Academic literature on the topic 'Formation of C-N bonds'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Formation of C-N bonds.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Formation of C-N bonds"
Meng, Ge, Pengfei Li, Kai Chen, and Linghua Wang. "Recent Advances in Transition-Metal-Free Aryl C–B Bond Formation." Synthesis 49, no. 21 (September 26, 2017): 4719–30. http://dx.doi.org/10.1055/s-0036-1590913.
Full textZeng, Xiaoming, and Xuefeng Cong. "Chromium-Catalyzed Cross-Coupling Reactions by Selective Activation of Chemically Inert Aromatic C–O, C–N, and C–H Bonds." Synlett 32, no. 13 (May 11, 2021): 1343–53. http://dx.doi.org/10.1055/a-1507-4153.
Full textHenry, Martyn, Mohamed Mostafa, and Andrew Sutherland. "Recent Advances in Transition-Metal-Catalyzed, Directed Aryl C–H/N–H Cross-Coupling Reactions." Synthesis 49, no. 20 (August 28, 2017): 4586–98. http://dx.doi.org/10.1055/s-0036-1588536.
Full textChang, Denghu, Dan Zhu, Peng Zou, and Lei Shi. "Cleavage of C–N bonds in guanidine derivatives and its relevance to efficient C–N bonds formation." Tetrahedron 71, no. 11 (March 2015): 1684–93. http://dx.doi.org/10.1016/j.tet.2015.01.050.
Full textWang, Congyang, and Ting Liu. "Manganese-Catalyzed C(sp2)–H Addition to Polar Unsaturated Bonds." Synlett 32, no. 13 (March 27, 2021): 1323–29. http://dx.doi.org/10.1055/a-1468-6136.
Full textRit, Raja K., Majji Shankar, and Akhila K. Sahoo. "C–H imidation: a distinct perspective of C–N bond formation." Organic & Biomolecular Chemistry 15, no. 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.
Full textZinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan, and Catherine S. J. Cazin. "Palladate Precatalysts for the Formation of C–N and C–C Bonds." Organometallics 38, no. 14 (July 2, 2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.
Full textWei, Wenting, Wenming Zhu, Yi Wu, Yiling Huang, and Hongze Liang. "Progress in C—N Bonds Formation Using t-BuONO." Chinese Journal of Organic Chemistry 37, no. 8 (2017): 1916. http://dx.doi.org/10.6023/cjoc201703039.
Full textZhao, Binlin, Torben Rogge, Lutz Ackermann, and Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation." Chemical Society Reviews 50, no. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.
Full textSun, Qiu, Ling He, Jiaxin Cheng, Ze Yang, Yuansheng Li, and Yulan Xi. "Synthesis of Isoxazolines and Isoxazoles via Metal-Free Desulfitative Cyclization." Synthesis 50, no. 12 (May 14, 2018): 2385–93. http://dx.doi.org/10.1055/s-0037-1609480.
Full textDissertations / Theses on the topic "Formation of C-N bonds"
Bowen, John George. "C-H activation in the formation of C-N and C-O Bonds." Thesis, University of Bristol, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685335.
Full textPersson, Andreas K. Å. "Palladium(II)-Catalyzed Oxidative Cyclization Strategies : Selective Formation of New C-C and C-N Bonds." Doctoral thesis, Stockholms universitet, Institutionen för organisk kemi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-75435.
Full textAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 6: Manuscript.
Lishchynskyi, Anton. "Development of new methods for the asymmetric formation of C-N bonds." Thesis, Strasbourg, 2012. http://www.theses.fr/2012STRAF026.
Full textThe concept of metal-ligand bifunctionality was successfully applied for an enantioselective aza-Michael reaction by employing well-defined ruthenium amido complexes. The catalyst was optimised and the corresponding chiral indoline β-amino acid derivatives were obtained with high enantioselectivities. Next, a straightforward enantioselective bifunctional organocatalytic approach was also developed. Employing hydroquinidine as catalyst the corresponding cyclic products were obtained in excellent enantioselectivities and quantitative yields. These compounds can be selectively deprotected and applied to peptide synthesis. Finally, we have developed unprecedented diamination reactions of styrenes, butadienes and hexatrienes employing easily accessible hypervalent iodine(III) reagents under robust reaction conditions. The first examples of the metal-free 1,2-diamination of butadienes were demonstrated and this oxidation methodology was further extended to the highly attractive 1,4 installation of two nitrogen atoms within a single step
Mane, K. D. "Enantioselective synthesis of bioactive molecule and development of synthetic methodologies involving formation of C-C, C-N bonds." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2022. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/6140.
