To see the other types of publications on this topic, follow the link: Formation de liaisons C-S.

Journal articles on the topic 'Formation de liaisons C-S'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Formation de liaisons C-S.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Top, Siden, and Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle." Journal of Organometallic Chemistry 336, no. 1-2 (December 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hiemstra, Henk, Floris P. Rutjes, Sape S. Kinderman, Jan H. van Maarseveen, and Hans E. Schoemaker. "C-C Bond Formation viaN-Phosphoryliminium Ions." Synthesis 2004, no. 09 (2004): 1413–18. http://dx.doi.org/10.1055/s-2004-822376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Peng, Kang, Hui Zhu, Xing Liu, Han-Ying Peng, Jin-Quan Chen, and Zhi-Bing Dong. "Chemoselective C-S/S-S Formation between Diaryl Disulfides and Tetraalkylthiuram Disulfides." European Journal of Organic Chemistry 2019, no. 47 (November 27, 2019): 7629–34. http://dx.doi.org/10.1002/ejoc.201901401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Markó, István E., J. Mike Southern, and M. Lakshmi Kantam. "Stoichiometric C-C Bond Formation Using Triorganothallium Reagents." Synlett 1991, no. 04 (1991): 235–37. http://dx.doi.org/10.1055/s-1991-20690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui, and Aiwen Lei. "Fe-catalysed oxidative C–H functionalization/C–S bond formation." Chem. Commun. 48, no. 1 (2012): 76–78. http://dx.doi.org/10.1039/c1cc16184a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sharma, Upendra, Ritika Sharma, Rakesh Kumar, Inder Kumar, and Bikram Singh. "Selective C–Si Bond Formation through C–H Functionalization." Synthesis 47, no. 16 (July 9, 2015): 2347–66. http://dx.doi.org/10.1055/s-0034-1380435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Honghua, Huihong Wang, Yi Jiang, Fei Cao, Weiwei Gao, Longqing Zhu, Yuhang Yang, et al. "Recent Advances in Iodine‐Promoted C−S/N−S Bonds Formation." Chemistry – A European Journal 26, no. 72 (October 5, 2020): 17289–317. http://dx.doi.org/10.1002/chem.202001414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Fengli, Xuemin Liu, Xinzhi Chen, Chao Qian, and Xin Ge. "Progress in the Formation of C-S Bond." Chinese Journal of Organic Chemistry 37, no. 9 (2017): 2211. http://dx.doi.org/10.6023/cjoc201703038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jean, Mickaël, Jacques Renault, Pierre van de Weghe, and Naoki Asao. "Gold-catalyzed C–S bond formation from thiols." Tetrahedron Letters 51, no. 2 (January 2010): 378–81. http://dx.doi.org/10.1016/j.tetlet.2009.11.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Choudhuri, Khokan, Milan Pramanik, and Prasenjit Mal. "Noncovalent Interactions in C–S Bond Formation Reactions." Journal of Organic Chemistry 85, no. 19 (August 25, 2020): 11997–2011. http://dx.doi.org/10.1021/acs.joc.0c01534.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Aitken, R. Alan, Clémence Hauduc, M. Selim Hossain, Emily McHale, Adrian L. Schwan, Alexandra M. Z. Slawin, and Colin A. Stewart. "Unexpected Pyrolytic Behaviour of Substituted Benzo[c]thiopyran and Thieno[2,3-c]thiopyran S,S-dioxides." Australian Journal of Chemistry 67, no. 9 (2014): 1288. http://dx.doi.org/10.1071/ch14155.

