Dissertations / Theses on the topic 'Forecasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Forecasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Warren, Steven W. MATHEMATICAL MODELS WEATHER FORECASTING WEATHER PREDICTIONS MODELS REDUCTION PHYSICS OCEANOGRAPHY POWER REGRESSION ANALYSIS NAVY COMPARISON FORECASTING THESES. "Ensemble forecasting techniques in medium-range forecasting /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA267443.
Full textThesis advisor(s): Wendell A. Nuss. "March 1993." Page 66 is missing (which includes Fig. 21 a-b). Bibliography: p. 109. Also available online.
Warren, Steven W. "Ensemble forecasting techniques in medium-range forecasting." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/39902.
Full textA continuing trend in numerical weather prediction (NWP) is the desire for reduced model forecast error. Developments in NWP such as advanced computing power and improved model physics and analysis methods have been successful in lowering error but are potentially limited The regression method of ensemble forecasting is used to further reduce mean forecast error when compared to individual model forecast performances. A statistical regression scheme is utilized to achieve an optimum combination fitting of the National Meteorological Center, the European Centre for Medium-Range Weather Forecasts, and the U.S. Navy Fleet Numerical Oceanography Center forecast models. The performance of the regression model is evaluated for 72-h and 108-h prediction cycles through statistical and subjective comparisons with the individual models and an equally weighted ensemble model at the surface and at 500 hPa. The regression model is shown to produce gains through the reduction of systematic error present in the individual model forecasts...
Abdullah, Rozi. "Rainfall forecasting algorithms for real time flood forecasting." Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296151.
Full textRasmussen, Steven R. "Forecasting 5" /." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1995. http://handle.dtic.mil/100.2/ADA304364.
Full textJessen, Andreas, and Carina Kellner. "Forecasting Management." Thesis, University of Kalmar, Baltic Business School, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:hik:diva-1868.
Full textIn a world that is moving faster and faster, a company’s ability to align to market changes is becoming a major competitive factor. Forecasting enables companies to predict what lies ahead, e.g. trend shifts or market turns, and makes it possible to plan for it. But looking into the future is never an easy task.
“Prediction is very difficult, especially if it’s about the future.” (Niels Bohr, 1885-1962)
However, progress in the field of forecasting has shown that it is possible for companies to improve on forecasting practices. This master thesis looks at the sales forecasting practices in MNCs primarily operating in emerging and developing countries. We examine the whole process of sales forecasting, also known as forecasting management, in order to develop a comprehensive model for forecasting in this type of companies. The research is based on a single case study, which is then later generalized into broader conclusions.
The conclusion of this master thesis is that forecasting is a four-step exercise. The four stages we have identified are: Knowledge creation, knowledge transformation, knowledge use and feedback. In the course of these four stages a company’s sales forecast is developed, changed and used. By understanding how each stage works and what to focus on, companies will be able to improve their forecasting practices.
Minkah, Richard. "Forecasting volatility." Thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121079.
Full textMayr, Johannes. "Forecasting Macroeconomic Aggregates." Diss., lmu, 2010. http://nbn-resolving.de/urn:nbn:de:bvb:19-111404.
Full textNoble, Christopher J. "Forecasting vortex filaments." Thesis, University of Canterbury. Physics, 1998. http://hdl.handle.net/10092/8165.
Full textCHRISTO, ELIANE DA SILVA. "REACTIVE POWER FORECASTING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=7622@1.