Full textHuang, Xiaohua 1973. "Palladium-catalyzed C-C, C-N and C-O bond formation." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/29639.
Full textVita.
Includes bibliographical references.
New methods for Pd-catalyzed cross-coupling reactions of aryl halides or arenesulfonates are described. Key to the success of these transformations is the proper choice of ligand and reaction conditions. Palladium catalysts supported by bulky, monodentate phosphine ligands with a biaryl backbone or the bidentate ligand, Xantphos, effectively promote the formation of ca-aryl carbonyl compounds. Base-sensitive functional groups are better tolerated when a weak base, such as K3PO4, is used. One of the most difficult transformations in Pd catalysis, the intermolecular C-O bond formation between primary alcohols and electron-neutral or even electron-rich aryl halides, was effectively promoted by the use of a new generation of ligands, 3-methyl-2-di-t-butylphosphinobiaryl. The one-step synthesis of ligands from cheap starting materials, as well as the mild reaction conditions employed for the coupling reactions, enables the practical use of Pd catalysis to access aryl alkyl ethers for the first time. Continuing study of Pd-catalyzed C-N bond-forming processes using biaryl monophosphine ligands led to the discovery of a structural derivative of these ligands, 2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl. This ligand, in combination with a Pd source, produces a catalyst system with both a greater degree of activity and of stability than those that use our previous ligands. Substrates that were not amenable to Pd catalysis previously are reexamined using this new catalyst system, and excellent results are obtained.
by Xiaohua Huang.
Ph.D.
Correia, Camille. "Oxidative C-C bond formation via metal-catalyzed coupling of two C-H bonds." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114441.
Full textCette thèse décrit la formation de nouvelles liaisons C-C par activation oxydative directe de deux liaisons C-H grâce à l'utilisation de métaux de transition comme catalyseurs. La première partie présentera trois différentes réactions de Cross-Dehydrogenative-Coupling (CDC) oxydantes. Dans un premier temps, sera présentée dans le chapitre 2, la réaction d'alkylation de liens C-H benzylique par 1,3-dicarbonyles et cétones. Ce system a démontré son efficacité sur une large variété de substrats contenant des liaisons C-H enolysable. De plus il a été rendu possible, grâce à l'utilisation d'un co-catalyseur organique, le N-Hydroxyphthalimide (NHPI), d'utiliser l'oxygène moléculaire comme oxydant terminal. Dans un second temps, nous étudierons l'utilisation du 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) comme médiateur pour l'alkynylation de liaisons sp3 C-H. Une nouvelle CDC réaction catalysée par le triflate de cuivre (I) sera présentée dans le chapitre 3, entre un alcyne et une liaison C-H benzylique. Le chapitre 4 présentera le développement de cette réaction à l'alcynation d'éthers benzyliques en présence d'une quantité catalytique de triflate d'argent (I). Ces deux procédures sont seulement applicables pour les alcynes vrais aromatiques. Finalement, le chapitre 6 portera sur la réaction de Minisci catalysée par le palladium. Le peroxyde radical α-hydroxyalkyl généré lors de la réaction est capable de réagir avec les azines. La quantité stœchiométrique d'acide nécessaire lors de la traditionnelle réaction de Minisci, a été remplacée par une quantité catalytique de dichloro palladium.
Laren, Martijn Wouter van. "Palladium-catalyzed C-H and C-N bond formation." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2004. http://dare.uva.nl/document/75422.
Full textKarabal, P. U. "Asymmetric synthesis of bioactive molecules and formation of C-N, C-Br and C-I bonds via olefin functionalization." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2014. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2219.
Full textThakur, V. V. "Asymmetric synthesis of bioactive molecules and formation of C-C, C-N, C-Br, S-O bonds by transition metal catalysis." Thesis(Ph.D.), CSIR-National Chemical Laboratory, Pune, 2002. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/2338.
