Journal articles on the topic 'Formation de liaisons C-N'

To see the other types of publications on this topic, follow the link: Formation de liaisons C-N.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Formation de liaisons C-N.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Raczyńska, Ewa D., Christian Laurence, and Michel Berthelot. "Basicité de liaison hydrogène de formamidines substituées sur l'azote imino." Canadian Journal of Chemistry 70, no. 8 (August 1, 1992): 2203–8. http://dx.doi.org/10.1139/v92-276.

Full text
Abstract:
The basicity of the hydrogen bonds of formamidines 1–19 was measured by means of the formation constant KHB of their complexes with p-fluorophenol and the frequency shift Δν(OH) of methanol hydrogen-bonded to 1–19. The study of the ν(C=N) band shows that hydrogen bonding takes place with the imino nitrogen atom. On the hydrogen-bonding basicity scale, the formamidines appear to be more basic than the corresponding amides and pyridines, and as basic as the imidazoles. The field effect of electron-withdrawing substituents and the steric effect of bulky alkyl groups on the imino nitrogen atom markedly decrease the hydrogen-bonding basicity.
APA, Harvard, Vancouver, ISO, and other styles
2

Allemane, H., M. Prados-Ramirez, J. P. Croué, and B. Legube. "Recherche et identification des premiers sous-produits d'oxydation de l'isoproturon par le système ozone/peroxyde d'hydrogène." Revue des sciences de l'eau 8, no. 3 (April 12, 2005): 315–31. http://dx.doi.org/10.7202/705226ar.

Full text
Abstract:
Une solution aqueuse tamponnée par des phosphates (pH initial - 8) dopée en isoproturon (N- (isopropyl-4-phényl)-N-N'-diméthylurée) (~ 20 mg 1-1), a été oxydée par le système perozone, combinant l'ozone et le peroxyde d'hydrogène dans un rapport molaire de 0,5 à 0,6 moles de H2O2 par mole d'ozone. Les disparitions du composé parent, du carbone organique total (COT), du carbone total (CT) et de la consommation d'ozone, ont été suivies au cours de l'oxydation. Les premiers sous-produits d'oxydation, ceux susceptibles de conserver une formulation moléculaire proche de celle du composé initial, et par conséquent de posséder encore une activité toxique, ont été isolés et caractérisés par chromatographie gazeuse couplée à la spectrométrie de masse. Il a été trouvé que l'isoproturon requiert un taux d'oxydation molaire de 10 moles d'ozone par mole d'isoproturon introduit, pour obtenir une élimination complète de cet herbicide. En revanche, le COT n'est pratiquement pas minéralisé, même avec de très forts taux d'ozone, ce qui indique la présence dans le milieu de sous-produits rémanents. La plupart des premiers sous-produits d'oxydation détectés conservent le cycle aromatique dans leur structure, et au moins un atome d'azote, et sont présents à des concentrations significatives. Ces composés semblent aussi réactifs que l'isoproturon vis-à-vis de la perozonation puisqu'ils disparaissent lorsqu'on prolonge l'oxydation. De plus, l'identification de ces sous-produits laisse supposer que l'attaque des radicaux hydroxyles générés par le procédé perozone, entraîne la rupture d'une liaison C-N ou d'une liaison C-H, conduisant à la formation de composés oxygénés.
APA, Harvard, Vancouver, ISO, and other styles
3

Derdour, Aïcha, and Fernand Texier. "Étude cinétique de l'ouverture thermique de la liaison C—C d'aziridines et d'époxydes dipôles-1,3 potentiels: I. Méthode d'étude expérimentale." Canadian Journal of Chemistry 63, no. 8 (August 1, 1985): 2245–52. http://dx.doi.org/10.1139/v85-370.