Full textNo novo modelo do Setor Elétrico é essencial desenvolver novas técnicas que estimem valores futuros, a curto e longo-prazos, das potências ativa e reativa. Com base nisso, este trabalho tem por objetivo apresentar uma nova técnica de previsão horária de potência reativa a curto-prazo, por subestação, baseada na linearidade existente entre as potências ativa e reativa. O modelo proposto, denominado de Modelo Híbrido de Previsão de Reativo, é dividido em duas etapas: A primeira etapa é feita uma classificação dos dados através de uma rede neural não supervisionada Mapas Auto-Organizáveis de Kohonen (SOM); A segunda etapa, utiliza-se um modelo de defasagem distribuída auto-regressivo (ADL) com estimação de Mínimos Quadrados Reponderados Iterativamente (IRLS) acoplado a uma correção para autocorrelação serial dos resíduos - Método Iterativo de Cochrane-Orcutt. Este Modelo Híbrido tem como variável dependente a potência reativa, e como variáveis explicativas dados horários de potência ativa e reativa no instante atual e defasadas no tempo. A previsão de potência reativa a curto-prazo é dividida em in sample e em out of sample. A previsão out of sample é aplicada a períodos horários em até um mês à frente. O modelo proposto é aplicado aos dados de uma concessionária específica de Energia Elétrica e os resultados são comparados a um modelo de Regressão Dinâmica convencional e a um modelo de Redes Neurais Artificiais Feedforward de Múltiplas camadas (MLP) com um algoritmo de retropropagação do erro.
The forecasting of reactive and active power is an important tool in the monitoring of an Electrical Energy System. The main purpose of the present work is the development of a new short-term reactive power hourly forecast technique, which can be used at utility or substations levels. The proposed model, named A Hybrid Model for Reactive Forecasting, is divided in two stages. In the first stage, the active and reactive power data are classified by an unsupervised neural network - the Self-Organized Maps of Kohonen (SOM). In the second stage, a Autoregressive Distributed Lags Model (ADL) is used with its parameters estimated by an Iteratively Reweighted Least Square (IRLS). It also includes a correction lag structure for serial autocorrelation of the residuals as used in the Cochrane-Orcutt formulation. The short term reactive power forecasting is divided in in sample and out of sample. The out of sample forecast is applied to hourly periods until one month ahead. The proposed model is applied to real data of one substation and the results are compared with two other approaches, a conventional Dynamic Regression and a Feedforward Multi-layer Perceptron (MLP) Artificial Neural Network model.
Binter, Roman. "Applied probabilistic forecasting." Thesis, London School of Economics and Political Science (University of London), 2012. http://etheses.lse.ac.uk/559/.
Full textSESKAUSKIS, ZYGIMANTAS, and ROKAS NARKEVICIUS. "Sales forecasting management." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-10685.
Full textPacella, Claudia. "Essays on Forecasting." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/307579/4/CP_ToC.pdf.
Full textDoctorat en Sciences économiques et de gestion
info:eu-repo/semantics/nonPublished
Harrington, Robert P. "Forecasting corporate performance." Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/54515.
Full textPh. D.
Fuksa, Michel Carleton University Dissertation Management Studies. "Forecasting exchange rates." Ottawa, 1997.
Find full textWang, Zheng. "Solar Power Forecasting." Thesis, The University of Sydney, 2019. https://hdl.handle.net/2123/21248.
Full textSanchez, Janice Lynn. "Interpersonal affective forecasting." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:6946943f-30fb-48e2-9c73-a44ec69bd2d0.
Full textAhmed, Shadman. "Phase-Out Demand Forecasting : Predictive modeling on forecasting product life cycle." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-287446.
Full textUtfasningen i en produktlivscykel kan kännetecknas vara oförutsägbart. En noggrann prognos av stadiet kan ge värdefull insikt såsom att begränsa antalet utgångna inventeringar och om produktens efterfrågan. Detta kan ge positiv ekonomisk effekt samt spara resurser. I denna studie jämförde vi med domän experter om data drivna prognosmodeller kunde förbättra estimeringen av efterfrågan inom utfasningen i en produktlivscykel. På grund av att tillgängligheten av prognosmodeller är omfattande, ett antal modeller studerades som visat bäst resultat i olika studier. Efter en nogrann urval av 11 olika modeller som visade bäst prestanda, användes följande 3 modeller för den senare delen av studien: Autoregressiv Integrerad Glidande Medelvärde (ARIMA), Stödvektor Regression (SVR) och Gaussisk Process Regression (GPR). Resultat visade att ingen av modellerna kunde generellt förbättra prognoserna, dock visade SVR signifikant liknande prognosfel som planestimeringarna från domän experter för 14 unika produkter. Dessutom visades sig att en minskning av data förbättrade prestandan hos modellerna. Där endast 60% av träningsdatat tycktes vara optimalt för ARIMA och GPR medan SVR med 80%. Vi presenterar resultaten ihop med ytterligare frågor som undersöktes inom detta område.