Full textMidya, S. P. "Transition metal catalyzed (de) hydrogenative C-C and C-N bond formation." Thesis(Ph.D.), CSIR-National Chemical laboratory, Pune, 2018. http://dspace.ncl.res.in:8080/xmlui/handle/20.500.12252/4568.
Full textBooks on the topic "Formation of C-N bonds"
Taillefer, Marc, and Dawei Ma, eds. Amination and Formation of sp2 C-N Bonds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40546-4.
Full textC-X bond formation. Heidelberg: Springer, 2010.
Find full textZucherman, Jerry J. The Formation of bonds to C, Si, Ge, Sn, Pb (part 2). New York, N.Y: VCH Publishers, 1989.
Find full textVigalok, Arkadi, ed. C-X Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12073-2.
Full textKrische, Michael J., ed. Metal Catalyzed Reductive C–C Bond Formation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72879-5.
Full textCatalyst Design for the Ionic Hydrogenation of C=N Bonds. [New York, N.Y.?]: [publisher not identified], 2015.
Find full textM, Coates Robert, and Denmark Scott E, eds. Reagents, auxiliaries and catalysts for C-C bond formation. Chichester: Wiley, 1999.
Find full textMahrwald, Rainer. Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Dordrecht: Springer Science+Business Media B.V., 2011.
Find full textJ, Krische Michael, and Breit B, eds. Metal catalyzed reductive C-C bond formation: A departure from preformed organometallic reagents. Berlin: Springer, 2007.
Find full textHorvath, Michael John. Initial studies into selective C-F bond formation via the reactions of fluoride ion with organometallic complexes. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1991.
Find full textBook chapters on the topic "Formation of C-N bonds"
Toffano, M. "Formation of C—N Bonds." In Organophosphorus Compounds (incl. RO-P and RN-P), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-042-00432.
Full textBrown, J. M., and B. N. Nguyen. "C—N Bond Formation." In Stereoselective Synthesis 1 Stereoselective Reactions of Carbon—Carbon Double Bonds, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-201-00185.
Full text"C–C Bond Formation." In Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 217–53. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00217.
Full textvon Angerer, S. "By Formation of Two N–C Bonds and Two C–C Bonds." In Science of Synthesis Knowledge Updates KU 2011/1, 1. Georg Thieme Verlag KG, 2011. http://dx.doi.org/10.1055/sos-sd-116-00079.
Full text"C–X Bond Formation." In Biocatalysis in Organic Synthesis: The Retrosynthesis Approach, 179–216. The Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/bk9781782625308-00179.
Full textJones, R. Alan. "Formation of C—C Bonds." In Quaternary Ammonium Salts, 229–301. Elsevier, 2001. http://dx.doi.org/10.1016/b978-012389171-6/50007-6.
Full textKaufmann, D. E., and M. Kster. "Formation of C—C Bonds." In Boron Compounds, 1. Georg Thieme Verlag KG, 2005. http://dx.doi.org/10.1055/sos-sd-006-00987.
Full textBoysen, M. M. K. "Formation of C—C Bonds." In Nitro, Nitroso, Azo, Azoxy, and Diazonium Compounds, Azides, Triazenes, and Tetrazenes, 1. Georg Thieme Verlag KG, 2010. http://dx.doi.org/10.1055/sos-sd-041-00451.
Full textToffano, M. "Formation of C—C Bonds." In Organophosphorus Compounds (incl. RO-P and RN-P), 1. Georg Thieme Verlag KG, 2009. http://dx.doi.org/10.1055/sos-sd-042-00429.
Full textYang, Y., and C. Wang. "2.15 Manganese-Catalyzed C—H Functionalization." In Base-Metal Catalysis 2. Stuttgart: Georg Thieme Verlag KG, 2023. http://dx.doi.org/10.1055/sos-sd-239-00231.
Full textConference papers on the topic "Formation of C-N bonds"
PRASAD, DIPAK, and NILANJAN MITRA. "EVOLUTION OF VISCOSITY UPON CROSSLINKING IN EPOXY RESIN: AN ATOMISTIC INVESTIGATION." In Proceedings for the American Society for Composites-Thirty Eighth Technical Conference. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/asc38/36619.
