Journal articles on the topic 'Fork reversal'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fork reversal.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Bhat, Kamakoti P., and David Cortez. "RPA and RAD51: fork reversal, fork protection, and genome stability." Nature Structural & Molecular Biology 25, no. 6 (May 28, 2018): 446–53. http://dx.doi.org/10.1038/s41594-018-0075-z.
Full textFierro-Fernandez, M., P. Hernandez, D. B. Krimer, A. Stasiak, and J. B. Schvartzman. "Topological locking restrains replication fork reversal." Proceedings of the National Academy of Sciences 104, no. 5 (January 22, 2007): 1500–1505. http://dx.doi.org/10.1073/pnas.0609204104.
Full textQuinet, Annabel, Delphine Lemaçon, and Alessandro Vindigni. "Replication Fork Reversal: Players and Guardians." Molecular Cell 68, no. 5 (December 2017): 830–33. http://dx.doi.org/10.1016/j.molcel.2017.11.022.
Full textBatenburg, Nicole L., Sofiane Y. Mersaoui, John R. Walker, Yan Coulombe, Ian Hammond-Martel, Hugo Wurtele, Jean-Yves Masson, and Xu-Dong Zhu. "Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells." Nucleic Acids Research 49, no. 22 (December 6, 2021): 12836–54. http://dx.doi.org/10.1093/nar/gkab1173.
Full textLiu, W., A. Krishnamoorthy, R. Zhao, and D. Cortez. "Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors." Science Advances 6, no. 46 (November 2020): eabc3598. http://dx.doi.org/10.1126/sciadv.abc3598.
Full textThakar, Tanay, and George-Lucian Moldovan. "The emerging determinants of replication fork stability." Nucleic Acids Research 49, no. 13 (May 12, 2021): 7224–38. http://dx.doi.org/10.1093/nar/gkab344.
Full textLe Masson, Marie, Zeynep Baharoglu, and Bénédicte Michel. "ruvAandruvBmutants specifically impaired for replication fork reversal." Molecular Microbiology 70, no. 2 (October 2008): 537–48. http://dx.doi.org/10.1111/j.1365-2958.2008.06431.x.
Full textDe Septenville, Anne L., Stéphane Duigou, Hasna Boubakri, and Bénédicte Michel. "Replication Fork Reversal after Replication–Transcription Collision." PLoS Genetics 8, no. 4 (April 5, 2012): e1002622. http://dx.doi.org/10.1371/journal.pgen.1002622.
Full textKrishnamoorthy, Archana, Jessica Jackson, Taha Mohamed, Madison Adolph, Alessandro Vindigni, and David Cortez. "RADX prevents genome instability by confining replication fork reversal to stalled forks." Molecular Cell 81, no. 14 (July 2021): 3007–17. http://dx.doi.org/10.1016/j.molcel.2021.05.014.
Full textTorres, Rubén, Carolina Gándara, Begoña Carrasco, Ignacio Baquedano, Silvia Ayora, and Juan C. Alonso. "DisA Limits RecG Activities at Stalled or Reversed Replication Forks." Cells 10, no. 6 (May 31, 2021): 1357. http://dx.doi.org/10.3390/cells10061357.
Full textCouch, Frank B., and David Cortez. "Fork reversal, too much of a good thing." Cell Cycle 13, no. 7 (February 18, 2014): 1049–50. http://dx.doi.org/10.4161/cc.28212.
Full textZellweger, Ralph, Damian Dalcher, Karun Mutreja, Matteo Berti, Jonas A. Schmid, Raquel Herrador, Alessandro Vindigni, and Massimo Lopes. "Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells." Journal of Cell Biology 208, no. 5 (March 2, 2015): 563–79. http://dx.doi.org/10.1083/jcb.201406099.
Full textThangavel, Saravanabhavan, Matteo Berti, Maryna Levikova, Cosimo Pinto, Shivasankari Gomathinayagam, Marko Vujanovic, Ralph Zellweger, et al. "DNA2 drives processing and restart of reversed replication forks in human cells." Journal of Cell Biology 208, no. 5 (March 2, 2015): 545–62. http://dx.doi.org/10.1083/jcb.201406100.
Full textSogo, J. M. "Fork Reversal and ssDNA Accumulation at Stalled Replication Forks Owing to Checkpoint Defects." Science 297, no. 5581 (July 26, 2002): 599–602. http://dx.doi.org/10.1126/science.1074023.