Yenilmez-Dramali, Demet. "Moderating effect of forecasting methods between forecasting criteria and export sales forecasting effectiveness : an empirical model for UK organizations." Thesis, Kingston University, 2013. http://eprints.kingston.ac.uk/26591/.
Full textBruno, Jack H. "Evaluating the Weather Research and Forecasting Model Fidelity for Forecasting Lake Breezes." Ohio University Honors Tutorial College / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ouhonors1556189524538244.
Full textVera, Barberán José María. "Adding external factors in Time Series Forecasting : Case study: Ethereum price forecasting." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289187.
Full textHuvudinstrumentet för prognosmodeller för tidsserier de senaste åren har gått i riktning mot mönsterbaserat lärande, där ingångsvariablerna för modellerna är en vektor av tidigare observationer för variabeln som ska förutsägas. De mest använda modellerna baserade på detta traditionella mönsterbaserade tillvägagångssätt är auto-regressiv integrerad rörlig genomsnittsmodell (ARIMA) och långa kortvariga neurala nätverk (LSTM). Den huvudsakliga nackdelen med de nämnda tillvägagångssätten är att de inte kan reagera när de underliggande förhållandena i data förändras vilket resulterar i en försämrad prediktiv prestanda för modellerna. För att lösa detta problem försöker olika studier integrera externa faktorer i modellerna som behandlar systemet som en svart låda med en maskininlärningsmetod som genererar komplexa modeller som kräver en stor mängd data för deras inlärning och har liten förklarande kapacitet. I denna uppsatsen har tre olika algoritmer föreslagits för att införliva ytterligare externa faktorer i dessa mönsterbaserade modeller, vilket ger en bra balans mellan prognosnoggrannhet och modelltolkbarhet. Efter att ha använt dessa algoritmer i ett studiefall av prognoser för Ethereums pristidsserier, visas det att förutsägelsefelet effektivt kan minskas genom att ta hänsyn till dessa inflytelserika externa faktorer jämfört med traditionella tillvägagångssätt med bibehållen full tolkbarhet av modellen.
Lindström, Markus. "Forecasting day-ahead electricity prices in Sweden : Has the forecasting accuracy decreased?" Thesis, Umeå universitet, Nationalekonomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-184649.
Full textCarabotta, Laura. "Fiscal Forecasting in Italy." Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/301770.
Full textTagliabracci, Alex. "Essays on macroeconomic forecasting." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665202.
Full textThis thesis is a collection of three empirical essays with a focus on forecasting. The first chapter focuses on an important policy task as forecasting inflation. The work aims to investigate how the dynamics of the business cycle may impact the distribution of inflation forecasts. The second chapter considers two econometric models used in the nowcasting literature and propose a comparison with an application to the Italian GDP. The last chapter is centered around forecasting the effects of macroeconomic data releases on the exchange rates. The first chapter studies how the business cycle affects the conditional distribution of euro area inflation forecasts. Using a quantile regression approach, I estimate the conditional distribution of inflation to show its evolution over time allowing for asymmetries across quantiles. I document the evidence of downside risks to inflation which vary in relation to developments of the state of the economy while the upside risk remains relatively stable over time. I also find that this evidence partially characterizes the corresponding distribution derived from ECB Survey of Professional Forecasters. The second chapter proposes two multivarite econometric models that consider two important characteristics in the nowcasting literature, as timely and high frequency data, to predict Italian GDP, namely a dynamic factor model and a mixed-frequency Bayesian VAR. A pseudo out-of-sample exercise shows three main results: (i) both models considerably outperform a standard univariate benchmark; (ii) the dynamic factor model turns out to be more reliable at the end of the forecasting period while the mixed-frequency BVAR appears superior with an incomplete information set; (iii) the overall forecasting superiority of the dynamic factor model is mainly driven by its ability in capturing the severity of recession episodes. Finally, the third chapter, jointly written with Luca Brugnolini and Antonello D’Agostino, investigates the possible predictability of macroeconomic surprises and their effects on the exchange rates. In particular, we analyze two of the most important data releases that impact the US financial market, namely the change in the level of non-farm payroll employment (NFP) and the manufacturing index published by the Institute for Supply Management (ISM). We examine the unexpected component of these two, as measured by the deviation of the actual release from the Bloomberg Consensus. We label it as the market surprise, and we investigate whether its structure is partially predictable and in which cases. Secondly, we use high-frequency data on the eurodollar as a laboratory to study the effect of these surprises. We show in a regression framework that although the in-sample fit is sufficiently good, the performance deteriorates in an out-of-sample setting because a naive model can hardly be beaten in a sixty-minute window after the release. Finally, we demonstrate that under certain circumstances there is some structure that can be exploited and we provide a framework to take advantages of it.