Full text
Abstract:
The thermolysis of the 2-cyanoaziridines (1), 2-alkoxycarbonylaziridines (2), 2-arylaziridines (3), and 2,2-dicyano-3-aryloxiranes (4) leads to a rupture of the carbon –carbon bond yielding an azomethine ylide and the ylide of a carbonyl. The reaction of these ylides of azomethine with methyl acetylene dicarboxylate (MADC) leads to the formation of a 3-pyroline, which is transformed, according to the substituants, to a 2-pyrroline or to pyrrole. The addition of the ylides of carbonyl leads to the formation of dihydrofurans. Through the kinetic treatment of the addition of these heterocyclic compounds (1 to 4) to MADC, it is possible to determine the rate constants for the opening of the C—C bond (k1). In the case of the aziridines 1, the rates have been determined by ir while hplc has been used in the other cases. Relative to the heterocyclic compounds, the order of the experimental rate constants (kex) is always equal to one. In the cases of theN-cyclohexyl-2-cyano-3-alkylaziridines and of the N-cyclohexyl-2-carbomethoxy-3-phenylaziridine, kex varies with the concentration of MADC and this implies that the rate constants for the cycloaddition of the ylide of azomethine and its reclosing to give aziridine are similar. In the other cases, kex is independent of the concentration of MADC and this implies that the heterocyclic compounds are slowly transformed into 1,3-dipoles, followed by a rapid cycloaddition, [Formula: see text]. [Journal translation]
APA, Harvard, Vancouver, ISO, and other styles
4

Top, Siden, and Gérard Jaouen. "Formation de liaison CC par couplage réducteur d'ions carbéniums arène chrome tricarbonyle." Journal of Organometallic Chemistry 336, no. 1-2 (December 1987): 143–51. http://dx.doi.org/10.1016/0022-328x(87)87164-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Andersen, Heidi Gade, David Kvaskoff, and Curt Wentrup. "Bisiminopropadienes R-N=C=C=C=N-R from Pyridopyrimidines." Australian Journal of Chemistry 65, no. 6 (2012): 686. http://dx.doi.org/10.1071/ch12039.

Full text
Abstract:
Chlorination of the N,N′-di(2-pyridyl)malonamide 13a affords 2-chloro-8-methyl-4-(2-(4-picolinyl)imino-4H-pyrido[1,2-a]pyrimidine 17a. Flash vacuum thermolysis of 17a causes efficient ring opening to the valence-tautomeric ketenimine 18a/19a, elimination of HCl, and formation of the bis(4-methyl-2-pyridyl)iminopropadiene, R-N=C=C=C=N-R 20a.
APA, Harvard, Vancouver, ISO, and other styles
6

Ghorai, Sujit K., Vijaya G. Gopalsamuthiram, Anup M. Jawalekar, Rupesh E. Patre, and Sitaram Pal. "Iron catalyzed C N bond formation." Tetrahedron 73, no. 14 (April 2017): 1769–94. http://dx.doi.org/10.1016/j.tet.2017.02.033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Neumann, Julia J., Mamta Suri, and Frank Glorius. "Efficient Synthesis of Pyrazoles: Oxidative CC/NN Bond-Formation Cascade." Angewandte Chemie International Edition 49, no. 42 (September 6, 2010): 7790–94. http://dx.doi.org/10.1002/anie.201002389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Eftaiha, Ala'a F., Abdussalam K. Qaroush, Ibrahim K. Okashah, Fatima Alsoubani, Jonas Futter, Carsten Troll, Bernhard Rieger, and Khaleel I. Assaf. "CO2 activation through C–N, C–O and C–C bond formation." Physical Chemistry Chemical Physics 22, no. 3 (2020): 1306–12. http://dx.doi.org/10.1039/c9cp05961j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Wenjuan, Xiaojian Zheng, and Zhiping Li. "Iron-Catalyzed CC Bond Cleavage and CN Bond Formation." Advanced Synthesis & Catalysis 355, no. 1 (January 4, 2013): 181–90. http://dx.doi.org/10.1002/adsc.201200324.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Guo, Wei, Mingming Zhao, Wen Tan, Lvyin Zheng, Kailiang Tao, and Xiaolin Fan. "Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation." Organic Chemistry Frontiers 6, no. 13 (2019): 2120–41. http://dx.doi.org/10.1039/c9qo00283a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Frey, Johanna, Sabine Choppin, Françoise Colobert, and Joanna Wencel-Delord. "Towards Atropoenantiopure N–C Axially Chiral Compounds via Stereoselective C–N Bond Formation." CHIMIA International Journal for Chemistry 74, no. 11 (November 25, 2020): 883–89. http://dx.doi.org/10.2533/chimia.2020.883.

Full text
Abstract:
N–C axial chirality, although disregarded for decades, is an interesting type of chirality with appealing applications in medicinal chemistry and agrochemistry. However, atroposelective synthesis of optically pure compounds is extremely challenging and only a limited number of synthetic routes have been designed. In particular, asymmetric N-arylation reactions allowing atroposelective N–C bond forming events remain scarce, although great advances have been achieved recently. In this minireview we summarize the synthetic approaches towards synthesis of N–C axially chiral compounds via stereocontrolled N–C bond forming events. Both organo-catalyzed and metal-catalyzed transformations are described, thus illustrating the diversity and specificity of both strategies.
APA, Harvard, Vancouver, ISO, and other styles
12

Fletcher, Rodney J., Murat Kizil, and John A. Murphy. "Novel radical-induced CN bond formation." Tetrahedron Letters 36, no. 2 (January 1995): 323–26. http://dx.doi.org/10.1016/0040-4039(94)02241-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Abellán-López, Antonio, María-Teresa Chicote, Delia Bautista, and José Vicente. "From Chelate C,N-Cyclopalladated Oximes to C,N,N′-, C,N,S-, or C,N,C′-Pincer Palladium(II) Complexes by Formation of Oxime Ether Ligands." Organometallics 31, no. 21 (October 11, 2012): 7434–46. http://dx.doi.org/10.1021/om3007213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Wu, Xiao-Feng, and Helfried Neumann. "Zinc-Catalyzed Organic Synthesis: CC, CN, CO Bond Formation Reactions." Advanced Synthesis & Catalysis 354, no. 17 (November 12, 2012): 3141–60. http://dx.doi.org/10.1002/adsc.201200547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zhu, Chen, Rui Wang, and John R. Falck. "Amide‐Directed Tandem CC/CN Bond Formation through CH Activation." Chemistry – An Asian Journal 7, no. 7 (April 11, 2012): 1502–14. http://dx.doi.org/10.1002/asia.201200035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hashmi, A. Stephen K. "N-2-Phenylaziridinyl imines: Fragmentation and C-C-bond formation." Journal für praktische Chemie 341, no. 6 (August 1999): 600–604. http://dx.doi.org/10.1002/(sici)1521-3897(199908)341:6<600::aid-prac600>3.0.co;2-w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Marquis, Eric, Jérôme Graton, Michel Berthelot, Aurélien Planchat, and Christian Laurence. "Liaison hydrogène des arylamines : compétition des sites π et N." Canadian Journal of Chemistry 82, no. 9 (September 1, 2004): 1413–22. http://dx.doi.org/10.1139/v04-128.

Full text
Abstract:
An IR study, in the region of OH stretching, of a reference hydrogen-bond donor, 4-fluorophenol, hydrogen bonded to primary, secondary, and tertiary arylamines differently substituted on the ring and on the nitrogen, shows the formation of two kinds of 1:1 complexes in CCl4 solution: an OH···π and an OH···N hydrogen-bonded complex. The IR method gives only access to a global complexation constant Kt. A method is proposed for separating Kt into a Kπ component for hydrogen bonding to the π system and a KN component for hydrogen bonding to the nitrogen atom. This method is validated by comparing the estimated Kπ and KN values to theoretically calculated descriptors of basicity: the nitrogen lone pair orientation towards the aromatic ring, the molecular electrostatic potentials around the nitrogen and the π cloud, and the enthalpy of hydrogen bonding of hydrogen fluoride with the π system of selected arylamines. The main electronic and steric factors governing the competition between π and N sites are analysed. The strongest π and N bases among the arylamines are julolidine and Tröger's base, respectively. Triphenylamine and diphenylamine, which are nitrogen Brønsted bases, become π bases in hydrogen bonding. Moreover, there is no correlation between the pKHB and the pKBH+ scales of basicity of arylamines. The use of the pKBH+ scale is therefore not recommended in hydrogen-bonding studies.Key words: hydrogen bonding, arylamines, pKHB scale, competition of π and N hydrogen-bonded sites.
APA, Harvard, Vancouver, ISO, and other styles
18