Full textAli, Ibrahim, and Walid Fathalla. "Synthesis of N-substituted-3,4,5,6-tetrachlorophthalimide using trichloroacetimidate C-C bond formation method." In The 13th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2009. http://dx.doi.org/10.3390/ecsoc-13-00180.
Full textHirn, U., and R. Schennach. "Fiber-Fiber Bond Formation and Failure: Mechanisms and Analytical Techniques." In Advances in Pulp and Paper Research, Oxford 2017, edited by W. Batchelor and D. Söderberg. Fundamental Research Committee (FRC), Manchester, 2017. http://dx.doi.org/10.15376/frc.2017.2.839.
Full textKim, Bioh, Thorsten Matthias, Markus Wimplinger, Paul Kettner, and Paul Lindner. "Comparison of Enabling Wafer Bonding Techniques for TSV Integration." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40002.
Full textDuan, Shanzhong, and Andrew Ries. "An Efficient O(N) Algorithm for Computer Simulation of Rigid Body Molecular Dynamics." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42032.
Full textAlmubarak, Tariq, Majed Almubarak, Abdullah Almoajil, and Fares Alotaibi. "Vitamin C: An Environmentally Friendly Multifunctional Additive for Hydraulic Fracturing Fluids." In ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211113-ms.
Full textBolotov, Vasiliy Alexandrovich, Serguei Fedorovich Tikhov, Konstantin Radikovich Valeev, Vladimir Timurovich Shamirzaev, and Valentin Nikolaevich Parmon. "SELECTIVE FORMATION OF LINEAR ALPHA-OLEFINS VIA MICROWAVE CATALYTIC CRACKING OF LIQUID STRAIGHT-CHAIN ALKANES." In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9894.
Full textHenschen, A., and E. Müller. "ON THE FACTOR XIIIa-INDUCED CROSSLINKING OF HUMAN FIBRIN α-CHAINS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644649.
Full textGuan, Y. F., R. Zhu, J. C. Han, H. X. Liu, S. T. Li, and C. K. Wu. "Multiphoton ionization process of CH3OH and C2H5OH induced by a XeCl excimer laser." In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thl45.
Full textSahu, Sunil, Anil Tyagi, Yonghwee Kim, and Arjun Puri. "Accurate Identification of Gas-Bearing Formation in a Mature Field Using Pulsed Neutron Logs Prevented Well Abandonment." In Gas & Oil Technology Showcase and Conference. SPE, 2023. http://dx.doi.org/10.2118/214153-ms.
Full textReports on the topic "Formation of C-N bonds"
I. A. Parshikov, Igor A. OXIDATION OF GERANYL-N-PHENYLCARBAMATE BY FUNGUS BEAUVERIA BASSIANA WITH AIM TO OBTANING OF NEW ANTI-CANCER DRUGS. Intellectual Archive, October 2020. http://dx.doi.org/10.32370/iaj.2427.
Full textMariam, Y. H. The synthesis, characterization and formation chemistry of Si-C-N-O-M ceramic and composite powders. Final technical report. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/638243.
Full textGlauz, W. D., and Cecil Chappelow. L51467A On-Site Assessment of Mill-Applied Fusion-Bonded Coating Quality. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), February 1985. http://dx.doi.org/10.55274/r0010089.
Full textRempel, K. U., A. E. Williams-Jones, and K. Fuller. An experimental investigation of the solubility and speciation of uranium in hydrothermal ore fluids. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/328995.
Full textArdakani, O. H. Organic petrography and thermal maturity of the Paskapoo Formation in the Fox Creek area, west-central Alberta. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330296.
Full textDickman, Martin B., and Oded Yarden. Role of Phosphorylation in Fungal Spore Germination. United States Department of Agriculture, August 1993. http://dx.doi.org/10.32747/1993.7568761.bard.
Full textNaim, Michael, Andrew Spielman, Shlomo Nir, and Ann Noble. Bitter Taste Transduction: Cellular Pathways, Inhibition and Implications for Human Acceptance of Agricultural Food Products. United States Department of Agriculture, February 2000. http://dx.doi.org/10.32747/2000.7695839.bard.
Full text