system"
Brown, W. K. High explosive simulations of supernovae and the supernova shell fragmentation model of solar system formation. Office of Scientific and Technical Information (OSTI), September 1987. http://dx.doi.org/10.2172/6019760.
Full textBARKHATOV, NIKOLAY, and SERGEY REVUNOV. A software-computational neural network tool for predicting the electromagnetic state of the polar magnetosphere, taking into account the process that simulates its slow loading by the kinetic energy of the solar wind. SIB-Expertise, December 2021. http://dx.doi.org/10.12731/er0519.07122021.
Full textMoens, L., and D. Blake. Mechanism of Hydrogen Formation in Solar Paraboic Trough Receivers. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/924987.
Full textHamilton, C. Views of the solar system. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/10116814.
Full textSussman, Gerald J., and Jack Wisdom. Chaotic Evolution of the Solar System. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada260055.
Full textWesle, Max, and Robert Buchinger. INFO Sheet C03: One-World-Solar-System. IEA SHC Task 54, November 2017. http://dx.doi.org/10.18777/ieashc-task54-2017-0014.
Full textMills, A., A. Botterud, J. Wu, Z. Zhou, B.-M. Hodge, and M. Heaney. Integrating Solar PV in Utility System Operations. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1107495.
Full textBaines, K. H., D. T. Gavel, A. M. Getz, S. G. Gibbartd, B. MacIntosh, C. E. Max, C. P. McKay, E. F. Young, and I. de Pater. Solar system events at high spatial resolution. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/12548.
Full textMills, A., A. Botterud, J. Wu, Z. Zhou, B.-M. Hodge, and M. Heany. Integrating Solar PV in Utility System Operations. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1164898.
Full textSkordos, Panayotis A. Multistep Methods for Integrating the Solar System. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada201692.
Full text