Odendahl, Florens. "Essays in economic forecasting." Doctoral thesis, Universitat Pompeu Fabra, 2018. http://hdl.handle.net/10803/664016.
Full textEsta tesis consta de tres capítulos sobre métodos predictivos en economía. El primer capítulo propone el uso de cópulas para la elaboración de previsiones de distribuciones multivariantes utilizando datos de encuestas sobre distribuciones univariantes. Las previsiones basadas en sondeos son, a menudo, equiparables a las obtenidas por modelos de series temporales, pero sólo hay datos disponibles para distribuciones univariantes. La estrategia de estimación propuesta utiliza la información de las distribuciones univariantes de los sondeos. Posteriormente queda demostrada la importancia de la perspectiva multivariante en la elaboración de previsiones. El segundo capítulo propone nuevos tests para evaluar la racionalidad de las previsiones, los cuales, resultan sólidos bajo la presencia de Markov switching. En comparación, los tests existentes se centran en probar la prueba entera o usan técnicas no-paramétricas y tienen menos poder contra la alternativa de cambios discretos. Mediante la investigación empírica de la racionalidad del las previsiones del Blue Chip Financial Forecasts, se encuentra evidencia a favor de la hipótesis de un sesgo con Markov switching durante los periodos de relajación monetaria. El tercer capítulo es una investigación empírica de la eficacia del modelo de regresión de cuantiles para prever en tiempo real el crecimiento del PIB estadounidense. Los resultados obtenidos indican que dicho modelo es comparable a los modelos de referencia actuales y que la estrategia de estimación aplicada con diferentes muestras de datos influye los resultados.
Stordahl, Kjell. "Long-term telecommunication forecasting." Doctoral thesis, Norwegian University of Science and Technology, Department of Telematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-948.
Full textThe key word for the thesis is long-term demand forecasting which have been applied on telecommunications and especially on broadband accesses and traffic.
The objective with the thesis has been to structure and present work on long-term broadband forecasting, to evaluate the forecasting results and to extract the learning. Each main chapter ends with a section called experiences and conclusions.
The thesis is organized in seven main parts.
The first part addresses application of the Delphi technique for long term forecasting broadband accesses. Three Delphi surveys, which have been conducted during a long period, have been evaluated. All three Delphi surveys have used similar procedures in carrying out the survey, except that two of the Delphi surveys were postal surveys, while one was carried out on site. The applied procedure is evaluated based on an important reference article on Delphi surveys and also based on the long-term forecasting results. The Delphi surveys are not very often used. Hence, the description of the way to conduct the surveys and the experiences and also the evaluations of the results are given specific attention in the thesis.
The second part of the thesis has the title “Long-term broadband technology forecasting”. Results from three papers are presented and evaluated. The papers show the evolution of the forecasting modelling. The first forecasts for the broadband evolution in Western Europe were made before broadband was introduced in the residential market in Western Europe. The long-term forecasts were developed based on Logistic models. The modelling also includes substitution effects between broadband technologies. Experiences have shown that technological knowledge and techno-economic evaluations are crucial for making long-term broadband forecasts. Some attention is also put on available broadband accesses statistics and an approach to separate aggregated broadband statistics to access statistics for the business market and for the residential market.