Full text
Abstract:
Flash vacuum pyrolysis (FVP) of benzo[c]thiopyran S,S-dioxide (1) results in formation of indene and 2-vinylbenzaldehyde as previously described. A range of eight analogues with various substitution patterns are found to behave differently. In general, there is no extrusion of SO2 to give products analogous to indene, but unsaturated carbonyl products analogous to 2-vinylbenzaldehyde are formed in most cases by way of ring expansion to a 7-membered ring sultine, extrusion of SO, and intramolecular hydrogen atom transfer. Other processes observed include formation of anthracene via an isomeric 7-membered sultine with loss of SO, CO and methane or butane, and formation of 4-ethylidene-4,5-dihydrocyclobuta[b]thiophenes by way of SO loss, a radical rearrangement, and extrusion of acetone. The analogues with a halogen substituent at position 8 on the benzene ring require a higher temperature to react and give naphthalene resulting from net elimination of HX and SO2. The X-ray crystal structure of 1 is also reported.
APA, Harvard, Vancouver, ISO, and other styles
12

Shi, Z., S. Yang, B. Li, and X. Wan. "C-H Functionalization via C-H Activation and C-C Bond Formation with Arylsilanes." Synfacts 2007, no. 7 (July 2007): 0751. http://dx.doi.org/10.1055/s-2007-968643.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Song, Chunlan, Kun Liu, Xin Dong, Chien-Wei Chiang, and Aiwen Lei. "Recent Advances in Electrochemical Oxidative Cross-Coupling for the Construction of C–S Bonds." Synlett 30, no. 10 (April 15, 2019): 1149–63. http://dx.doi.org/10.1055/s-0037-1611753.

Full text
Abstract:
With the importance of sulfur-containing organic molecules, developing methodologies toward C–S bond formation is a long-standing goal, and, to date, considerable progress has been made in this area. Recent electrochemical oxidative cross-coupling reactions for C–S bond formation allow the synthesis of sulfur-containing molecules from more effective synthetic routes with high atom economy under mild conditions. In this review, we highlight the vital progress in this novel research arena with an emphasis on the synthetic and mechanistic aspects of the organic electrochemistry reactions.1 Introduction2 Electrochemical Oxidative Sulfonylation for the Formation of C–S Bonds2.1 Applications of Sulfinic Acid Derivatives for the Formation of C–S Bonds2.2 Applications of Sulfonylhydrazide Derivatives for the Formation of C–S Bonds3 Electrochemical Oxidative Thiolation for the Formation of C–S Bonds3.1 Applications of Disulfide Derivatives for the Formation of C–S Bonds3.2 Applications of Thiophenol Derivatives for the Formation of C–S Bonds4 Electrochemical Oxidative Thiocyanation for the Formation of C–S Bonds5 Electrochemical Oxidative Cyclization for the Formation of C–S Bonds6 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
14

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles." Journal of the Iranian Chemical Society 16, no. 12 (July 6, 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Mejía, Esteban, and Ahmad A. Almasalma. "Recent Advances on Copper-Catalyzed C–C Bond Formation via C–H Functionalization." Synthesis 52, no. 18 (May 19, 2020): 2613–22. http://dx.doi.org/10.1055/s-0040-1707815.

Full text
Abstract:
Reactions that form C–C bonds are at the heart of many important transformations, both in industry and in academia. From the myriad of catalytic approaches to achieve such transformations, those relying on C–H functionalization are gaining increasing interest due to their inherent sustainable nature. In this short review, we showcase the most recent advances in the field of C–C bond formation via C–H functionalization, but focusing only on those methodologies relying on copper catalysts. This coinage metal has gained increased popularity in recent years, not only because it is cheaper and more abundant than precious metals, but also thanks to its rich and versatile chemistry.1 Introduction2 Cross-Dehydrogenative Coupling under Thermal Conditions2.1 C(sp3)–C(sp3) Bond Formation2.2 C(sp3)–C(sp2) Bond Formation2.3 C(sp2)–C(sp2) Bond Formation2.4 C(sp3)–C(sp) Bond Formation3 Cross-Dehydrogenative Coupling under Photochemical Conditions3.1 C(sp3)–C(sp3) Bond Formation3.2 C(sp3)–C(sp2) and C(sp3)–C(sp) Bond Formation4 Conclusion and Perspective
APA, Harvard, Vancouver, ISO, and other styles
16

