Journal articles on the topic 'Fork restart'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Fork restart.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gold, Michaela A., Jenna M. Whalen, Karine Freon, Zixin Hong, Ismail Iraqui, Sarah A. E. Lambert, and Catherine H. Freudenreich. "Restarted replication forks are error-prone and cause CAG repeat expansions and contractions." PLOS Genetics 17, no. 10 (October 21, 2021): e1009863. http://dx.doi.org/10.1371/journal.pgen.1009863.
Full textPetermann, Eva, and Thomas Helleday. "Pathways of mammalian replication fork restart." Nature Reviews Molecular Cell Biology 11, no. 10 (September 15, 2010): 683–87. http://dx.doi.org/10.1038/nrm2974.
Full textPepe, Alessandra, and Stephen C. West. "MUS81-EME2 Promotes Replication Fork Restart." Cell Reports 7, no. 4 (May 2014): 1048–55. http://dx.doi.org/10.1016/j.celrep.2014.04.007.
Full textDyankova-Danovska, Teodora, Sonya Uzunova, Georgi Danovski, Rumen Stamatov, Petar-Bogomil Kanev, Aleksandar Atemin, Aneliya Ivanova, Radoslav Aleksandrov, and Stoyno Stoynov. "In and out of Replication Stress: PCNA/RPA1-Based Dynamics of Fork Stalling and Restart in the Same Cell." International Journal of Molecular Sciences 26, no. 2 (January 14, 2025): 667. https://doi.org/10.3390/ijms26020667.
Full textLongerich, S., and P. Sung. "Clearance of roadblocks in replication fork restart." Proceedings of the National Academy of Sciences 108, no. 34 (August 8, 2011): 13881–82. http://dx.doi.org/10.1073/pnas.1110698108.
Full textIyer, Divya R., and Alan D. D’Andrea. "Fork restart: unloading FANCD2 to travel ahead." Molecular Cell 83, no. 20 (October 2023): 3590–92. http://dx.doi.org/10.1016/j.molcel.2023.09.027.
Full textThangavel, Saravanabhavan, Matteo Berti, Maryna Levikova, Cosimo Pinto, Shivasankari Gomathinayagam, Marko Vujanovic, Ralph Zellweger, et al. "DNA2 drives processing and restart of reversed replication forks in human cells." Journal of Cell Biology 208, no. 5 (March 2, 2015): 545–62. http://dx.doi.org/10.1083/jcb.201406100.
Full textEksi, Sebnem Ece, and Joshua C. Saldivar. "Cohesin Is Out for Stalled Replication Fork Restart." Developmental Cell 52, no. 6 (March 2020): 675–76. http://dx.doi.org/10.1016/j.devcel.2020.03.001.
Full textMarians, Kenneth J. "PriA-directed replication fork restart in Escherichia coli." Trends in Biochemical Sciences 25, no. 4 (April 2000): 185–89. http://dx.doi.org/10.1016/s0968-0004(00)01565-6.
Full textMarians, Kenneth J. "Mechanisms of replication fork restart in Escherichia coli." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359, no. 1441 (January 29, 2004): 71–77. http://dx.doi.org/10.1098/rstb.2003.1366.
Full textXu, Michelle J., and Philip W. Jordan. "SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome." International Journal of Molecular Sciences 25, no. 2 (January 12, 2024): 952. http://dx.doi.org/10.3390/ijms25020952.
Full textTorres, Jorge Z., Sandra L. Schnakenberg, and Virginia A. Zakian. "Saccharomyces cerevisiae Rrm3p DNA Helicase Promotes Genome Integrity by Preventing Replication Fork Stalling: Viability of rrm3 Cells Requires the Intra-S-Phase Checkpoint and Fork Restart Activities." Molecular and Cellular Biology 24, no. 8 (April 15, 2004): 3198–212. http://dx.doi.org/10.1128/mcb.24.8.3198-3212.2004.
Full textBianco, Piero R., and Yue Lu. "Single-molecule insight into stalled replication fork rescue in Escherichia coli." Nucleic Acids Research 49, no. 8 (March 21, 2021): 4220–38. http://dx.doi.org/10.1093/nar/gkab142.
Full textJain, Chetan K., Swagata Mukhopadhyay, and Agneyo Ganguly. "RecQ Family Helicases in Replication Fork Remodeling and Repair: Opening New Avenues towards the Identification of Potential Targets for Cancer Chemotherapy." Anti-Cancer Agents in Medicinal Chemistry 20, no. 11 (July 8, 2020): 1311–26. http://dx.doi.org/10.2174/1871520620666200518082433.
Full textGrompone, Gianfranco, Dusko Ehrlich, and Bénédicte Michel. "Cells defective for replication restart undergo replication fork reversal." EMBO reports 5, no. 6 (May 28, 2004): 607–12. http://dx.doi.org/10.1038/sj.embor.7400167.
Full textManosas, M., S. K. Perumal, V. Croquette, and S. J. Benkovic. "Direct Observation of Stalled Fork Restart via Fork Regression in the T4 Replication System." Science 338, no. 6111 (November 29, 2012): 1217–20. http://dx.doi.org/10.1126/science.1225437.
Full textYates, Maïlyn, and Alexandre Maréchal. "Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication." International Journal of Molecular Sciences 19, no. 10 (September 25, 2018): 2909. http://dx.doi.org/10.3390/ijms19102909.
Full textLeuzzi, Giuseppe, Veronica Marabitti, Pietro Pichierri, and Annapaola Franchitto. "WRNIP 1 protects stalled forks from degradation and promotes fork restart after replication stress." EMBO Journal 35, no. 13 (May 30, 2016): 1437–51. http://dx.doi.org/10.15252/embj.201593265.
Full textPolleys, Erica J., Nealia C. M. House, and Catherine H. Freudenreich. "Role of recombination and replication fork restart in repeat instability." DNA Repair 56 (August 2017): 156–65. http://dx.doi.org/10.1016/j.dnarep.2017.06.018.
Full textRaghunandan, Maya, Jung Eun Yeo, Ryan Walter, Kai Saito, Adam J. Harvey, Stacie Ittershagen, Eun-A. Lee, et al. "Functional cross talk between the Fanconi anemia and ATRX/DAXX histone chaperone pathways promotes replication fork recovery." Human Molecular Genetics 29, no. 7 (October 19, 2019): 1083–95. http://dx.doi.org/10.1093/hmg/ddz250.
Full textBatenburg, Nicole L., Sofiane Y. Mersaoui, John R. Walker, Yan Coulombe, Ian Hammond-Martel, Hugo Wurtele, Jean-Yves Masson, and Xu-Dong Zhu. "Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells." Nucleic Acids Research 49, no. 22 (December 6, 2021): 12836–54. http://dx.doi.org/10.1093/nar/gkab1173.
Full textFeu, Sonia, Fernando Unzueta, Amaia Ercilla, Alejandro Pérez-Venteo, Montserrat Jaumot, and Neus Agell. "RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress." PLOS ONE 17, no. 8 (August 15, 2022): e0266645. http://dx.doi.org/10.1371/journal.pone.0266645.
Full textLiu, Wenpeng, Yuichiro Saito, Jessica Jackson, Rahul Bhowmick, Masato T. Kanemaki, Alessandro Vindigni, and David Cortez. "RAD51 bypasses the CMG helicase to promote replication fork reversal." Science 380, no. 6643 (April 28, 2023): 382–87. http://dx.doi.org/10.1126/science.add7328.
Full textMiyabe, Izumi, Ken'Ichi Mizuno, Andrea Keszthelyi, Yasukazu Daigaku, Meliti Skouteri, Saed Mohebi, Thomas A. Kunkel, Johanne M. Murray, and Antony M. Carr. "Polymerase δ replicates both strands after homologous recombination–dependent fork restart." Nature Structural & Molecular Biology 22, no. 11 (October 5, 2015): 932–38. http://dx.doi.org/10.1038/nsmb.3100.
Full textSzyjka, S. J., J. G. Aparicio, C. J. Viggiani, S. Knott, W. Xu, S. Tavare, and O. M. Aparicio. "Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae." Genes & Development 22, no. 14 (July 15, 2008): 1906–20. http://dx.doi.org/10.1101/gad.1660408.