“Long-term forecasting models for cost components and technologies” is the third part in the thesis. To be able to evaluate broadband technologies, techno-economic calculations of the “economic” value of the relevant broadband technologies are very important. The extended learning curve model invented by Borgar T Olsen and Kjell Stordahl is presented. The model is much more powerful than the simple exponential learning curve. The extended learning curve makes long-term forecasts of component costs and has the ability to be used directly on technoeconomic calculations, as opposed to the traditional learning curve model, which does not predict the cost as a function of time. In addition the extended learning curve model has interpretable parameters. It is shown that the model may utilize a priori information in cases where too few observations are available.
The fourth part addresses long-term traffic forecasting. Three papers are enclosed. The chapter starts with a short overview of relevant forecasting models. Then attention is paid to forecasting and network planning. A comprehensive overview of the field is given together with numerous references in the enclosed paper “Forecasting – an important factor for network planning”. Longterm forecasts for the core network is analyzed and discussed. Also some figures for the total broadband traffic evolution in the Norwegian core network is presented.
The last paper described in the chapter shows how long-term traffic forecasts on aggregated level can be used for traffic matrix forecasting by using the extended weighted least square method. The chapter ends by listing several important drivers for new and enhanced broadband traffic that are important in traffic forecasting models.
Paper I, III, IV, V, VI, VII and XIII copyright Telenor R&I
AJMAL, KHAN, and MAHMOOD HASHMI TAHIR. "Daily Calls Volume Forecasting." Thesis, Högskolan Dalarna, Statistik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:du-4852.
Full textAssaf, Hamed. "Real-time flow forecasting." Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/30815.
Full textApplied Science, Faculty of
Civil Engineering, Department of
Graduate
Yetman, James Arthur. "Essays in macroeconomic forecasting." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ35986.pdf.
Full textKambouroudis, Dimos S. "Essays on volatility forecasting." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3191.
Full textMaissi, Esther. "Dysphoria and affective forecasting." Thesis, University of London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542384.
Full textRichardson, Ross Elliot. "Forecasting with Agent Games." Thesis, Imperial College London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.516973.
Full textFischer, Ulrike. "Forecasting in Database Systems." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133281.
Full textMartin, C. A. "International tourism demand forecasting." Thesis, University of Bradford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379816.
Full textQuintana, José Mario. "Multivariate Bayesian forecasting models." Thesis, University of Warwick, 1987. http://wrap.warwick.ac.uk/34805/.
Full textValente, Giorgio. "Essays in financial forecasting." Thesis, University of Warwick, 2003. http://wrap.warwick.ac.uk/4055/.
Full textMcVean, Ross Iolo Kester. "Forecasting pea aphid outbreaks." Thesis, University of East Anglia, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.389386.
Full textBERTOLOTO, RODRIGO FERREIRA. "FORECASTING TANKER FREIGHT RATE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2018. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=35800@1.
Full textCrude oil and oil products seaborne transportation is a key component of the petroleum industry supply chain, integrating suppliers and customers located in different geographic regions. In this context, the freight rates practiced have a great impact on the international trade of these goods. This work aims to verify the performance of Dynamic Regression models in short-term maritime freight forecasts of the spot market of an oil export route from West Africa to China, to compare the predictive capacity of the model with traditional methods, widely discussed in the literature, such as Exponential Smoothing and ARIMA models and to design scenarios to evaluate how the explanatory variables present in the Dynamic Regression model proposed in this study affect freight rate. The product developed in this dissertation showed the viability of the univariate and causal models being used as a forecasting tool for the oil tankers freight rate. As a form of validation, the results were compared to those obtained with the methodology of a large Brazilian oil company. The proposed prediction system prototype, through Dynamic Regression model, presented satisfactory results and performance superior to that obtained through the methodology of the oil company.
Chartier, Alex. "Ionospheric specification and forecasting." Thesis, University of Bath, 2013. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.629652.
Full textVelonias, Platon M. (Platon Michael). "Forecasting tanker freight rates." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36016.
Full textSouza, André B. M. "Essays in economic forecasting." Doctoral thesis, Universitat Pompeu Fabra, 2021. http://hdl.handle.net/10803/672997.