Full textCotta-Ramusino, Cecilia, Daniele Fachinetti, Chiara Lucca, Ylli Doksani, Massimo Lopes, José Sogo, and Marco Foiani. "Exo1 Processes Stalled Replication Forks and Counteracts Fork Reversal in Checkpoint-Defective Cells." Molecular Cell 17, no. 1 (January 2005): 153–59. http://dx.doi.org/10.1016/j.molcel.2004.11.032.
Full textGrompone, Gianfranco, Dusko Ehrlich, and Bénédicte Michel. "Cells defective for replication restart undergo replication fork reversal." EMBO reports 5, no. 6 (May 28, 2004): 607–12. http://dx.doi.org/10.1038/sj.embor.7400167.
Full textAtkinson, J., and P. McGlynn. "Replication fork reversal and the maintenance of genome stability." Nucleic Acids Research 37, no. 11 (April 30, 2009): 3475–92. http://dx.doi.org/10.1093/nar/gkp244.
Full textBhattacharjee, Somendra M. "Interfacial instability and DNA fork reversal by repair proteins." Journal of Physics: Condensed Matter 22, no. 15 (March 9, 2010): 155102. http://dx.doi.org/10.1088/0953-8984/22/15/155102.
Full textSingleton, Martin R., Sarah Scaife, and Dale B. Wigley. "Structural Analysis of DNA Replication Fork Reversal by RecG." Cell 107, no. 1 (October 2001): 79–89. http://dx.doi.org/10.1016/s0092-8674(01)00501-3.
Full textWarren, Garrett, Richard Stein, Hassane Mchaourab, and Brandt Eichman. "Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal." International Journal of Molecular Sciences 19, no. 10 (October 6, 2018): 3049. http://dx.doi.org/10.3390/ijms19103049.
Full textJain, Chetan K., Swagata Mukhopadhyay, and Agneyo Ganguly. "RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy." Anti-Cancer Agents in Medicinal Chemistry 20, no. 11 (July 8, 2020): 1311–26. http://dx.doi.org/10.2174/1871520620666200518082433.
Full textOlavarrieta, L. "Supercoiling, knotting and replication fork reversal in partially replicated plasmids." Nucleic Acids Research 30, no. 3 (February 1, 2002): 656–66. http://dx.doi.org/10.1093/nar/30.3.656.
Full textGraham, Ambassador Thomas, and Douglas B. Shaw. "Nearing a fork in the road: Proliferation or nuclear reversal?" Nonproliferation Review 6, no. 1 (December 1998): 70–76. http://dx.doi.org/10.1080/10736709808436736.
Full textRay Chaudhuri, Arnab, Yoshitami Hashimoto, Raquel Herrador, Kai J. Neelsen, Daniele Fachinetti, Rodrigo Bermejo, Andrea Cocito, Vincenzo Costanzo, and Massimo Lopes. "Topoisomerase I poisoning results in PARP-mediated replication fork reversal." Nature Structural & Molecular Biology 19, no. 4 (March 4, 2012): 417–23. http://dx.doi.org/10.1038/nsmb.2258.
Full textKhanduja, Jasbeer Singh, and K. Muniyappa. "Functional Analysis of DNA Replication Fork Reversal Catalyzed byMycobacterium tuberculosisRuvAB Proteins." Journal of Biological Chemistry 287, no. 2 (November 17, 2011): 1345–60. http://dx.doi.org/10.1074/jbc.m111.304741.
Full textNeelsen, Kai J., and Massimo Lopes. "Replication fork reversal in eukaryotes: from dead end to dynamic response." Nature Reviews Molecular Cell Biology 16, no. 4 (February 25, 2015): 207–20. http://dx.doi.org/10.1038/nrm3935.
Full textAmunugama, Ravindra, Smaranda Willcox, R. Alex Wu, Ummi B. Abdullah, Afaf H. El-Sagheer, Tom Brown, Peter J. McHugh, Jack D. Griffith, and Johannes C. Walter. "Replication Fork Reversal during DNA Interstrand Crosslink Repair Requires CMG Unloading." Cell Reports 23, no. 12 (June 2018): 3419–28. http://dx.doi.org/10.1016/j.celrep.2018.05.061.