Bhunia, Subhajit, Govind Goroba Pawar, S. Vijay Kumar, Yongwen Jiang, and Dawei Ma. "Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation." Angewandte Chemie International Edition 56, no. 51 (November 15, 2017): 16136–79. http://dx.doi.org/10.1002/anie.201701690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Mitrofanov, Alexander Yu, Arina V. Murashkina, Iris Martín-García, Francisco Alonso, and Irina P. Beletskaya. "Formation of C–C, C–S and C–N bonds catalysed by supported copper nanoparticles." Catalysis Science & Technology 7, no. 19 (2017): 4401–12. http://dx.doi.org/10.1039/c7cy01343d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhao, Binlin, Torben Rogge, Lutz Ackermann, and Zhuangzhi Shi. "Metal-catalysed C–Het (F, O, S, N) and C–C bond arylation." Chemical Society Reviews 50, no. 16 (2021): 8903–53. http://dx.doi.org/10.1039/c9cs00571d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Wang, G. W., T. T. Yuan, and D. D. Li. "Palladium-Catalyzed One-Pot C-C and C-N Bond Formation by Dual C-H Activation." Synfacts 2011, no. 07 (June 17, 2011): 0808. http://dx.doi.org/10.1055/s-0030-1260671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro, and Neil Hogg. "Cytochrome c-mediated formation of S-nitrosothiol in cells." Biochemical Journal 442, no. 1 (January 27, 2012): 191–97. http://dx.doi.org/10.1042/bj20111294.

Full text
Abstract:
S-nitrosothiols are products of nitric oxide (NO) metabolism that have been implicated in a plethora of signalling processes. However, mechanisms of S-nitrosothiol formation in biological systems are uncertain, and no efficient protein-mediated process has been identified. Recently, we observed that ferric cytochrome c can promote S-nitrosoglutathione formation from NO and glutathione by acting as an electron acceptor under anaerobic conditions. In the present study, we show that this mechanism is also robust under oxygenated conditions, that cytochrome c can promote protein S-nitrosation via a transnitrosation reaction and that cell lysate depleted of cytochrome c exhibits a lower capacity to synthesize S-nitrosothiols. Importantly, we also demonstrate that this mechanism is functional in living cells. Lower S-nitrosothiol synthesis activity, from donor and nitric oxide synthase-generated NO, was found in cytochrome c-deficient mouse embryonic cells as compared with wild-type controls. Taken together, these data point to cytochrome c as a biological mediator of protein S-nitrosation in cells. This is the most efficient and concerted mechanism of S-nitrosothiol formation reported so far.
APA, Harvard, Vancouver, ISO, and other styles
21

Jung, K., K. Yoo, and C. Yoon. "Highly Efficient Pd-Catalyzed Oxidative sp2-sp2 C-C Bond Formation." Synfacts 2007, no. 3 (March 2007): 0301. http://dx.doi.org/10.1055/s-2007-968179.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Basak, Amit, Sayantan Mondal, Tapobrata Mitra, Raja Mukherjee, and Partha Addy. "Garratt–Braverman Cyclization, a Powerful Tool for C–C Bond Formation." Synlett 23, no. 18 (October 19, 2012): 2582–602. http://dx.doi.org/10.1055/s-0032-1317321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Yoshikai, Naohiko. "Recent Advances in Enantioselective C–C Bond Formation via Organocobalt Species." Synthesis 51, no. 01 (December 3, 2018): 135–45. http://dx.doi.org/10.1055/s-0037-1610397.

Full text
Abstract:
This Short Review describes recent developments in cobalt-catalyzed enantioselective C–C bond-forming reactions. The article focuses on reactions that most likely involve chiral organocobalt species as crucial catalytic intermediates and their mechanistic aspects.1 Introduction2 Hydrovinylation3 C–H Functionalization4 Cycloaddition and Cyclization5 Addition of Carbon Nucleophiles6 Cross-Coupling7 Conclusion
APA, Harvard, Vancouver, ISO, and other styles
24