Full textAquesta dissertació consta de dos capítols independents sobre previsió econòmica i financera. El primer capítol introdueix un modelo de predicció no lineal que combina les previsions del signe i del valor absolut d’una sèrie temporal en previsions mitjanes condicionals. A diferència dels models lineals, el modelo proposat permet que diferents variables afectin per separat el signe i el valor absolut de la sèrie d’interés. Una aplicació empírica que utilitza el conjunt de dades FRED-MD mostra que les previsions basades en el modelo proposat superen substancialment les previsions lineals per a sèries que presenten dinàmiques de volatilitat persistents, com la producció industrial i els tipus d’interès. El segon capítol, coautorado con Christian Brownlees, proporciona una àmplia comparació de mètodes per predir els riscos negatius per al creixement del PIB per a un grup de 24 economies de l’OCDE. Considerem les previsions construïdes a partir de regressions quàntils estàndard, així com a partir de models de volatilitat condicional. La nostra evidència suggereix que els models de volatilitat, com el GARCH (1,1), són almenys tan precisos com les regressions quantils.
Walker, Jacob Charles. "Data-Driven Visual Forecasting." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1221.
Full textFurman, Yoel Avraham. "Forecasting with large datasets." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:69f2833b-cc53-457a-8426-37c06df85bc2.
Full textChala, A. V. "Classified forecasting exchange rate." Thesis, Видавництво СумДУ, 2012. http://essuir.sumdu.edu.ua/handle/123456789/26081.
Full textSharma, Namit. "Forecasting Oil Price Volatility." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36815.
Full textTests for the relative information content of implied volatilities vis-Ã -vis GARCH time series models are conducted within-sample by estimating nested conditional variance equations with returns information and implied volatilities as explanatory variables. Likelihood ratio tests indicate that both implied volatilities and past returns contribute volatility information. The study also checks for and confirms that the conditional Generalized Error Distribution (GED) better describes fat-tailed returns in the crude oil market as compared to the conditional normal distribution.
Out-of-sample forecasts of volatility using the GARCH GED model, implied volatility, and historical volatility are compared with realized volatility over two-week and four-week horizons to determine forecast accuracy. Forecasts are also evaluated for predictive power by regressing realized volatility on the forecasts. GARCH forecasts, though superior to historical volatility, do not perform as well as implied volatility over the two-week horizon. In the four-week case, historical volatility outperforms both of the other measures. Tests of relative information content show that for both forecast horizons, a combination of implied volatility and historical volatility leaves little information to be added by the GARCH model.
Master of Arts
Hellman, Simon. "Forecasting conflict using RNNs." Thesis, Uppsala universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445859.
Full textAhmadi-Djam, Adrian, and Nordström Sean Belfrage. "Forecasting Non-Maturing Liabilities." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-205032.
Full textMed ständigt ökande krav på finansiella institutioner måste de noga övervaka sin likviditetsrisk. Detta examensarbete fokuserar på att analysera lämpligheten av tidsseriemodeller för prognoser inlåningsvolymer med hjälp av data från en ej namngiven finansiell institution. Holt-Winters, Stochastic Factor, ARIMA och ARIMAX modellerna används, där den senare uppvisar bäst resultat. ARIMAX modellen är lämplig för prognoser av inlåningsvolymer på en 3-6 månaders tidshorisont där hänsyn till säsongseffekter tagits genom månatliga dummyvariabler. Förklaringsvariabler såsom marknadsvolatilitet och räntor förbättrar modellens prognosticeringsprecision men ökar samtidigt komplexiteten på grund av de simuleringar som krävs.
Dror, Marika. "Forecasting of exchange rates." Doctoral thesis, Vysoká škola ekonomická v Praze, 2010. http://www.nusl.cz/ntk/nusl-202335.
Full textSimoes, Nuno Eduardo da Cruz. "Urban pluvial flood forecasting." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/10545.
Full textSyntetos, Argyrios. "Forecasting of intermittent demand." Thesis, Online version, 2001. http://bibpurl.oclc.org/web/26215.
Full textLiao, Kua-ping. "Feedforward neural network forecasting model building evaluation : theory and application in business forecasting." Thesis, Lancaster University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310532.
Full text