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali, and Yong-Min Liang. "ChemInform Abstract: Iodine-Induced Regioselective C-C and C-N Bonds Formation of N-Protected Indoles." ChemInform 42, no. 16 (March 24, 2011): no. http://dx.doi.org/10.1002/chin.201116105.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Schranck, Johannes, Anis Tlili, and Matthias Beller. "More Sustainable Formation of CN and CC Bonds for the Synthesis of N-Heterocycles." Angewandte Chemie International Edition 52, no. 30 (June 17, 2013): 7642–44. http://dx.doi.org/10.1002/anie.201303015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

He, Qianlin, Feng Xie, Chuanjiang Xia, Wanyi Liang, Ziyin Guo, Zhongzhi Zhu, Yibiao Li, and Xiuwen Chen. "Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C–N/C═C/C═O Bond Formation." Organic Letters 22, no. 20 (September 30, 2020): 7976–80. http://dx.doi.org/10.1021/acs.orglett.0c02910.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jala, Ranjith, and Radha Krishna Palakodety. "Copper-catalyzed oxidative C H bond functionalization of N-allylbenzamide for C N and C C bond formation." Tetrahedron Letters 60, no. 21 (May 2019): 1437–40. http://dx.doi.org/10.1016/j.tetlet.2019.04.041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Zinser, Caroline M., Katie G. Warren, Fady Nahra, Abdullah Al-Majid, Assem Barakat, Mohammad Shahidul Islam, Steven P. Nolan, and Catherine S. J. Cazin. "Palladate Precatalysts for the Formation of C–N and C–C Bonds." Organometallics 38, no. 14 (July 2, 2019): 2812–17. http://dx.doi.org/10.1021/acs.organomet.9b00326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Majek, Michal, and Axel Jacobi von Wangelin. "Ambient-Light-Mediated Copper-Catalyzed CC and CN Bond Formation." Angewandte Chemie International Edition 52, no. 23 (May 6, 2013): 5919–21. http://dx.doi.org/10.1002/anie.201301843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Neumann, Julia J., Mamta Suri, and Frank Glorius. "ChemInform Abstract: Efficient Synthesis of Pyrazoles: Oxidative C-C/N-N Bond-Formation Cascade." ChemInform 42, no. 6 (January 13, 2011): no. http://dx.doi.org/10.1002/chin.201106144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Zha, Quanwen, Qiulan Xie, Yimin Hu, Jie Han, Lingling Ge, and Rong Guo. "Metallosurfactants C n –Cu–C n : vesicle formation and its drug-controlled release properties." Colloid and Polymer Science 294, no. 5 (February 12, 2016): 841–49. http://dx.doi.org/10.1007/s00396-016-3841-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Tiritiris, Ioannis, and Willi Kantlehner. "Crystal structure ofN-[3-(dimethylamino)propyl]-N′,N′,N′′,N′′-tetramethyl-N-(N,N,N′,N′-tetramethylformamidiniumyl)guanidinium bis(tetraphenylborate)." Acta Crystallographica Section E Crystallographic Communications 71, no. 12 (December 1, 2015): o1045—o1046. http://dx.doi.org/10.1107/s2056989015023336.

Full text
Abstract:
In the title salt, C15H36N62+·2C24H20B−, the three N—C bond lengths in the central C3N unit of the bisamidinium ion range between 1.388 (3) and 1.506 (3) Å, indicating single- and double-bond character. Furthermore, four C—N bonds have double-bond character. Here, the bond lengths range from 1.319 (3) to 1.333 (3) Å. Delocalization of the positive charges occurs in the N/C/N and C/N/C planes. The dihedral angle between both N/C/N planes is 70.5 (2)°. In the crystal, C—H...π interactions between H atoms of the cation and the benzene rings of both tetraphenylborate ions are present. The benzene rings form aromatic pockets, in which the bisamidinium ion is embedded. This leads to the formation of a two-dimensional supramolecular pattern along theabplane.
APA, Harvard, Vancouver, ISO, and other styles
27