Wang, Congyang. "Manganese-Mediated C-C Bond Formation via C-H Activation: From Stoichiometry to Catalysis." Synlett 24, no. 13 (July 11, 2013): 1606–13. http://dx.doi.org/10.1055/s-0033-1339299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Modha, Sachin G., Vaibhav P. Mehta, and Erik V. Van der Eycken. "Transition metal-catalyzed C–C bond formation via C–S bond cleavage: an overview." Chemical Society Reviews 42, no. 12 (2013): 5042. http://dx.doi.org/10.1039/c3cs60041f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Wang, Haibo, Lu Wang, Jinsai Shang, Xing Li, Haoyuan Wang, Jie Gui, and Aiwen Lei. "ChemInform Abstract: Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation." ChemInform 43, no. 16 (March 22, 2012): no. http://dx.doi.org/10.1002/chin.201216130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Ngo, Thi-Thuy-Duong, Thi-Huong Nguyen, Chloée Bournaud, Régis Guillot, Martial Toffano, and Giang Vo-Thanh. "Phosphine-Thiourea-Organocatalyzed Asymmetric C−N and C−S Bond Formation Reactions." Asian Journal of Organic Chemistry 5, no. 7 (May 30, 2016): 895–99. http://dx.doi.org/10.1002/ajoc.201600212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Borpatra, Paran J., Bhaskar Deka, Mohit L. Deb, and Pranjal K. Baruah. "Recent advances in intramolecular C–O/C–N/C–S bond formation via C–H functionalization." Organic Chemistry Frontiers 6, no. 20 (2019): 3445–89. http://dx.doi.org/10.1039/c9qo00863b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Yeung, Ying-Yeung, and Jonathan Wong. "Recent Advances in C–Br Bond Formation." Synlett 32, no. 13 (April 16, 2021): 1354–64. http://dx.doi.org/10.1055/s-0037-1610772.

Full text
Abstract:
AbstractOrganobromine compounds are extremely useful in organic synthesis. In this perspective, a focused discussion on some recent advancements in C–Br bond-forming reactions is presented.1 Introduction2 Selected Recent Advances2.1 Catalytic Asymmetric Bromopolycyclization of Olefinic Substrates2.2 Catalytic Asymmetric Intermolecular Bromination2.3 Some New Catalysts and Reagents for Bromination2.4 Catalytic Site-Selective Bromination of Aromatic Compounds2.5 sp3 C–H Bromination via Atom Transfer/Cross-Coupling3 Outlook
APA, Harvard, Vancouver, ISO, and other styles
30

Sundaravelu, Nallappan, Subramani Sangeetha, and Govindasamy Sekar. "Metal-catalyzed C–S bond formation using sulfur surrogates." Organic & Biomolecular Chemistry 19, no. 7 (2021): 1459–82. http://dx.doi.org/10.1039/d0ob02320e.

Full text
Abstract:
This review presents the metal-catalyzed C–S bond-formation reaction to access organosulfur compounds using various sulfur surrogates with an extended discussion on the reaction mechanism, regioselectivity of product and pharmaceutical application.
APA, Harvard, Vancouver, ISO, and other styles
31