Full textChen, Bo-Ruei, Annabel Quinet, Andrea K. Byrum, Jessica Jackson, Matteo Berti, Saravanabhavan Thangavel, Andrea L. Bredemeyer, et al. "XLF and H2AX function in series to promote replication fork stability." Journal of Cell Biology 218, no. 7 (May 23, 2019): 2113–23. http://dx.doi.org/10.1083/jcb.201808134.
Full textMutreja, Karun, Jana Krietsch, Jeannine Hess, Sebastian Ursich, Matteo Berti, Fabienne K. Roessler, Ralph Zellweger, Malay Patra, Gilles Gasser, and Massimo Lopes. "ATR-Mediated Global Fork Slowing and Reversal Assist Fork Traverse and Prevent Chromosomal Breakage at DNA Interstrand Cross-Links." Cell Reports 24, no. 10 (September 2018): 2629–42. http://dx.doi.org/10.1016/j.celrep.2018.08.019.
Full textQuinet, Annabel, Stephanie Tirman, Jessica Jackson, Saša Šviković, Delphine Lemaçon, Denisse Carvajal-Maldonado, Daniel González-Acosta, et al. "PRIMPOL-Mediated Adaptive Response Suppresses Replication Fork Reversal in BRCA-Deficient Cells." Molecular Cell 77, no. 3 (February 2020): 461–74. http://dx.doi.org/10.1016/j.molcel.2019.10.008.
Full textHonda, Masayoshi, Emeleeta A. Paintsil, and Maria Spies. "RAD52 DNA Repair Protein is a Gatekeeper that Protects DNA Replication Forks from Regression by Fork Reversal Motors." Biophysical Journal 118, no. 3 (February 2020): 160a. http://dx.doi.org/10.1016/j.bpj.2019.11.988.
Full textMayle, Ryan, Lance Langston, Kelly R. Molloy, Dan Zhang, Brian T. Chait, and Michael E. O’Donnell. "Mcm10 has potent strand-annealing activity and limits translocase-mediated fork regression." Proceedings of the National Academy of Sciences 116, no. 3 (December 31, 2018): 798–803. http://dx.doi.org/10.1073/pnas.1819107116.
Full textGuarino, Estrella, Israel Salguero, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Double-Strand Break Generation under Deoxyribonucleotide Starvation in Escherichia coli." Journal of Bacteriology 189, no. 15 (May 25, 2007): 5782–86. http://dx.doi.org/10.1128/jb.00411-07.
Full textFollonier, Cindy, Judith Oehler, Raquel Herrador, and Massimo Lopes. "Friedreich's ataxia–associated GAA repeats induce replication-fork reversal and unusual molecular junctions." Nature Structural & Molecular Biology 20, no. 4 (March 3, 2013): 486–94. http://dx.doi.org/10.1038/nsmb.2520.
Full textFierro-Fernández, Marta, Pablo Hernández, Dora B. Krimer, and Jorge B. Schvartzman. "Replication Fork Reversal Occurs Spontaneously after Digestion but Is Constrained in Supercoiled Domains." Journal of Biological Chemistry 282, no. 25 (April 23, 2007): 18190–96. http://dx.doi.org/10.1074/jbc.m701559200.
Full textKile, Andrew C., Diana A. Chavez, Julien Bacal, Sherif Eldirany, Dmitry M. Korzhnev, Irina Bezsonova, Brandt F. Eichman, and Karlene A. Cimprich. "HLTF’s Ancient HIRAN Domain Binds 3′ DNA Ends to Drive Replication Fork Reversal." Molecular Cell 58, no. 6 (June 2015): 1090–100. http://dx.doi.org/10.1016/j.molcel.2015.05.013.
Full textCybulla, Emily, Jessica Jackson, Stephanie Tirman, Annabel Quinet, Delphine Lemacon, and Alessandro Vindigni. "Abstract 803: Identifying a RAD18/UBC13-dependent mechanism of replication fork recovery to modulate chemoresponse in BRCA1-deficient cancers." Cancer Research 82, no. 12_Supplement (June 15, 2022): 803. http://dx.doi.org/10.1158/1538-7445.am2022-803.
Full textFlores, Maria Jose, Vladimir Bidnenko, and Bénédicte Michel. "The DNA repair helicase UvrD is essential for replication fork reversal in replication mutants." EMBO reports 5, no. 10 (October 2004): 983–88. http://dx.doi.org/10.1038/sj.embor.7400262.
Full textTian, Tian, Min Bu, Xu Chen, Linli Ding, Yulan Yang, Jinhua Han, Xin-Hua Feng, et al. "The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability." Molecular Cell 81, no. 1 (January 2021): 198–211. http://dx.doi.org/10.1016/j.molcel.2020.11.007.
Full textRegairaz, Marie, Yong-Wei Zhang, Haiqing Fu, Keli K. Agama, Nalini Tata, Surbhi Agrawal, Mirit I. Aladjem, and Yves Pommier. "Mus81-mediated DNA cleavage resolves replication forks stalled by topoisomerase I–DNA complexes." Journal of Cell Biology 195, no. 5 (November 28, 2011): 739–49. http://dx.doi.org/10.1083/jcb.201104003.
Full textNeelsen, Kai J., Isabella M. Y. Zanini, Raquel Herrador, and Massimo Lopes. "Oncogenes induce genotoxic stress by mitotic processing of unusual replication intermediates." Journal of Cell Biology 200, no. 6 (March 11, 2013): 699–708. http://dx.doi.org/10.1083/jcb.201212058.
Full textBai, Gongshi, Chames Kermi, Henriette Stoy, Carl J. Schiltz, Julien Bacal, Angela M. Zaino, M. Kyle Hadden, Brandt F. Eichman, Massimo Lopes, and Karlene A. Cimprich. "HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis." Molecular Cell 78, no. 6 (June 2020): 1237–51. http://dx.doi.org/10.1016/j.molcel.2020.04.031.
Full textVujanovic, Marko, Jana Krietsch, Maria Chiara Raso, Nastassja Terraneo, Ralph Zellweger, Jonas A. Schmid, Angelo Taglialatela, et al. "Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity." Molecular Cell 67, no. 5 (September 2017): 882–90. http://dx.doi.org/10.1016/j.molcel.2017.08.010.
Full textWalker, John R., and Xu-Dong Zhu. "Role of Cockayne Syndrome Group B Protein in Replication Stress: Implications for Cancer Therapy." International Journal of Molecular Sciences 23, no. 18 (September 6, 2022): 10212. http://dx.doi.org/10.3390/ijms231810212.
Full textGuarino, Estrella, Alfonso Jiménez-Sánchez, and Elena C. Guzmán. "Defective Ribonucleoside Diphosphate Reductase Impairs Replication Fork Progression in Escherichia coli." Journal of Bacteriology 189, no. 9 (February 23, 2007): 3496–501. http://dx.doi.org/10.1128/jb.01632-06.
Full textAiello, Francesca Antonella, Anita Palma, Eva Malacaria, Li Zheng, Judith L. Campbell, Binghui Shen, Annapaola Franchitto, and Pietro Pichierri. "RAD51 and mitotic function of mus81 are essential for recovery from low-dose of camptothecin in the absence of the WRN exonuclease." Nucleic Acids Research 47, no. 13 (May 22, 2019): 6796–810. http://dx.doi.org/10.1093/nar/gkz431.
Full textGrompone, Gianfranco, Marie Seigneur, S. Dusko Ehrlich, and Bénédicte Michel. "Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the β clamp." Molecular Microbiology 44, no. 5 (May 23, 2002): 1331–39. http://dx.doi.org/10.1046/j.1365-2958.2002.02962.x.
Full textPilzecker, Bas, Olimpia Alessandra Buoninfante, and Heinz Jacobs. "DNA damage tolerance in stem cells, ageing, mutagenesis, disease and cancer therapy." Nucleic Acids Research 47, no. 14 (June 28, 2019): 7163–81. http://dx.doi.org/10.1093/nar/gkz531.
Full textGold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert, and Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions." PLOS Genetics 17, no. 10 (October 21, 2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Full textArzuza, Luis C. C., Victor Vega, Victor M. Prida, Karoline O. Moura, Kleber R. Pirota, and Fanny Béron. "Single Diameter Modulation Effects on Ni Nanowire Array Magnetization Reversal." Nanomaterials 11, no. 12 (December 16, 2021): 3403. http://dx.doi.org/10.3390/nano11123403.
Full text