Tsarev, Vasily N., Stanislav I. Konkin, Alexei A. Shyryaev, Vadim A. Davankov, and Konstantin N. Gavrilov. "Enantioselective Pd-catalyzed C*–C, C*–N, and C*–S bond formation reactions using first P,P,N,N-tetradentate chiral phosphites." Tetrahedron: Asymmetry 16, no. 10 (May 2005): 1737–41. http://dx.doi.org/10.1016/j.tetasy.2005.04.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Morris, Scott A., Theresa H. Nguyen, and Nan Zheng. "Diastereoselective Oxidative CN/CO and CN/CN Bond Formation Tandems Initiated by Visible Light: Synthesis of FusedN-Arylindolines." Advanced Synthesis & Catalysis 357, no. 10 (July 6, 2015): 2311–16. http://dx.doi.org/10.1002/adsc.201500317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sana, Michel, Georges Leroy, Mustapha Hilali, Minh Tho Nguyen, and L. G. Vanquickenborne. "Heats of formation of isomeric [C, H4, O]+, [C, H3, N]+ and [C, H5, N]+ radical cations." Chemical Physics Letters 190, no. 6 (March 1992): 551–56. http://dx.doi.org/10.1016/0009-2614(92)85190-l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Morris, Scott A., Theresa H. Nguyen, and Nan Zheng. "ChemInform Abstract: Diastereoselective Oxidative C-N/C-O and C-N/C-N Bond Formation Tandems Initiated by Visible Light: Synthesis of Fused N-Arylindolines." ChemInform 46, no. 46 (October 27, 2015): no. http://dx.doi.org/10.1002/chin.201546150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Tunge, Jon A., Shelli R. Mellegaard-Waetzig, and Dinesh Kumar Rayabarapu. "Allylic Amination via Decarboxylative C-N Bond Formation." Synlett, no. 18 (2005): 2759–62. http://dx.doi.org/10.1055/s-2005-918949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yeston, Jake. "A light approach to C-N bond formation." Science 353, no. 6296 (July 14, 2016): 258.9–259. http://dx.doi.org/10.1126/science.353.6296.258-i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Mirvich, S. S. "Vitamin C inhibition of N-nitroso compound formation." American Journal of Clinical Nutrition 57, no. 4 (April 1, 1993): 598–99. http://dx.doi.org/10.1093/ajcn/57.4.598.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Wang, Pengfei, Wenya Lu, Dattatray Devalankar, and Zhenying Ding. "Photochemical Formation and Cleavage of C–N Bond." Organic Letters 17, no. 1 (December 18, 2014): 170–72. http://dx.doi.org/10.1021/ol503473c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Marchetti, Louis, Abhishek Kantak, Riley Davis, and Brenton DeBoef. "Regioselective Gold-Catalyzed Oxidative C–N Bond Formation." Organic Letters 17, no. 2 (December 24, 2014): 358–61. http://dx.doi.org/10.1021/ol5034805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kärkäs, Markus D. "Electrochemical strategies for C–H functionalization and C–N bond formation." Chemical Society Reviews 47, no. 15 (2018): 5786–865. http://dx.doi.org/10.1039/c7cs00619e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tsang, W. C. Peter, Nan Zheng, and Stephen L. Buchwald. "Combined C−H Functionalization/C−N Bond Formation Route to Carbazoles." Journal of the American Chemical Society 127, no. 42 (October 2005): 14560–61. http://dx.doi.org/10.1021/ja055353i.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Rit, Raja K., Majji Shankar, and Akhila K. Sahoo. "C–H imidation: a distinct perspective of C–N bond formation." Organic & Biomolecular Chemistry 15, no. 6 (2017): 1282–93. http://dx.doi.org/10.1039/c6ob02162j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Möhlmann, Lennart, Moritz Baar, Julian Rieß, Markus Antonietti, Xinchen Wang, and Siegfried Blechert. "Carbon Nitride-Catalyzed Photoredox CC Bond Formation with N-Aryltetrahydroisoquinolines." Advanced Synthesis & Catalysis 354, no. 10 (June 5, 2012): 1909–13. http://dx.doi.org/10.1002/adsc.201100894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhang, Qian, and Yan Li. "N-Fluorobenzenesulfonimide: An Efficient Nitrogen Source for C–N Bond Formation." Synthesis 47, no. 02 (November 20, 2014): 159–74. http://dx.doi.org/10.1055/s-0034-1379396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Xie, E. Q., Y. F. Jin, Z. G. Wang, and D. Y. He. "Formation of C–N compounds by N-implantation into diamond films." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 135, no. 1-4 (February 1998): 224–28. http://dx.doi.org/10.1016/s0168-583x(97)00595-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Dacho, Vladimír, Dária Nitrayová, Michal Šoral, Andrea Machyňáková, Ján Moncoľ, and Peter Szolcsányi. "Access to N-Alkylpyrazin-2-ones via C–O to C–N Rearrangement of Pyrazinyl Ethers." SynOpen 03, no. 04 (October 2019): 108–13. http://dx.doi.org/10.1055/s-0039-1690222.

Full text
Abstract:
The reaction of tosylated 2-alkoxypyrazines with potassium halides led to the unexpected formation of N-alkylated pyrazinones. Such rare example of substitutive C–O → C–N rearrangement on pyrazines was then scrutinised by using various nucleophiles to afford the respective products in moderate to good yields. This method provides a direct access to N-alkylated-1H-pyrazin-2-ones. The formation of the rearranged products is conveniently and reliably determined by characteristic NMR shifts of their heteroaromatic protons.
APA, Harvard, Vancouver, ISO, and other styles
43

Sun, Jiyun, Guangchen Li, Guangtao Zhang, Ying Cong, Xuechan An, Daisy Zhang-Negrerie, and Yunfei Du. "Cascade Formation of C3-Unsymmetric Spirooxindoles via PhI(OAc)2-Mediated Oxidative C−C/C−N Bond Formation." Advanced Synthesis & Catalysis 360, no. 13 (May 16, 2018): 2476–81. http://dx.doi.org/10.1002/adsc.201800314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Li, Ying-Xiu, Ke-Gong Ji, Hai-Xi Wang, Shaukat Ali, and Yong-Min Liang. "Iodine-Induced Regioselective C−C and C−N Bonds Formation ofN-Protected Indoles." Journal of Organic Chemistry 76, no. 2 (January 21, 2011): 744–47. http://dx.doi.org/10.1021/jo1023014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Lennon, Ian C., and Ashok V. Bhatia. "SPECIAL FEATURE SECTION: Transition-Metal-Mediated C-C and C-N Bond Formation." Organic Process Research & Development 12, no. 3 (May 16, 2008): 467. http://dx.doi.org/10.1021/op800082j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pratap, Ramendra, Damon Parrish, Padmaja Gunda, D. Venkataraman, and Mahesh K. Lakshman. "Influence of Biaryl Phosphine Structure on C−N and C−C Bond Formation." Journal of the American Chemical Society 131, no. 34 (September 2, 2009): 12240–49. http://dx.doi.org/10.1021/ja902679b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kaur, Navjeet. "Cobalt-catalyzed C–N, C–O, C–S bond formation: synthesis of heterocycles." Journal of the Iranian Chemical Society 16, no. 12 (July 6, 2019): 2525–53. http://dx.doi.org/10.1007/s13738-019-01731-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Feng, Guangshou, Xiaofei Wang, and Jian Jin. "Decarboxylative C-C and C-N Bond Formation by Ligand-Accelerated Iron Photocatalysis." European Journal of Organic Chemistry 2019, no. 39 (October 11, 2019): 6728–32. http://dx.doi.org/10.1002/ejoc.201901381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Wenjuan, Xiaojian Zheng, and Zhiping Li. "ChemInform Abstract: Iron-Catalyzed C-C Bond Cleavage and C-N Bond Formation." ChemInform 44, no. 23 (May 16, 2013): no. http://dx.doi.org/10.1002/chin.201323076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Siebeneicher, Holger, and Sven Doye. "Dimethyltitanocene Cp2TiMe2: A Useful Reagent for C—C and C—N Bond Formation." Journal für praktische Chemie 342, no. 1 (January 2000): 102–6. http://dx.doi.org/10.1002/(sici)1521-3897(200001)342:1<102::aid-prac102>3.0.co;2-n.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography