Academic literature on the topic 'Forestry machinery chain'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Forestry machinery chain.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Forestry machinery chain"
Sivakov, Vladimir V., Anatolij N. Zaikin, and Elena V. Sheveleva. "Design Improvement of the Forestry Chain Saws." Lesnoy Zhurnal (Forestry Journal), no. 1 (February 10, 2023): 116–25. http://dx.doi.org/10.37482/0536-1036-2023-1-116-125.
Full textMaktoubian, Jamal, Mohammad Sadegh Taskhiri, and Paul Turner. "Intelligent Predictive Maintenance (IPdM) in Forestry: A Review of Challenges and Opportunities." Forests 12, no. 11 (October 29, 2021): 1495. http://dx.doi.org/10.3390/f12111495.
Full textBaghizadeh, Komeyl, Dominik Zimon, and Luay Jum’a. "Modeling and Optimization Sustainable Forest Supply Chain Considering Discount in Transportation System and Supplier Selection under Uncertainty." Forests 12, no. 8 (July 21, 2021): 964. http://dx.doi.org/10.3390/f12080964.
Full textPerić, Milica, Mirko Komatina, Dragi Antonijević, Branko Bugarski, and Željko Dželetović. "Life Cycle Impact Assessment of Miscanthus Crop for Sustainable Household Heating in Serbia." Forests 9, no. 10 (October 20, 2018): 654. http://dx.doi.org/10.3390/f9100654.
Full textBlanc, Simone, Federico Lingua, Livio Bioglio, Ruggero Pensa, Filippo Brun, and Angela Mosso. "Implementing Participatory Processes in Forestry Training Using Social Network Analysis Techniques." Forests 9, no. 8 (July 30, 2018): 463. http://dx.doi.org/10.3390/f9080463.
Full textVäätäinen, Kari, Perttu Anttila, Lars Eliasson, Johanna Enström, Juha Laitila, Robert Prinz, and Johanna Routa. "Roundwood and Biomass Logistics in Finland and Sweden." Croatian journal of forest engineering 42, no. 1 (September 14, 2020): 39–61. http://dx.doi.org/10.5552/crojfe.2021.803.
Full textTolosana, Eduardo, Raquel Bados, Rubén Laina, Narcis Mihail Bacescu, and Teresa de la Fuente. "Forest Biomass Collection from Systematic Mulching on Post-Fire Pine Regeneration with BioBaler WB55: Productivity, Cost and Comparison with a Conventional Treatment." Forests 12, no. 8 (July 23, 2021): 979. http://dx.doi.org/10.3390/f12080979.
Full textSavenkov, Dmitriy, Nadezhda Savenkova, Mikhail Derbin, and Aleksandr Tret'yakov. "ROTARY REPLACEMENT OF SAW CHAINS AS A WAY TO INCREASE HARVESTER PRODUCTIVITY." Forestry Engineering Journal 10, no. 2 (July 6, 2020): 196–203. http://dx.doi.org/10.34220/issn.2222-7962/2020.2/20.
Full textRukomojnikov, Konstantin, Aleksandr Mokhirev, Albert Burgonutdinov, Olga Kunickaya, Roman Voronov, and Igor Grigorev. "Network planning of the technological chain for timber land development." Journal of Applied Engineering Science 19, no. 2 (2021): 407–14. http://dx.doi.org/10.5937/jaes0-28819.
Full textDrapalyuk, Mikhail, Vladimir Stasyuk, and Vladimir Zelikov. "NEW DESIGNS OF UNIVERSAL PLANTING MACHINES FOR PLANTING SEEDLINGS WITH OPEN AND CLOSED ROOT SYSTEMS." Forestry Engineering Journal 11, no. 4 (January 31, 2022): 112–23. http://dx.doi.org/10.34220/issn.2222-7962/2021.4/10.
Full textDissertations / Theses on the topic "Forestry machinery chain"
NONINI, LUCA. "ASSESSMENT OF WOOD BIOMASS AND CARBON STOCK AND EVALUATION OF MACHINERY CHAINS PERFORMANCES IN ALPINE FORESTRY CONDITIONS: AN INNOVATIVE MODELLING APPROACH." Doctoral thesis, Università degli Studi di Milano, 2021. http://hdl.handle.net/2434/846415.
Full textLindner, Berndt Gerald. "Determining optimal primary sawing and ripping machine settings in the wood manufacturing chain." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/86672.
Full textENGLISH ABSTRACT: For wood manufacturers around the world, the single biggest cost factor is known to be its raw material. Thus maximum utilisation, specifically volume recovery of this raw material, is of key importance for the industry. The wood products industry consists of several interrelated manufacturing steps for converting trees into logs and logs into finished lumber. At most primary and secondary wood processors the different manufacturing steps are optimised in isolation or based on operator experience. This can lead to suboptimal decisions and a substantial waste of raw material. The objective of this study was to determine the optimal machine settings for two interrelated operations, namely the sawing and ripping operations which have traditionally been optimised individually. A model, having two decision variables, was developed which aims to satisfy market demand at a minimal cost. The first decision was how to saw the log supply into different thicknesses by choosing specific sawing patterns. The second was to decide on a rip saw’s settings, namely part priority values, which determines how the products from the primary sawing operation are ripped into products of a certain thickness and width. The techniques used to determine the machine settings included static simulation with the SIMSAW software to represent the sawing operation and mixed integer programming to model the ripping operation. A metaheuristic, namely the Population Based Incremental Learning algorithm, was the link between the two operations and determined the optimal settings for the combined process. The model’s objective function was formulated to minimise the cost of production. This cost included the raw material waste cost and the over or under production cost. The over production cost was estimated to include the stock keeping costs. The under production cost was estimated as the buy-in cost of purchasing the under supplied products from another wood supplier. The model performed well against current decision software available in South Africa, namely the Sawmill Production Planning System package, which combines simulation (SIMSAW) and mixed integer programming techniques to maximise profit. The model added further value in modelling and determining the ripping priority settings in addition to the primary sawing patterns.
AFRIKAANSE OPSOMMING: Die grootste enkele koste vir houtprodukvervaardigers wêreldwyd is dié van hulle roumateriaal. Die maksimale gebruik van rou materiaal, of volume herwinning, is dus van primêre belang vir hierdie industrie. Die vervaardigingsproses in die houtprodukte-industrie bestaan uit ‘n verskeidenheid interafhanklike stappe om bome na stompe te verwerk en stompe na eindprodukte. By meeste primêre -en sekondêre houtvervaardigers word die verskillende vervaardigingsstappe in isolasie ge-optimeer. Hierdie praktyk lei tot sub-optimale besluite en ‘n vermorsing van roumateriale. Die doelwit van hierdie studie was om die optimale masjienverstellings vir twee interafhanklike prosesse, die primêre -en kloofsaag prosesse, te bepaal. Tradisioneel word hierdie twee prosesse individueel optimeer. ‘n Model met twee besluitnemingsveranderlikes is ontwikkel wat poog om die markaanvraag te bevredig teen ‘n minimum koste. Die eerste besluit was watter saagpatroon gekies moet word om die stompe in die regte dikte produkte te saag. Die tweede besluit was wat die kloofsaagstellings, ook bekend as prioriteitswaardes, moet wees sodat die regte wydte produkte gesaag word. Die tegnieke wat gebruik is sluit statiese simulasie met SIMSAW sagteware in om die primêre saagproses te modelleer en gemengde heelgetalprogammering (“mixed integer programming”) om die kloofsaagproses te modelleer. ‘n Metaheuristiek genaamd die “Population Based Incremental Learning” algoritme,was die skakel tussen die twee operasies om die optimale masjienstellings vir die proses te bepaal. Die model se doelfunksie was geformuleer om die koste van produksie te minimeer. Hierdie koste sluit die roumateriaal afvalkoste en die kostes van oor -en onderproduksie in. Die oorproduksiekoste was ‘n skatting van die voorraadkostes. Die onderproduksiekoste was ‘n skatting van die koste om voorraad van ‘n ander verskaffer aan te koop. Die model het goed opgeweeg teen die beskikbare besluitnemingssagteware in Suid Afrika, die “Sawmill Production Planning System”, wat ‘n kombinasie van SIMSAW en ‘n gemengde heelgetalprogrammeringstegniek is. Die model het verder waarde toegevoeg deur die kloofsaag se prioriteitswaardes te modelleer saam met die primêre saagpatrone.
Paul, Somak. "Effect of Supply Chain Uncertainties on Inventory and Fulfillment Decision Making: An Empirical Investigation." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1563510590703363.
Full textBerkman, Anton, and Gustav Andersson. "Predicting the impact of prior physical activity on shooting performance." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-46851.
Full textBooks on the topic "Forestry machinery chain"
ForestWorks, ed. Chainsaw operator's manual: Chainsaw safety, maintenance, and cross-cutting techniques. Collingwood, Vic: Landlinks Press, 2009.
Find full textA, Sturos John, and North Central Forest Experiment Station (Saint Paul, Minn.), eds. Performance of a portable chain flail delimber/debarker processing northern hardwoods. St. Paul, Minn: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station, 1991.
Find full textBook chapters on the topic "Forestry machinery chain"
Saikia, Angana, Vinayak Majhi, Masaraf Hussain, Sudip Paul, and Amitava Datta. "Tremor Identification Using Machine Learning in Parkinson's Disease." In Early Detection of Neurological Disorders Using Machine Learning Systems, 128–51. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8567-1.ch008.
Full textSaikia, Angana, Vinayak Majhi, Masaraf Hussain, Sudip Paul, and Amitava Datta. "Tremor Identification Using Machine Learning in Parkinson's Disease." In Research Anthology on Diagnosing and Treating Neurocognitive Disorders, 341–65. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-3441-0.ch018.
Full textEdmondson, Brad. "Order Must Be." In A Wild Idea, 117–45. Cornell University Press, 2021. http://dx.doi.org/10.7591/cornell/9781501759017.003.0007.
Full textConference papers on the topic "Forestry machinery chain"
Liu, Jundi, Steven Hwang, Walter Yund, Linda Ng Boyle, and Ashis G. Banerjee. "Predicting Purchase Orders Delivery Times Using Regression Models With Dimension Reduction." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85710.
Full textSantana, Everton, Saulo Mastelini, and Sylvio Jr. "Deep Regressor Stacking for Air Ticket Prices Prediction." In XIII Simpósio Brasileiro de Sistemas de Informação. Sociedade Brasileira de Computação, 2017. http://dx.doi.org/10.5753/sbsi.2017.6022.
Full textNaik, R. Aravind, G. Ramkuma, and K. Anjaneyulu. "A secure home environment for intelligent decision making and block chain technology to ensure authentication using Random Forest algorithm in comparison with Support Vector Machine algorithm." In 2022 14th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS). IEEE, 2022. http://dx.doi.org/10.1109/macs56771.2022.10023380.
Full textDallag, Mohammed, Mustafa Bawazir, and Ali Al-Ali. "Digital Solution to Extend the Life of Wells with Continuous Corrosion Monitoring Based on Machine Learning Algorithms." In International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22472-ms.
Full textGrosu, Corina, and Marta Grosu. "REAL COMPLEX TRAVEL." In eLSE 2016. Carol I National Defence University Publishing House, 2016. http://dx.doi.org/10.12753/2066-026x-16-074.
Full text