Full textCroquette, Vincent, Maria Manosas, Senthil K. Perumal, and Stephen J. Benkovic. "Direct Observation of Stalled Fork Restart and Lesion Bypass via Fork Regression in the T4 Replication System." Biophysical Journal 104, no. 2 (January 2013): 367a—368a. http://dx.doi.org/10.1016/j.bpj.2012.11.2042.
Full textLo, Calvin Shun Yu, Marvin van Toorn, Vincent Gaggioli, Mariana Paes Dias, Yifan Zhu, Eleni Maria Manolika, Wei Zhao, et al. "SMARCAD1-mediated active replication fork stability maintains genome integrity." Science Advances 7, no. 19 (May 2021): eabe7804. http://dx.doi.org/10.1126/sciadv.abe7804.
Full textSchwab, Rebekka A., Jadwiga Nieminuszczy, Kazuo Shin-ya, and Wojciech Niedzwiedz. "FANCJ couples replication past natural fork barriers with maintenance of chromatin structure." Journal of Cell Biology 201, no. 1 (March 25, 2013): 33–48. http://dx.doi.org/10.1083/jcb.201208009.
Full textThakur, Varsha, Juliano Tiburcio de Freitas, Yuan Li, Keman Zhang, Alyssa Savadelis, and Barbara Bedogni. "MT1-MMP-dependent ECM processing regulates laminB1 stability and mediates replication fork restart." PLOS ONE 16, no. 7 (July 8, 2021): e0253062. http://dx.doi.org/10.1371/journal.pone.0253062.
Full textBatenburg, Nicole L., John R. Walker, and Xu-Dong Zhu. "CSB Regulates Pathway Choice in Response to DNA Replication Stress Induced by Camptothecin." International Journal of Molecular Sciences 24, no. 15 (August 4, 2023): 12419. http://dx.doi.org/10.3390/ijms241512419.
Full textChappidi, Nagaraja, Zuzana Nascakova, Barbora Boleslavska, Ralph Zellweger, Esin Isik, Martin Andrs, Shruti Menon, et al. "Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops." Molecular Cell 77, no. 3 (February 2020): 528–41. http://dx.doi.org/10.1016/j.molcel.2019.10.026.
Full textHromas, R., E. A. Williamson, S. Fnu, Y.-J. Lee, S.-J. Park, B. D. Beck, J.-S. You, A. Laitao, J. A. Nickoloff, and S.-H. Lee. "Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart." Oncogene 31, no. 38 (January 9, 2012): 4245–54. http://dx.doi.org/10.1038/onc.2011.586.
Full textSchwab, Rebekka A., Andrew N. Blackford, and Wojciech Niedzwiedz. "ATR activation and replication fork restart are defective in FANCM-deficient cells." EMBO Journal 29, no. 4 (January 7, 2010): 806–18. http://dx.doi.org/10.1038/emboj.2009.385.
Full textTittel-Elmer, Mireille, Armelle Lengronne, Marta B. Davidson, Julien Bacal, Philippe François, Marcel Hohl, John H. J. Petrini, Philippe Pasero, and Jennifer A. Cobb. "Cohesin Association to Replication Sites Depends on Rad50 and Promotes Fork Restart." Molecular Cell 48, no. 1 (October 2012): 98–108. http://dx.doi.org/10.1016/j.molcel.2012.07.004.
Full textWang, Yaqing, Zhiqiang Sun, Piero R. Bianco, and Yuri L. Lyubchenko. "Atomic force microscopy–based characterization of the interaction of PriA helicase with stalled DNA replication forks." Journal of Biological Chemistry 295, no. 18 (March 24, 2020): 6043–52. http://dx.doi.org/10.1074/jbc.ra120.013013.
Full textBolt, E. L. "Helicases that interact with replication forks: new candidates from archaea." Biochemical Society Transactions 33, no. 6 (October 26, 2005): 1471–73. http://dx.doi.org/10.1042/bst0331471.
Full textZellweger, Ralph, Damian Dalcher, Karun Mutreja, Matteo Berti, Jonas A. Schmid, Raquel Herrador, Alessandro Vindigni, and Massimo Lopes. "Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells." Journal of Cell Biology 208, no. 5 (March 2, 2015): 563–79. http://dx.doi.org/10.1083/jcb.201406099.