Prabhu, Achutha, Jorge S. Dolado, Eddie A. B. Koenders, Rafael Zarzuela, María J. Mosquera, Ines Garcia-Lodeiro, and María Teresa Blanco-Varela. "A patchy particle model for C-S-H formation." Cement and Concrete Research 152 (February 2022): 106658. http://dx.doi.org/10.1016/j.cemconres.2021.106658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Huang, Zhiliang, Dongchao Zhang, Xiaotian Qi, Zhiyuan Yan, Mengfan Wang, Haiming Yan, and Aiwen Lei. "Radical–Radical Cross-Coupling for C–S Bond Formation." Organic Letters 18, no. 10 (May 6, 2016): 2351–54. http://dx.doi.org/10.1021/acs.orglett.6b00764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Suzuki, Kazutaka, Tadahiro Nishikawa, and Suketoshi Ito. "Formation and carbonation of C-S-H in water." Cement and Concrete Research 15, no. 2 (March 1985): 213–24. http://dx.doi.org/10.1016/0008-8846(85)90032-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Broniowska, Katarzyna A., Agnes Keszler, Swati Basu, Daniel B. Kim-Shapiro, and Neil Hogg. "Cytochrome C-Mediated Formation of S-Nitrosothiol in Cells." Free Radical Biology and Medicine 51 (November 2011): S156. http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.208.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Li, Jianxiao, Shaorong Yang, Wanqing Wu, and Huanfeng Jiang. "Recent developments in palladium-catalyzed C–S bond formation." Organic Chemistry Frontiers 7, no. 11 (2020): 1395–417. http://dx.doi.org/10.1039/d0qo00377h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bahekar, Sushilkumar S., Aniket P. Sarkate, Vijay M. Wadhai, Pravin S. Wakte, and Devanand B. Shinde. "CuI catalyzed C S bond formation by using nitroarenes." Catalysis Communications 41 (November 2013): 123–25. http://dx.doi.org/10.1016/j.catcom.2013.07.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Manzano, H., A. Ayuela, and J. S. Dolado. "On the formation of cementitious C–S–H nanoparticles." Journal of Computer-Aided Materials Design 14, no. 1 (January 23, 2007): 45–51. http://dx.doi.org/10.1007/s10820-006-9030-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Xu, Yulong, Xiaonan Shi, and Lipeng Wu. "tBuOK-triggered bond formation reactions." RSC Advances 9, no. 41 (2019): 24025–29. http://dx.doi.org/10.1039/c9ra04242c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Peng, Kang, Ming-Yuan Gao, Yu-Yan Yi, Jia Guo, and Zhi-Bing Dong. "Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O -Alkyl Phenylcarbamothioates." European Journal of Organic Chemistry 2020, no. 11 (March 11, 2020): 1665–72. http://dx.doi.org/10.1002/ejoc.201901884.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Xu, Jian, Fan Zhang, Shifan Zhang, Li Zhang, Xiaoxia Yu, Jianxiang Yan, and Qiuling Song. "Radical Promoted C(sp2)–S Formation and C(sp3)–S Bond Cleavage: Access to 2-Substituted Thiochromones." Organic Letters 21, no. 4 (January 28, 2019): 1112–15. http://dx.doi.org/10.1021/acs.orglett.9b00023.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Zhang, Ning, Lingling Miao, Yu Yang, Guohang Duan, Linlin Shi, Xin‐Qi Hao, Mao‐Ping Song, Yan Xu, and Xinju Zhu. "Assembly of Highly Functionalized Allylic Sulfones via a Stereoselective Pd‐Catalyzed Sequential C−C/C−S Cleavage and C−S Formation Process." ChemistrySelect 6, no. 19 (May 17, 2021): 4736–40. http://dx.doi.org/10.1002/slct.202101190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Gao, Jian, Jie Feng, and Ding Du. "Shining Light on C−S Bonds: Recent Advances in C−C Bond Formation Reactions via C−S Bond Cleavage under Photoredox Catalysis." Chemistry – An Asian Journal 15, no. 22 (October 14, 2020): 3637–59. http://dx.doi.org/10.1002/asia.202000905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Núñez, Oswaldo, José Rodríguez, and Larry Angulo. "Kinetic study of the formation and rupture of stable tetrahedral intermediates. CO, CN and CS bond formation." Journal of Physical Organic Chemistry 7, no. 2 (February 1994): 80–89. http://dx.doi.org/10.1002/poc.610070205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Amekura, H., K. Narumi, A. Chiba, Y. Hirano, K. Yamada, S. Yamamoto, N. Ishikawa, N. Okubo, M. Toulemonde, and Y. Saitoh. "Mechanism of ion track formation in silicon by much lower energy deposition than the formation threshold." Physica Scripta 98, no. 4 (March 6, 2023): 045701. http://dx.doi.org/10.1088/1402-4896/acbbf5.