Full textBianco, Piero R. "DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication Forks in Escherichia coli." Genes 11, no. 5 (April 26, 2020): 471. http://dx.doi.org/10.3390/genes11050471.
Full textNickoloff, Jac A., Neelam Sharma, Lynn Taylor, Sage J. Allen, and Robert Hromas. "Nucleases and Co-Factors in DNA Replication Stress Responses." DNA 2, no. 1 (March 1, 2022): 68–85. http://dx.doi.org/10.3390/dna2010006.
Full textSingh, Mayank, Clayton R. Hunt, Raj K. Pandita, Rakesh Kumar, Chin-Rang Yang, Nobuo Horikoshi, Robert Bachoo, et al. "Lamin A/C Depletion Enhances DNA Damage-Induced Stalled Replication Fork Arrest." Molecular and Cellular Biology 33, no. 6 (January 14, 2013): 1210–22. http://dx.doi.org/10.1128/mcb.01676-12.
Full textTanaka, Taku, Yasumasa Nishito, and Hisao Masai. "Fork restart protein, PriA, binds around oriC after depletion of nucleotide precursors: Replication fork arrest near the replication origin." Biochemical and Biophysical Research Communications 470, no. 3 (February 2016): 546–51. http://dx.doi.org/10.1016/j.bbrc.2016.01.108.
Full textBainbridge, Lewis J., Rebecca Teague, and Aidan J. Doherty. "Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication." Nucleic Acids Research 49, no. 9 (March 21, 2021): 4831–47. http://dx.doi.org/10.1093/nar/gkab176.
Full textPatel, Darshil R., and Robert S. Weiss. "A tough row to hoe: when replication forks encounter DNA damage." Biochemical Society Transactions 46, no. 6 (December 4, 2018): 1643–51. http://dx.doi.org/10.1042/bst20180308.
Full textBatté, Amandine, Sophie C. van der Horst, Mireille Tittel-Elmer, Su Ming Sun, Sushma Sharma, Jolanda van Leeuwen, Andrei Chabes, and Haico van Attikum. "Chl1 helicase controls replication fork progression by regulating dNTP pools." Life Science Alliance 5, no. 4 (January 11, 2022): e202101153. http://dx.doi.org/10.26508/lsa.202101153.
Full textHromas, R., E. A. Williamson, S. Fnu, Y.-J. Lee, S.-J. Park, B. D. Beck, J.-S. You, A. Leitao, J. A. Nickoloff, and S.-H. Lee. "Erratum: Chk1 phosphorylation of Metnase enhances DNA repair but inhibits replication fork restart." Oncogene 33, no. 4 (January 2014): 536. http://dx.doi.org/10.1038/onc.2013.510.
Full textStewart, Jason A., Feng Wang, Mary F. Chaiken, Christopher Kasbek, Paul D. Chastain, Woodring E. Wright, and Carolyn M. Price. "Human CST promotes telomere duplex replication and general replication restart after fork stalling." EMBO Journal 31, no. 17 (August 3, 2012): 3537–49. http://dx.doi.org/10.1038/emboj.2012.215.
Full textPomerantz, R. T., and M. O'Donnell. "Direct Restart of a Replication Fork Stalled by a Head-On RNA Polymerase." Science 327, no. 5965 (January 28, 2010): 590–92. http://dx.doi.org/10.1126/science.1179595.
Full textJones, Rebecca M., and Eva Petermann. "Replication fork dynamics and the DNA damage response." Biochemical Journal 443, no. 1 (March 14, 2012): 13–26. http://dx.doi.org/10.1042/bj20112100.
Full textLee, Han-Sae, Hye-Ran Seo, Shin-Ai Lee, Soohee Choi, Dongmin Kang, and Jongbum Kwon. "BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress." Biochemical Journal 476, no. 20 (October 28, 2019): 3053–66. http://dx.doi.org/10.1042/bcj20190622.
Full textYates, Maïlyn, Isabelle Marois, Edlie St-Hilaire, Daryl A. Ronato, Billel Djerir, Chloé Brochu, Théo Morin, et al. "SMARCAL1 ubiquitylation controls its association with RPA-coated ssDNA and promotes replication fork stability." PLOS Biology 22, no. 3 (March 19, 2024): e3002552. http://dx.doi.org/10.1371/journal.pbio.3002552.
Full text