Full text
Abstract:
Abstract Mechanism of the ion track formation in crystalline silicon (c-Si) is discussed, particularly under 1–9 MeV C60 ion irradiation. In this energy region, the track formation was not expected because the energy E was much lower than the threshold of E th = 17 MeV determined by extrapolation from higher energy data in the past literature. The track formation is different between irradiations of C60 ions and of monoatomic ions: The tracks were observed under 3 MeV C60 ion irradiation but not under 200 MeV Xe ions, while both the irradiations have the same electronic stopping (S e) of 14 keV nm−1 but much higher nuclear stopping (S n) for the former ions. The involvement of S n is suggested for the C60 ions. While the inelastic thermal spike (i-TS) calculations predict that the high energy monoatomic ion irradiation forms the tracks, the tracks have never been experimentally detected, suggesting quick annihilation of the tracks by highly enhanced recrystallization in c-Si. Exceptions are C60 ions of 1–9 MeV, where the track radii are well reproduced by the i-TS theory with assuming the melting transition. Collisional damage induced by the high S n from C60 ions obstructs the recrystallization in c-Si. Then the tracks formed by the melting transition survive against the recrystallization. This is a new type of the synergy effect between S e and S n, different from the already-known mechanisms, i.e., the pre-damage effect and the unified thermal spike. While c-Si was believed as a radiation-hard material in the S e regime with high S e threshold, this study suggests that c-Si has a low S e threshold but with efficient recrystallization.
APA, Harvard, Vancouver, ISO, and other styles
45

Hesse, Stéphanie, and Gilbert Kirsch. "Palladium-Catalyzed C-C Bond Formation from β-Chloroacroleins in Aqueous Media." Synthesis 2001, no. 05 (2001): 0755–58. http://dx.doi.org/10.1055/s-2001-12775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Macabeo, Allan. "Synthetic Uses of Chlorotitanium(IV) Triisopropoxide in C-C(N) Bond Formation." Synlett 2008, no. 20 (November 24, 2008): 3247–48. http://dx.doi.org/10.1055/s-0028-1083139.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Sieber, Joshua D., and Toolika Agrawal. "Recent Developments in C–C Bond Formation Using Catalytic Reductive Coupling Strategies." Synthesis 52, no. 18 (May 25, 2020): 2623–38. http://dx.doi.org/10.1055/s-0040-1707128.

Full text
Abstract:
Metal-catalyzed reductive coupling processes have emerged as a powerful methodology for the introduction of molecular complexity from simple starting materials. These methods allow for an orthogonal approach to that of redox-neutral strategies for the formation of C–C bonds by enabling cross-coupling of starting materials not applicable to redox-neutral chemistry. This short review summarizes the most recent developments in the area of metal-catalyzed reductive coupling utilizing catalyst turnover by a stoichiometric reductant that becomes incorporated in the final product.1 Introduction2 Ni Catalysis3 Cu Catalysis4 Ru, Rh, and Ir Catalysis4.1 Alkenes4.2 1,3-Dienes4.3 Allenes4.4 Alkynes4.5 Enynes5 Fe, Co, and Mn Catalysis6 Conclusion and Outlook
APA, Harvard, Vancouver, ISO, and other styles
48

Haag, Rainer, Dietmar Kuck, Xiao-Yong Fu, James M. Cook, and Armin de Meijere. "Facile Formation of Dihydroacepentalenediide fromcentro-Substituted Tribenzotriquinacenes with C-C Bond Cleavage." Synlett 1994, no. 05 (1994): 340–42. http://dx.doi.org/10.1055/s-1994-22846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Kobayashi, S., U. Schneider, and H. Dao. "Indium(I)-Catalyzed C-C Bond Formation between Allyl Boronates and Acetals." Synfacts 2010, no. 09 (August 23, 2010): 1055. http://dx.doi.org/10.1055/s-0030-1257900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Flood, Dillon T., Xuejing Zhang, Xiang Fu, Zhenxiang Zhao, Shota Asai, Brittany B. Sanchez, Emily J. Sturgell, et al. "RASS‐Enabled S/P−C and S−N Bond Formation for DEL Synthesis." Angewandte Chemie 132, no. 19 (March 11, 2020): 7447–53. http://dx.doi.org/10.1002/ange.201915493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography